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Foreword

During the 1960s and 1970s the Artificial Intelligence Laboratory at Stanford University was a
multidisciplinary facility populated by enormously gifted and dedicated workers trained in the sci-
ences, engineering sciences, social sciences, and music. The musicians were part of the Center for
Computer Research in Music and Acoustics (CCRMA) and shared the use of the A. I. Lab’s com-
puter. While the scientists had no professional interest in music, their scientific and technical
knowledge was of critical importance to the musicians in learning to make effective use of the
ever-evolving hardware and software. We had been seduced by Max Mathews’s now famous state-
ment, “There are no theoretical limitations to the performance of the computer as a source of musical
sounds, in contrast to the performance of ordinary instruments.”! Music was to enter an entirely
new domain.

An implicit understanding within this community of individual users went something like this:
Any question asked would be cheerfully and completely answered, to any level of detail . . . once!
It was assumed that the questioner would then make the effort to follow up and fully comprehend
the answer and all its implications before returning with another question. For the musicians, dis-
ciplined and well educated but most having little mathematical or scientific training and none in
the use of computers, this was an opportune and accommodating intellectual environment.

Gareth Loy was one of us who in the mid-1970s, as a graduate student at CCRMA, made full
use of the opportunities presented to him in this extraordinary environment. He assumed respon-
sibility for writing the software for the Samson Box, by far the most powerful and complex digital
synthesizer/processor of the day, named after its primary designer, Peter Samson.? Because Loy
was trained as a composer, composition was his ultimate purpose, and on completing the software
he composed Nekyia, a beautiful and powerful composition in four channels that fully exploited
the capabilities of the Samson Box. As an integral part of this community, Loy paid back many
times over all that he had learned, by conceiving the system with maximal generality such that it
could be used for research projects in psychoacoustics as well as for hundreds of compositions by
a host of composers having diverse compositional strategies. These accomplishments, both musi-
cal and technical, further revealed to Loy the profundity of his capabilities and led him to pursue
his interest in this shared territory of music and mathematics, ultimately to the benefit of all of us.



xii Foreword

The two volumes of Musimathics are a kind of instantiation of the process of learning that had
such a powerful facilitating effect on the work at CCRMA in those years: explanations presented
with wit and in great detail but here logically ordered and ever available, not just once! This sec-
ond volume of Musimathics is comprehensive. Loy focuses on the digital domain, from elemental
binary numbers through digital signal processing and synthesis to such heady topics as Gabor and
acoustical quanta, all in terms of their mathematical underpinning and all clearly explained with
elegant and illuminating graphics. Reflecting his intellectual journey—the questions, the answers,
the study, and most important, the motivation: music!—but now with the wisdom from years of
teaching and study, Loy is an extraordinarily gifted guide. Excellent texts inspire, and this one cer-
tainly does.

John Chowning



Preface

This second volume of Musimathics continues the story of music engineering begun in volume 1.
It takes a deeper cut into the mathematics of music and sound, including

= Digital audio, sampling, binary numbers

= Complex numbers and how they simplify representation of musical signals
= Fourier transform, convolution, and filtering

= Resonance, the wave equation, and the behavior of acoustical systems

= Sound synthesis

= The short-time Fourier transform and the wavelet transform

The material in volume 1 was all preparatory to the subjects introduced in this volume, although
this volume can certainly be read independently. Cross-references to volume 1 occur wherever
there is an antecedent concept required in this volume. Additional mathematical orientation is pro-
vided as necessary.

Musimathics takes an uncommon approach to presenting mathematics. It cultivates the reader’s
common sense. I believe that enlightened common sense and inference are the whole of mathe-
matics and that inference itself flows from enlightened common sense. The cure for any lack of
mathematical preparation on the reader’s part is simply to focus on what makes the most sense,
and the rest will follow. This is my personal experience and a major premise of this book.

Inference without common sense leads nowhere. But to the naive reader, this is exactly where
treatises on mathematics seem to lead. The problem is how mathematics is presented in print. If
authors had to state explicitly all the assumptions that underlie an argument, even trivial mathe-
matical assertions would be too long-winded to print. Instead, the commonsense foundations of
mathematical arguments are assumed so that the focus can be placed on the interesting and pos-
sibly surprising inferences that are being reported. This means that most of the common sense has
been removed on purpose, rendering this splendid and remarkable subject off-limits to the math-
ematically unprepared reader. The cure for this is to “rehydrate” the common sense back into it.
By seeing the rationale alongside the mathematics, the reader can gain a deeper insight into both
music and mathematics.



xiv Preface

Musimathics provides two aids to the reader. The first is common sense about music and sound;
the second is patience about the process of inference. Musimathics provides complete derivations
of important concepts together with explanations of the steps. Breathtaking vistas can be opened
up by starting from humble assumptions and climbing the ladder of inference. But it’s easy to fall
off the ladder if the reader misses a step. I know what that fall feels like, so I've labored to make
the climb as secure and straightforward as possible.

The Web site http://www.Musimathics.com contains additional source material, animations,
figures, and sources for other program examples in this book. Also, try saying “Musimathics” to
your favorite Web browser and see what happens.

Acknowledgments

I am grateful for the loving support I have received from my wife, Lisa, and my family and friends
over the decade it has taken to write Musimathics. Thanks to all, including Bernard Mont-Raynaud,
Mark Dolson, Dana Massie, and Charles Seagrave for reviewing chapters of this volume. Thanks
to Linda Graham and Barbara Cook Loy for inspiration and support.

I am continually grateful to all whose scholarship and insight have fed into the rich stream of
knowledge that this book can at best sample and summarize. The enormous list of these individuals
begins with the bibliography of this book and extends recursively through all the influences they
cite. If there is anything to praise in this work, it is because it reflects these antecedents; if there
is fault, it is mine alone.

In closing, let me express my heartfelt thanks to the Musimathics team at the MIT Press: Doug
Sery and Valerie Geary (acquisitions editor and assistant), Deborah Cantor-Adams (production
editor) and Alice Cheyer (freelance copyeditor), Sharon Deacon Warne (designer), Janet Rossi
(production coordinator), Mary Reilly (graphics coordinator), and Patrick Ciano (cover designer).
I am especially grateful to Doug Sery, whose clear vision and steady hand helped guide me from
initial contact through completed project. His belief in the value of this effort has sustained me and
helped make publication possible.

Gareth Loy
Corte Madera, California, October, 2006



Musimathics






1 Digital Signals and Sampling

The gods confound the man who first found out how to distinguish the hours! Confound him, too, who in this
place set up a sundial, to cut and hack my days so wretchedly into small portions!
—Plautus

Digital audio has fundamentally changed the way music is made, distributed, and shared. It is now
so pervasive that most of the music we hear is digitally stored and processed. A good deal of it is
also created digitally.

The public has benefited enormously from the technological advances of digital audio, but at a
price. Legal efforts to limit and regulate music copying have come about largely because of digital
audio’s ability to make perfect copies of recordings. Digital audio has become the proverbial lion in
the pathway that our society must address in order to restore balance between artistic, commercial,
and social aims. To fully understand its promise and pitfalls, we all—musicians, audio engineers, and
listeners alike—must come to grips with this technology.

This chapter introduces the digital representation of signals, which (in the words of Plautus)
consists of cutting and hacking time into very small portions. The focus is on intuitive understand-
ing. The mathematical underpinnings of sampling theory are delayed until section 4.8.

1.1 Measuring the Ephemeral

The dimensions of a wooden board remain relatively static over time, but the dimensions of sound
waves are transitory, changing from moment to moment. How are we to measure something so
ephemeral? To begin with, let’s consider the ocean’s tides, which have the explanatory advantage
over sound waves of changing slowly and being visible.

In order to record wave motion, we could construct a float attached to a pier in the ocean
(figure 1.1). An angled bar attached to the float is pushed up and down by the waves. The rollers
that connect the bar to the pier constrain it to travel only vertically. A pen mounted on the end of
the bar leaves a mark on a piece of paper wrapped around a rotating drum. The apparatus monitors
wave motion continuously—at every instant. The track mark created by the wave fluctuations is
a continuous function of time.
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Figure 1.1
Float system for measuring waves.

| ,[

S

o

Wave Height

{ —»
Time

Figure 1.2
Unwrapping the paper from the drum.

Suppose we stop the drum after it has rotated once around, and unwrap the paper to examine
the mark left on it by the pen (figure 1.2). Because of the paper’s position on the drum, the x-axis
represents the passage of time and the y-axis represents the fluctuating height of the waves.

If we let f(t) represent the track mark, we can determine the height of the waves at any time
t by evaluating f{(¢) for the particular value of ¢ that we wish to examine. For example, suppose
it took 1 minute for the drum to revolve once, and the width of the paper is 1 meter. Then the
height of the wave that occurred 30 seconds after we began is analogous to the height of the mark
at 0.5 meter.

The function f(¢) is analogous in two senses: it analogizes time to place (on the x-axis), and wave

height to place (on the y-axis). So f(t) is an analog function of time. If w(t) is the actual wave
height, we can relate it to f(¢) by writing

J(1) o< w(1),
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where o means “is proportional to.” Analogies are very useful but can sometimes be misleading.
For example, whereas real time flows inexorably forward, the paper analogy of time (represented
by the variable ¢ on the x-axis) is not similarly restricted. We can select any position along the
x-axis, but we cannot return to the corresponding moment in real time. So the analogy is not perfect.
We must remain alert to the limitations of analogies lest they confuse our thinking.

1.1.1 Sampling

An entirely different approach to measuring ocean waves is to sample wave height at periodic time
intervals. Suppose once a day precisely at noon we go to a lagoon by the sea and look at a
tide-measuring pole in the water showing the median height of the waves (figure 1.3). Numbered
marks on the pole indicate the waves’ height. We identify the mark that seems to be nearest to wave
height, and record the measurements sequentially in a log book. After a month, we may end up with
a list of measurements like those in figure 1.4.

Figure 1.3
Sampling wave height.

January Tide Log
Date Height
Jan. 1 3
Jan. 2 4
Jan. 3 3
Jan. 29 2
Jan. 30 3
Jan. 31 1
Figure 1.4

Tide log.
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Whereas the float recorder measures wave height continuously, sampling measures it discon-
tinuously, “every so often.” Taken together, the samples represent a discrete function of time. If the
discrete function g consists of the samples in the tide log in figure 1.4, then g(n) indexes the nth
tide sample record, where n is an integer. For example, if n = 1, then by figure 1.4, g(n) = 3.
Similarly, g(2) =4, g(3) = 3, and so on.

Though they have similar mathematical notation, continuous functions like f(#) and discrete func-
tions like g (n) are very different. Whereas a continuous function can be evaluated at any real-valued
index, there is nothing in between the integer-valued indexes of a discrete function. Nothing at all.
Whatever the waves were doing while we weren’t measuring is lost forever. The only way to tell for
sure if a function is discrete or continuous is to check the type of its argument: if it is an integer, the
function is discrete; otherwise it is continuous. Throughout this book, if I don’t state otherwise,
assume that the index of a function is a real value, that is, taken from continuous measurements.

1.1.2 Sampling Rate

If a constant time interval 7' elapses between observations, the process is called periodic sampling
with sampling period 7. The expression n7, where n is an integer, corresponds to the moment when
sample n was taken. The rate at which samples are taken, called the sampling rate or sampling fre-
quency f, is the reciprocal of the sampling period:

Sampling Frequency (1.1)

~i=

fi =

1.1.3 Capturing Frequency Information

Periodic sampling not only captures amplitude information about the changing height of the
waves, it also captures frequency information. Increasing the sampling rate increases the highest
frequency that can be recorded.

For example, suppose we wish to study the ebb and flow of the ocean’s tides, the vertical rise
and fall of the sea level surface that is caused primarily by the change in gravitational attraction
of the moon and, to a lesser extent, the sun. Sampling the tide once a month is not frequent enough
to get meaningful data because the tides have a period of about 24 hours, 50 minutes. If we want
to capture useful tidal information, we are undersampling.

We are still undersampling if we sample once a day because the time between a low tide and sub-
sequent high tide is somewhat more than 6 hours. If we sample at least four times a day, we start
getting reasonable data about the flow of tides. Sampling every hour provides a better view but
requires making more measurements (and storing more information). If we sample every minute,
we are probably oversampling because the tide changes less than about 1 centimeter per minute
at its fastest rate. If we sample every second, we are now recording the individual waves as they
splash past the measuring pole.

Thus, increasing the sampling rate increases the highest frequency of fluctuation that can be
tabulated.
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1.1.4 Improving the Process

There are a couple of problems with the tide sampling method just outlined. When we look at the
tide-measuring pole, a jumble of waves obscures our observation of the slow-changing average
tide. Let’s remove these extraneous waves so that they don’t interfere with the measurements.

Lowpass Filtering We can create a sampling system to record only slow-changing tide fluctu-
ations. Mount a hollow tube vertically in the ocean floor. Its bottom rests on the sea floor and is
closed; its top rises above the highest tide and is open. Sea water can flow in and out of the tube
through a small-diameter pipe that is attached to its side well below sea level (figure 1.5). The nar-
row pipe restricts the rate at which water flows into and out of the tube, preventing rapid changes
in water level. Since the small pipe prevents rapid fluctuation of water level—and since frequency
is proportional to rate of fluctuation—the small pipe blocks high-frequency wave energy from
entering the tube. The small-diameter pipe acts as a lowpass filter, meaning it only allows low
frequencies to enter the tube.

Sample-and-Hold Although the lowpass filter slows down the water’s rate of fluctuation inside
the tube, the water level is still constantly changing, albeit at a slower rate. If we could make the
level inside the tube as stationary as possible during measurements, accuracy would improve. One
last refinement takes care of this: install a hinged lid that can seal the small pipe shut on command.
The system in figure 1.6 now functions as a sample-and-hold.

Ordinarily, the lid is left open so that water can flow in and out of the tube as before. When we
wish to measure the tide, we close the lid and wait a while for any turbulence to die down so that
the water level becomes constant. Now we can measure the water’s height with confidence.

M~——1
4
Water Surface
3
Measuring Tube )

Small Diameter Pipe

Q

Figure 1.5
Lowpass filtering.
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M~———1
4
Water Surface
3
Measuring Tube )

Hinged Lid
—

)

Figure 1.6
Sample-and-hold.

The sample-and-hold gets its name from its two states: sampling and holding. The hold state occurs
when the valve is closed, while the tube holds the water level steady to be measured. During the time
the valve is open, it is continuously sampling the height of the water level. The characteristic response
of the sample-and-hold is shown in figure 1.7. The time required for the valve to close—to go from
sampling to holding—is called the aperture time T,,. The time required to go from holding back to
sampling—from the moment the valve is opened again until the water level inside the tube is the same
as the tide level outside—is called the acquisition time T .. The switching transients shown in the fig-
ure are the shudders sent through the system when the valve is suddenly opened or closed. If there is
any leakage in the system when the valve is closed, the hold value will droop, as shown in the figure.
A well-designed sample-and-hold will have little droop and mild transients.

A control function labeled Hold in figure 1.7 indicates the beginning of the aperture time and
the beginning of the acquisition time. When the Hold function is low, the sample-and-hold is con-
tinuously sampling, and when it is high, the sample-and-hold is holding. Measuring the level and
converting its height to a discrete value can commence anytime after the aperture time ends and
before the acquisition time begins. Conversion is signaled by the Convert control function, as
shown in the figure. It goes high in the middle of the hold period to trigger sample capture. The

conversion time T, is the minimum sample time.

Figure 1.8 shows the operation of the sample-and-hold through several samples. The Hold and
Convert signals are shown below the input and output functions. When the Hold function goes
high, the sample-and-hold starts to hold its current output value. We see the output function of the
sample-and-hold flatten and start to droop a little during the time Hold is high (marked with vertical
lines). In the middle of the hold time, after the aperture time has elapsed, the Convert signal goes

high. During that time (marked with boxes) the magnitude of the output function is converted. When
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Switching
Transients

Voltage

Time

\]

Aperture Time —>‘ |-—

Tap

Acquisition Time
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Hold: Sampling |

| Converting |
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Figure 1.7

Holding

| Sampling

N

conv

Conversion Time

Sample-and-hold response characteristics. Adapted from Ramsay (1996).

Input

Output

Hold:

Convert:

Figure 1.8

Sample-and-hold operation.
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Hold goes low again, the sample-and-hold starts to acquire the input function again, catching up with
it before Hold is reasserted.

Slew Rate Notice in figure 1.8 that the output is relatively slow to catch up with the input after the
Hold signal releases. In terms of the tide-measuring tube, the water level in the measuring tube requires
some time to return to the level of the surrounding water. This is because the small pipe restricts the
slew rate of water flow in and out of the pipe. The maximum slew rate is an indication of how steep
a slope the output function can achieve; hence it is a measure of the maximum rate of change of
the output signal. Slew rate is the ratio of rise to rise time. The rise usually covers the distance from
10-90 percent of maximum excursion; the rise time is the time required to cover that distance.

If r, is the 10 percent level and r is the 90 percent level, then the rise is Ar = r—r, and the
slew rate S is

_ Ar

S . Slew Rate (1.2)

r

where 1, is the rise time.

For the tide-measuring system, we might measure slew rate in millimeters per second. For an
electronic circuit, we might measure millivolts per microsecond.

We can see how good a sample-and-hold is at tracking the input signal by making a ratio of input
slew rate §; to output slew rate S. If

i
—>1,

SO

the input function can change faster than the output function, and the system is slew-rate-limited.
Lowpass filters are slew-rate-limited by definition: they are designed to retard the rate of change
of the input signal. Other systems, such as high-fidelity amplifiers, are designed to have extremely
high slew rate ratios so as to retain utmost fidelity to the input signal.

Real Time The sample-and-hold’s maximum sustainable rate of operation depends on the min-

imum time required for the conversion operation. The aperture time 7, conversion time T,

and acquisition time 7., are fixed by the design of the sample-and-hold. Since these times must

be sequential, the minimum sampling time of the sample-and-hold is T, = Ty + Teopy + Typeq-

The sampling period T must be greater than or equal to 7;, to operate reliably,

Tmin

<T. Timely Sampling Criterion (1.3)

The maximum sustainable sampling rate is

Soax = %, ~ samples per second. Fastest Possible Sampling Rate (1.4)
min

Conversely, if at least R samples per second are required, then we must have 7., < 1/R.

min =
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An operation takes place in real time only if it can perform its task in a timely manner with
respect to the larger dynamical system of which itis a part. So long as the sample period 7 is longer
than the shortest sample-and-hold time 7' , the sample-and-hold can run in real time. But if the
“timely manner” criterion is violated, the sample-and-hold cannot complete its operations before
the next sample must begin. Its operation becomes unstable and ceases to function in real time.

Real-time operation is crucial to all forms of music. Consider what happens when a performer
sight-reading a sheet of music too fast can’t keep up with the beat: at best, errors creep into the per-
formance and at worst the music stops. The music also stops at least momentarily if a music-playing
device can’t retrieve data from its memory in time. Music is a time-based art form that depends
upon a subtle interplay of psychological anticipation and expectation, and if this expectation is not
met, music vanishes. For this reason, music performance and all forms of audio recording and play-
back are referred to as hard-deadline real-time tasks, because they suffer critical failure if real-time
constraints are violated.!

Some forms of hard-deadline real-time failure are more egregious than others. Performers who
skip a beat simply pick up where they left off; although there is interruption, there is little loss of
information. But a premium is placed on the reliability of data recorders: if a measured system can’t
be monitored in a timely manner, any missed sampling opportunities are irrecoverably lost. Inter-
ruption of data playback may or may not be a catastrophe, but interruption of recording is an irre-
deemable catastrophe because any data missed are lost irretrievably. “Time waits for no man.” The
best one can do is try to record again, if appropriate.

Real-time operations don’t necessarily have to be fast, but they do have to be fast enough to keep
up with the dynamical system that they are monitoring. For example, the tide-sampling system
discussed earlier only requires sampling operations on the order of six to eight times a day for
reasonable real-time operation. Sampling for audio and music must be done much more rapidly,
on the order of 50 thousand times a second.

1.2 Analog-to-Digital Conversion

In general, tide sampling involves these elements:

= Lowpass filtering Removing unneeded high-frequency energy.

= Synchronization Waiting for the right moment to sample.

= Sample-and-hold Stabilizing wave height to facilitate measurement.
= Discretization Observing where the tide line hits the measuring pole.
* Quantization Rounding to the nearest mark on the pole.

* Recording Storing the observations in a time-ordered sequence.

Together these elements are referred to as analog-to-digital conversion (ADC). Audio sampling
uses the same basic process as tide sampling, but the sampling rate is much faster. In order to capture
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Figure 1.9
Quantization of a signal in time and amplitude.

the band of frequencies of interest to human listeners, digital audio recorders must sample inputs
on the order of once every 20 microseconds, achieving sampling rates on the order of 50,000 sam-
ples per second.

Figure 1.9 shows how these elements are combined. The smoothly curved line represents the
continuous analog input signal after lowpass filtering. The staircase function represents the output
of the sample-and-hold. The columns represent the sample periods, and the rows represent the sam-
ple magnitudes. The individual squares of the grid in figure 1.9, called quanta, demarcate the
boundaries of time and amplitude for each possible measurement. The shaded boxes show which
quanta correspond to the input function.

A sample is really just an indication of which quantum the input function passed through. The
only information that remains after the sampling is finished is the list of quanta that the input func-
tion visited. In the end, we have no other information about the sampled function than this.

In figure 1.9 the quanta are relatively large and provide a very low-resolution picture of the tra-
jectory of the input function. The resolution can be improved by reducing the area occupied by the
individual quanta, which means either increasing measurement precision (if possible) or increas-
ing the sampling rate (if possible) or both. In terms of figure 1.9, doubling the precision would
halve the height of each row; doubling the sampling rate would halve the width of each column.
Doing either would increase the amount of information to be stored or transmitted: doubling the
precision doubles the number of quanta per unit of magnitude, and doubling the sampling rate dou-
bles the number of samples per unit of time. Reducing the area of the quantum increases the fidelity
of the sampling process at the cost of increasing the information storage and transmission require-
ments. Determining an appropriate quantum size for audio recording depends upon the sensitivity
of the ear and the available storage or transmission technology (see section 1.11).



Digital Signals and Sampling 11

b) c) d) e)

a)
Analog Input Lowpass Filter Sample-&-Hold Measurement > Storage

0000
0001,
A 0010,
0011
1001, 2
1011,
1100,

Analog-to-Digital Conversion

Figure 1.10
Analog-to-digital conversion.

The ADC itself imposes limits on sampling rate and sampling precision. Equation (1.4) shows
that the maximum sampling rate depends upon the design of the sample-and-hold and conversion
logic. There are also practical limits on the precision of the ADC: electrical circuits have a certain
amount of inherent noise, which limits their useful sensitivity. Precision much in excess of the
noise floor is of little use because what would be measured would be mostly noise.

The analog-to-digital conversion process for audio is summarized in figure 1.10. The input
(a) may come from any analog source, such as a microphone signal. The lowpass filter (b) removes
unwanted high-frequency energy. Synchronized by a clock, the sample-and-hold (c) captures the
current instantaneous value of the filtered input signal for measurement (d). The measurements are
converted and stored sequentially on a digital recording medium (e) such as computer memory or
disk storage.

1.3 Aliasing

Sampling discards all information about what happens in between samples. This raises an
important issue about capturing frequency information digitally. To understand the issue, suppose
we turn a bicycle upside down so that its wheels can freely rotate. Now paint one spoke red, and
set the wheel spinning counterclockwise at a rate of 1 Hz. Then turn out the lights and set a strobe
light to blink once per second. The first time it blinks, the wheel is at O radians (horizontal and
pointing to the right). If the wheel is traveling at exactly 1 Hz and the strobe blinks exactly at 1-second
intervals, the position of the red spoke will appear to be stationary. (For this thought experiment,
ignore the effect of friction, which would otherwise slow down the wheel.) One second later the red
spoke has made a full circle, so we see it at 2w radians, which is equivalent to 0 radians. One second
later it has made another full circle and is now at 4 radians, which is also equivalent to 0 radians,
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Figure 1.11
Ten snapshots of a 0.1 Hz phasor.

and in general at time ¢t = 0, 1, 2, ... seconds, the position of the wheel will appear to be at
2rt =0 radians, that is, it will appear to be stationary.

Now spin the wheel at 2 Hz counterclockwise with the strobe still blinking at 1-second intervals.
The sequence of angles when the strobe flashes will be Oz, 47, 87,. .., and the red spoke still
looks to be stationary because at time ¢ = 0, 1, 2, ... seconds, 47t =0 radians.

Now imagine spinning the wheel at 0.1 Hz counterclockwise with the strobe still set to blink at
1-second intervals. The angular velocity is 27/10 radians per second, so the red spoke takes
10 seconds to rotate once. We’d see the sequence of images shown in figure 1.11a as the wheel
rotates.

Now, if the wheel rotates at 1.1 Hz, the red spoke goes through 1.1 revolutions per second,
(figure 1.11b). Interestingly, when the strobe flashes at 1-second intervals, we see exactly the same
sequence of points for 1.1 Hz as we saw for 0.1 Hz.

This is not just an optical illusion. There is no way for us to tell the difference without turning
on a light, allowing us to see the continuous motion of the wheel. (We won’t be able to tell the
difference only if the strobe is really instantaneous. If the aperture time of the strobe light is
long, the red spoke will appear blurrier at faster radian velocities.) An uninformed viewer
would be unable to tell what the “real” frequency of the wheel is. In fact, from the viewer’s per-
spective, the correct answer could be any of 0.1 Hz, 1.1 Hz, 2.1 Hz, or in general, n+ 0.1 Hz
forn =20,1,2,....

Think about it. The expression n + 0.1 evaluated for every n = 0, 1, 2, . . . is an infinite series.
So there is an infinite number of possible frequencies to choose from: 0.1 Hz, 1.1 Hz, 2.1 Hz, and
so on. If the only information about the frequency of the rotating wheel is what we can observe
while the strobe lamp is blinking, then we can’t know which of the infinitely many choices is the
correct frequency. It certainly is reasonable to assume that the wheel is actually rotating only at one
frequency, but if we can watch only with the strobe light blinking, then all other frequencies related
by n+0.1Hzforn = 0, 1,2, ... are equivalent as far as our observations are concerned. Since
one choice is just as good as another, the set of all these frequencies are aliases of each other. The
phenomenon we are observing is called aliasing, or foldover.
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Now have a motor gradually accelerate the bicycle wheel as it turns counterclockwise while the
strobe light continues to blink at a constant rate of once per second. As the angular velocity goes
from 0 Hz to 0.5 Hz, we see the distance between successive strobe light images of the red spoke
increasing. We can convince ourselves that it is still turning counterclockwise, picking up speed.
When the speed reaches exactly 0.5 Hz, a new phenomenon arises, and we begin to see the red
spoke alternating right and left.

As the counterclockwise speed continues to increase, it seems as if the red spoke gradually starts
to turn clockwise. If we turn on a steady light source, we are easily satisfied that this is not true, but
when the light is off, the strange effect takes over again. As the counterclockwise speed of the wheel
continues to increase, it seems that the clockwise rotation of the red spoke is slowing down, even
though we know the wheel is turning counterclockwise at ever-higher speed. When the speed of the
wheel reaches exactly 1 Hz, it appears (as we have previously observed) that the red spoke has
stopped moving. As the speed continues to increase above 1 Hz, it again appears that the red spoke
starts turning counterclockwise with increasing speed. If we continued to watch, this pattern would
repeat itself over and over as the wheel gains speed. The same effect occurs if the wheel spins clock-
wise at an increasing rate. The only difference is that the apparent motion of the red spoke is reversed.
Thus, the effect is inverted for negative frequencies (clockwise rotation). The classic example of this
is to watch wagon wheels turning in old Western movies. As the wagon picks up speed, the wheels
appear to speed up, slow down, and change direction in contradiction to the movement of the wagon.

We’ve seen that for a strobe interval of 1 second, the apparent frequency matched the actual fre-
quency of the wheel’s rotation only in the frequency range of 0 Hz to 0.5 Hz (counterclockwise
rotation) and in the negative frequency range 0 Hz to —0.5 Hz (clockwise rotation). If the sampling
rate of the strobe light is increased to 10 blinks per second, we start experiencing aliasing when
the wheel rotates faster than 5 Hz or —5 Hz. Generally, aliasing occurs at frequencies greater than
or equal to =1/2 the sampling rate. Conversely, the valid frequencies—the ones where the appar-
ent frequency matches the actual frequency—are all less than +1/2 the sampling rate. Because of
the way sampling works, all frequencies beyond +1/2 of the sampling rate are said to alias back
into this range. The range of valid frequencies—that is, all frequencies in the range £1/2 of the
sampling rate—is called the baseband. The frequencies in the baseband are called the principal
frequencies to distinguish them from the aliased frequencies.

1.3.1 Nyquist Sampling Theorem

In general, for sampling frequency f;, all frequencies f within the range —f,/2 <f< f,/2 Hz are
not aliased and all frequencies outside this range are aliased. The aliasing effect occurs because
frequencies outside this range are indistinguishable from frequencies within this range because of
the way sampling affects observation.

Aliasing is a consequence of the Nyquist sampling theorem, named after Harry Nyquist, who
worked out the mathematics of sampling theory in the 1930s.2 To honor his work, the proper term
for the frequency aliasing limit of £ f,/2 is the Nyquist barrier, Nyquist limit, or Nyquist frequency
(Nyquist 1928). The Nyquist frequency is the barrier where aliasing begins.
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Let us design a formula that expresses the relation we have observed between actual frequency,
apparent frequency, and sampling rate. In the example of the bicycle wheel, let us define f as the
actual frequency of the spinning wheel and define f, as the apparent frequency, the rate at which
we observe the wheel to be spinning.

First, we observed that when actual frequency is within the baseband, the actual frequency and
apparent frequency are equal, and f = f,. But when f lies outside the baseband, f,, increases and
decreases in a nonuniform way in response to uniform changes in f because of aliasing. We must
find a way torelate f and f, when f lies outside the baseband that doesn’t invalidate the simple
case when f lies inside it.

As the experiment with the bicycle wheel showed, actual frequency f can range over zoc,
while apparent frequency remains captured in the baseband, so that —f,/2 <f, <f,/2. To con-
struct a formula for apparent frequency f, that models what we’ve observed, we could offset
actual frequency f like this:

fo = FHKf

but the value of k would have to change depending on the value of f tokeep f, within the base-
band. We can express this requirement by placing conditions on the formula. The general form of
a conditional equation is a = b|, which means a equals b only if P is true. In our case, the con-
dition P is that apparent frequency f, must remain in the baseband regardless of f, in other words, P
is true if and only if —f,/2 < f, < f,/2. Combining these ideas, we can write

fa — f+ k(f)fs|7f\/2<f <fy/2’

where k() is an integer function of f that we must invent to ensure the condition —f,/2 < f, <f,/2
remains true regardless of the value of f or f,.

All we need now is to define function k(f). Let’s look at an example. If f lies within the base-
band, then k = 0 because the apparent frequency equals the actual frequency, and the equation
above reduces to f, = f. If f exceeds the Nyquist frequency (f=f,/2) then k must compensate
by becoming —1 sothat f, = f—f;, causing f, to remain in the baseband at the aliased frequency.
If f<—f,/2,then k becomes +1 to ensure the condition remains true. In general, as f goes above
integer multiples of the Nyquist frequency, k follows the sequence k = —1,-2,-3,.... Similar
reasoning holds for negative frequencies. Let us define k(x) as follows:

k(x) = —Lx+%J. (1.5)
The minus sign reminds us that as the frequency goes up, k must go down to compensate, and vice
versa.? Figure 1.14a shows a plot of this function over the range —2, 2. With this definition for &,
we can write the formula for aliased frequency as follows:

fo=r+ k(% )fs- Apparent Frequency (1.6)
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Consider a sampling frequency f, = 100 Hz and a frequency f = 60 Hz. Because f > f,/2 , aliasing
will occur. By equation (1.5), we have k = —| (60/100) + (1/2) ] = -1, and by equation (1.6),
the apparent frequency is therefore f, = 60 — (1 - 100) = —40 Hz. The fact that the resultis a neg-
ative frequency agrees with the observation that the bicycle wheel (which in this example was actu-
ally turning counterclockwise) appeared to be turning clockwise (corresponding to negative
frequencies) when the actual frequency f was in the range f,/2 < f< f,. (For more discussion of
positive and negative frequencies, see section 2.6.7.)

Figure 1.12 illustrates aliasing. The vertical lines indicate sample boundaries. Figure 1.12a
shows a cosine wave at 1/8 of the sampling rate. The wave is oversampled in the sense that we could

a)
_ s
/=%
Oversampled
b)
_
f=3
Critically sampled
)
7
f=35
Undersampled
(Aliased)
Figure 1.12

Aliasing.
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Figure 1.13

Cosine and sine at the Nyquist frequency and at zero.

sample less often and still capture its characteristic features. Figure 1.12b shows a cosine wave at
1/2 the sampling rate. It is critically sampled because there are just enough samples to capture it.
Figure 1.12c shows a cosine wave at 7/8 of the sampling rate aliased to 1/8 of the rate. It is under-
sampled because there aren’t enough samples to accurately represent it.

Notice in figure 1.13athat a cosine wave with frequency equal to the Nyquist frequency and zero
phase offset has positive energy. This is because the waveform is sampled when its peaks line up
with the sample boundaries. But a sine wave at the Nyquist frequency with zero phase offset has
no energy because the zero crossings line up with the sample boundaries. Similarly, in figure 1.13b,
at 0 Hz the cosine “wave” is maximal (a constant 1) and the sine “wave” is minimal (a constant 0).

If we were to compute the apparent frequency f, for all values of f in the range +4f, we’d see
the function of apparent frequency shown in figure 1.14b. This figure reveals all the features of the
bicycle wheel experiment: how the red spoke speeds up, blinks left/right, then switches to a negative
frequency, slows to zero, then starts all over again. We see that 0 Hz and the Nyquist frequency act
like a pair of reflectors, trapping the apparent frequency in a kind of hall of mirrors, a range of fre-
quencies from which it can never escape.

1.3.2 Consequences of Aliasing

Aliasing has a very dramatic and usually very bad effect on digital audio recording. This is best
illustrated with an example. Suppose an ADC is running at a sample rate of f,=10 kHz, and we
are recording a violin tone with a fundamental frequency of 750 Hz. The Nyquist frequency is
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5 kHz. The violin’s harmonics are 750, 1500, 2250, 3000, 3750, 4500, 5250 6000, 6750, 7500,
8250, 9000, 9750 Hz as shown in figure 1.15a. But all frequencies above 5000 Hz are aliased
according to equation (1.6). For example, the apparent frequency of the spectral component at

5250 Hz is calculated as k = —1.(5,250/10,000) + 0.5] = —1, and therefore

f,=15,250 + (-1)10,000 = —4,750 Hz.

But there’s a problem: —4750 Hz is not in the harmonic series of the violin tone. In fact, none
of the other aliased components are in the violin tone’s harmonic sequence. The result is that inhar-
monic components are added to the violin tone by aliasing, distorting the tone. Let us see how this
comes about. Here are the harmonics of the violin tone (f) and their aliased frequencies (f,)
according to equation 1.6, assuming the Nyquist frequency is 5000 Hz:

f:

Jai

750

750

1500

1500

2250 3000 3750 4500 @ 5250

2250 3000 3750 4500 -4750

6000

—4000

6750

-3250

7500

-2500

8250

-1750

9000

—-1000

9750

-250
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Figure 1.15
Aliased spectrum of harmonic tone.

The ear does not distinguish negative frequency tones from positive ones (see volume 1, chapter 6).
For circular motion, the eye can distinguish negative and positive frequencies because the direction
of rotation is different. But for wave motion, the only difference is whether the wave rises then falls,
or falls then rises (see volume 1, chapter 5), which the ear ignores. So a harmonic at —-4750 Hz
sounds exactly the same to the ear as a harmonic at 4750 Hz. Thus, in order to determine the spec-
trum that the ear will actually hear, we must neglect the sign of the aliased harmonic frequencies.
That means the ear will hear these frequencies:

fa: 750 1500 2250 3000 3750 4500 4750 4000 3250 2500 1750 1000 250

Rearranging them into ascending order:

fa: 250 750 1000 1500 1750 2250 2500 3000 3250 3750 4000 4500 4750

This sequence is shown in figure 1.15b. Clearly, this set of frequencies is no longer a harmonic
spectrum because the components are not integer multiples of the fundamental. Figure 1.15 shows
why aliasing is sometimes called foldover. If you printed figure 1.15a on a piece of paper and
folded it over at the Nyquist frequency, you would obtain the order of components in figure 1.15b.
Aliasing has reflected all components over 5000 Hz back into the baseband at nonharmonic fre-
quencies, introducing a large amount of harmonic distortion into the violin recording.

The ADC can’t discriminate and reject aliased components any better than we could when trying
to identify the frequency of the rotating wheel under a strobe light. What is the solution to this
problem?
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Fortunately, the lowpass filter is a technology that allows us to discriminate against unwanted
frequencies above a certain limit. We must lowpass-filter any signal we wish to record to remove
all positive and negative frequencies outside the Nyquist frequency limit. Otherwise, components
outside this range will alias, and corrupt the recording. Lowpass filters designed for this purpose
are called anti-aliasing filters.

To summarize, it is crucial that digitized signals receive proper anti-aliasing filtering before con-
version. Aliased components are impossible to remove once they are converted because they are
all folded into the baseband wherever they happen to fall. Only signals that are properly
band-limited so all components are less than the Nyquist rate will be safe from aliasing.
Non-band-limited waveforms, such as the so-called geometric waveforms (square, triangle,
impulse, sawtooth, see chapter 9) or any signal with energy above the Nyquist rate, will always cre-
ate aliasing.

Aliasing rears its ugly head most commonly in two specific applications: audio recording and
sound synthesis. For audio recording, so long as the input signal receives proper anti-aliasing fil-
tering, all should be well.

1.3.3 Sampling Rate and Radian Velocity

Let’s return to the bicycle wheel experiment. When the bicycle wheel is spinning at a rate equal
to the sampling rate, it is turning exactly one whole revolution between samples (27 radians per
second), which is why the red spoke appears stationary. When the bicycle wheel is spinning with
a frequency equal to the Nyquist rate, it is turning exactly 1/2 of a rotation between samples, and
its angular velocity is therefore 7 radians per second.

So there is an equivalence between the sampling rate and angular velocity: frequency f is to the
Nyquist frequency f,/2 as the corresponding angular velocity 6 is to 7. In other words,

S _ 8
f/2

where 6 is the angular velocity of the radial motion. In particular, the Nyquist frequency barrier
*f,/2 Hz corresponds to =7 radians per second. We can restate the Nyquist sampling theorem,
substituting angular velocity for frequency.

Only those angular velocities 0 that satisfy the inequality -1t < 0 < m are not aliased; all other
angular velocities are aliased.

Relating these terms allows us to study aliasing via the relation 0 : 7 instead of having to use the
relation f: f,/2. That way we can investigate frequency measurements without having to specify
the rate f, at which the signal was sampled, simplifying things enormously. This is sometimes
called normalized frequency. In this way of thinking, 7 is equivalent to the Nyquist frequency bar-
rier f,/2, and 0 varies between £7 in the same way that frequency f varies between the Nyquist
frequency barriers £f,/2.
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Here are some useful equivalencies between frequency and phase angle. For any arbitrary sam-
pling rate f,, the frequency f corresponding to phase angle 6 is as follows.

Corresponding Corresponding
Phase Angle Frequency Phase Angle Frequency
0=rx f= % 0=-m f= —]%‘
a -5
0 = Z‘f f =% 0 = —Z-f f= _J%Y

1.4 Digital-to-Analog Conversion

If we think of a sample sequence as a “dehydrated” version of the original analog signal, we
“rehydrate” it to recover the original analog waveform using digital-to-analog conversion (DAC)
(figure 1.16). It looks rather like analog-to-digital conversion done backwards.

Samples are retrieved from storage in the same order and at the same rate that they were recorded
(a). The voltage corresponding to the magnitude of each sample is reconstructed (b). A sample-and-hold
circuit stabilizes and sustains each reconstructed voltage for the duration of the sample period. The
result is a staircase function (c). A lowpass filter smooths away the sharp edges of the stair steps,
restoring the wave to its former band-limited shape (see figure 1.10b).

The sample reconstruction process can be likened to combining weights of various heft on a
weighing scale to achieve a particular weight. For instance, if we have weights 1,2, 4, and 8 g and
need 5 g, we would combine the 4-g and 1-g weights (figure 1.17). Since the weight holders in that

a) b) ) d) e)

Storage Reconstruction Sample & Hold Lowpass Filter Analog Output

0010,
(-] 0011
1001,
1011,
1100,

Digital-to-Analog Conversion

Figure 1.16
Digital-to-analog conversion.
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Sample reconstruction by combining weights.

figure have but two positions, open and closed, it is convenient to use binary digits which have but
two values, 0 and 1, to represent their state. The set of 1s and Os ordered by weight can be used
to encode weight combinations in the available magnitude range from 0 to 15 g in 1-g increments.
The presence of a weight on the scale is indicated by a 1 in the corresponding bit position. A further
discussion of binary numbers is presented in section 1.5.

The equivalent electrical circuit (figure 1.18) has four resistors (~WW-), each connected to a
power source on one side and a switch on the other. The switches determine whether the voltage
across a particular resistor adds to the output. The magnitude of a particular sample can be recon-
structed by closing the appropriate combination of switches.

The switches require a small amount of time to settle when a new sample value is first applied. It
is virtually impossible to arrange for them to change at exactly the same time because of inevitable
manufacturing variations and because each switch is responsible for a different amount of voltage.
This nonuniform switching time can cause the output voltage to swing wildly for a brief time while
the switches settle. Such unpredictable and unwanted swings in the output voltage are called glitches.

The voltage reconstruction circuit is followed by a sample-and-hold to get rid of the glitches.
The sample-and-hold is timed to capture the reconstructed voltage only in the middle of the sample
period, after the glitches have died away and before the next sample time arrives. The result is a
staircase function. The sharp discontinuities at the edges of each stair step contain high-frequency
energy that must be removed in order to reconstruct the analog waveform.
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Sample reconstruction electrical circuit.

The lowpass filter, also called the reconstruction filter, smooths the abrupt transitions in the stair-
case function, reconstructing the analog waveform to its band-limited form (see figure 1.10b). The
reconstruction filter must eliminate all frequencies above the Nyquist frequency by attenuating
them to a level that is less than the noise floor in order to prevent aliasing. Ideally, it must not change
the amplitude of frequencies that are less than the Nyquist frequency and within the band of interest
(the baseband).

Aliasing also crops up in digital-to-analog conversion. Sound synthesis in particular presents a
tricky problem. It is quite easy to synthesize non-band-limited signals (see chapter 9), but the ana-
log reconstruction filter in the DAC won’t eliminate aliased components represented in the digital
signal fed to it. That’s too late in the process. Any aliased components in the digital waveform must
be removed by a digital anti-aliasing filter operating in advance of the DAC.

The output of the digital-to-analog converter is not the full-bandwidth original input signal (see
figure 1.10a). At best, sampling can recover frequencies only up to the Nyquist frequency limit
because of aliasing (see section 1.3). Though some high-frequency information may be lost, it is
lost by design: if a recording system is well designed, f, will be above any frequency of interest

s

to listeners, typically in the range of 44,100 to 50,000 Hz.

1.5 Binary Numbers

Computers use binary arithmetic because circuits that have only two states are more stable than
ones that have, say, ten. This stability allows transistors—the basic elements of such circuits—to
be made very small without being less reliable.

1.5.1 Small Is Beautiful

Smaller electrical components use less current and do not require as much time to charge and dis-
charge, so they can run faster. As they use less current, they dissipate less heat, requiring less effort
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to cool them. As circuit elements shrink in size, more components can fit in the same area, allowing
increased complexity without increased physical size; alternatively, the same number of compo-
nents can be made to fit in a smaller space. Since smaller chips cost less to fabricate, the compelling
advantages of smallness explain why the electronics industry has worked so hard to reduce the size
of integrated circuits.

In 1965, only four years after the introduction of the integrated circuit, Gordon Moore (then
director of research and development at a large semiconductor manufacturer) famously observed
that the electronics industry was realizing an exponential growth in the number of transistors per
integrated circuit, and he predicted that this trend would continue indefinitely (G. E. Moore 1965).
Dubbed Moore’s law by the press, it has held remarkably true over the last 40 years, with circuit
density doubling approximately every 18 months. Digital technology is one of the few industries
that has seen both a dramatic increase in functionality and an equally dramatic reduction in cost.
This has helped drive digital technology into many facets of modern life, including digital audio.

1.5.2 Binary Number System

A single binary digit, called a bif, can have the value O or 1. Bits are grouped using place value,
as in the decimal system. With decimal integers, the rightmost position is the ones place,
representing values from 0 to 9; the second position is the tens place, representing values from 10
to 19; then the hundreds place, thousands place, and so on. The magnitude of each place in the
decimal system corresponds to a weighting of the place value by 10 raised to the power of the
index of the place. For example, the decimal value 123 can be represented as the polynomial
(1x102)+ (2% 101) + (3 x 109). The binary place system uses the same approach but raises each
place value to a power of 2. So, for example, the binary value 1111011 can be represented as the
polynomial

(IX20)+ (1 X29)+(1x2)+(1x23)+(0x22)+ (1 x21)+(1x29
=64+32+16+8+0+2+1
= 123.

Fractional values can be represented in the decimal system using negative exponents of 10. So,
for example, 0.75 can be written in polynomial form as (7 x 10-1) + (5 x 10-2). Fractional binary
place values use negative exponents of 2. The decimal value 0.75 can be written as the polynomial
(Ix2H+(1%x2%=05+0.25=0.75.

The weighting system in figure 1.17 can be used to think about representing magnitudes with
binary numbers. That figure shows a set of weights where each subsequent weight is twice as heavy
as the one before. There are four such weights, thus 24 = 16 combinations. If a weight is present
in a measurement, we mark a 1 in that place; otherwise we mark a 0. If the weights were 1, 2, 4,
and 8 grams, we could measure the weights as shown in table 1.1.

Another way to show this sequence is circularly (figure 1.19). This representation shows that
adding 1 to any value creates the next value in sequence, and when we get to the maximum, 1111,
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Table 1.1
Binary Counting Sequence
Weight Value Weight Value
0000 0 1000
0001 1 1001
0010 2 1010 10
0011 3 1011 11
0100 4 1100 12
0101 5 1101 13
0110 6 1110 14
0111 7 1111 15
4:0100
5:0101 3: 0011

6: 0110 2: 0010

7:- 0111 1: 0001

8: 1000 0: 0000

9: 1001 15: 1111

10: 1010 14: 1110

11: 1011 12: 1100 13: 1101

Decimal: Binary

Figure 1.19
Binary counting.

adding 1 returns us to 0. Numbers outside the binary range 0000 to 1111 wrap back into this range,
like an odometer on a car. A number x represented with N bits of precision will have the binary
value ((x)),y, which means x taken modulo 2N (see appendix section A.5). For example, if we
have four bits of precision, we set N = 4. If the number we want to represent is x = 17, which is
outside the range that four binary bits can represent, the odometer effect will cause it to be repre-
sented as ((17)),4 = 1. This can be seen in figure 1.19: advancing through 17 values counterclock-
wise around the circle from 0000 causes us to overflow the numeric precision of the counting
system; the result wraps around to 0001. Numerical overflow and wrap-around can have devas-
tating consequences for digital audio (see section 1.10.4).

For sound, the values to be weighted are the samples output from an analog-to-digital con-
verter. At each sample time, we must find a combination of weights that matches the output of
the sample-and-hold to the tolerance of the available precision, that is, the change in weight
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introduced by the smallest weight, finer than which we cannot measure. For a digital-to-analog
converter, we use the weighting system in the other direction: we apply the weights as indicated
by the sample’s binary value to reconstruct the sample magnitude to the tolerance of the avail-
able precision.

1.5.3 Two’s Complement Number System

The binary system described in section 1.5.2 represents unsigned magnitude, that is, positive val-
ues in the range 0 to 2V — 1, where N is the binary precision. But because sound fluctuates above
and below standard atmospheric pressure, we must adapt the binary number system to represent
signed values. One solution is to split the available binary precision so that half the numeric range
represents positive amplitudes and the other half represents negative amplitudes.

The two’s complement system is the most popular way to represent signed integer quantities
because it uses the same rules as unsigned binary arithmetic for addition and subtraction. It is used
universally in modern computers. Figure 1.20a shows the two’s complement system using four bits
of precision.

Notice that the binary counting pattern is the same as in figure 1.19. But the sign of numbers in
the lower half of the circle is taken to be negative. The most significant bit of all positive numbers
is 0 and the most significant bit of all negative numbers is 1, so the most significant bit can be inter-
preted as the sign bit.

Whereas the unsigned binary counting sequence shown in figure 1.19 has a discontinuity
between the representation for 15 and 0, the two’s complement system has a discontinuity between
the most positive (7) and the most negative (-8) values.

Negative and positive values can be converted into each other by inverting the bits and adding 1.
If abit was 0, it becomes 1, and vice versa. For example, to find the negative two’s complement value
corresponding to 2, find its binary equivalent (0010), invert the bits (1101), and add 1 (=1110). This

2) 4:0100 b)
5:0101 3:0011
6: 0110 2: 0010 2:0010
7:0111 1: 0001
Positive
0: 0000
—8: 1000
Negative
—7:1001 —1:1111
—6: 1010 —2: 1110 —2: 1110
~5-1011 —3: 1101 -3:1101
>:10 —4: 1100 3: 110

Add 1
Decimal: Binary

Figure 1.20
Two’s complement representation of signed numbers.
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pattern is shown in figure 1.20b. Here’s another example. To find the positive value corresponding
to =3, find its binary equivalent (1101), invert the bits (0010), and add 1 (=0011).

The rules for binary addition are the same as for decimal addition but using only 0 and 1. This
means 1 + 1 = 0 and carry the 1. For this example, the precision is 4 bits, so any result that over-
flows is discarded.

3+4=1  24(3)=-1 -2+(3)=-5
1101 0010 1110
+0100 +1101 +1101
0001 1111 1011

There is an asymmetry in the two’s complement system. Every negative value has a correspond-
ing positive value except the most negative value (-8, in this case). To prove this, we look for its
corresponding positive value. From figure 1.20a, the two’s complement binary equivalent of -8 is
1000; inverting, we have 0111; adding 1 gives 1000 = —8. So the most negative value is its own
inverse. Apply the same reasoning to zero and see what happens.

1.5.4 Lining Up the Bits

How can we use binary numbers to measure the instantaneous amplitude of an audio waveform?
In particular, how do we map the two’s complement binary magnitudes to the range of voltages
coming from the microphone?

To keep it simple, suppose we want to encode the range of +3 volts with three bits, giving
23 = 8 binary values to work with, 4 positive and 4 negative. Using the two’s complement number
system, we associate the most negative binary value (100) with =3 V and the most positive (011)
with +3 V. Unfortunately, we end up without a weight corresponding to the magnitude of 0 V,
which dangles unrepresented between 0 and —1 (figure 1.21).

We’d prefer to have a value for O to represent silence. Let’s try again, this time shifting the scale
to the left until binary 000 lines up with 0 V (figure 1.22). Now binary 000 equals 0 V, but -3 V
does not line up with any binary value, and +3 V exceeds the largest positive binary number. Let’s
try one more time, adjusting the scale of the voltages by squeezing its range to fit (figure 1.23).
Now we have one binary value—the most negative—that is left dangling. But if we never use it,
the rest of the scale is aligned and balanced. So we agree never to use the most negative value (100).

Decimal: -4 -3 -2 -1 0 1 2 3
Binary: 100 101 110 111 000 001 010 011

| ) ) L ) ) 1
Voltage: -3V ov??7? +3V

Figure 1.21
Binary encoding, first attempt.
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100 101 110 111 000 001 010 O11

S . , | , , .
L ' ' | ' ' T
=3Vv77? ov +3V?2?7?

Figure 1.22
Binary encoding, second attempt.

100 101 110 111 000 001 010 011

| | , , | , , |

/' | ' ' I ' ' |
Unused -3V ov +3V

Negative Positive

Figure 1.23
Binary encoding, third attempt.
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Table 1.2

Hexadecimal Notation

Decimal 0 1 2 3 4 5 6 7
Hexadecimal 0 1 2 3 4 5 6 7
Binary 0000 0001 0010 0011 0100 0101 0110 0111
Decimal 8 9 10 11 12 13 14 15
Hexadecimal 8 9 A B C D E F
Binary 1000 1001 1010 1011 1100 1101 1110 1111

1.5.5 Hexadecimal Notation

Digital audio applications typically require between 16 and 24 bits of precision for good-quality audio.
In 16-bit arithmetic as used by compact discs, positive amplitudes range from 0 to 2!¢-! — 1 =32,767,
and negative amplitudes range from —32,767 to 0. (The most negative value for 16 bits is —32,768,
which we’ve agreed not to use.) The decimal value 32,767 is a rather unwieldy number in binary:

orrrrrrearra11l.

Binary values can be made more compact by representing them in a higher base. The most com-
mon choice is hexadecimal (base 16). Since 16 is a power of 2, binary numbers fit evenly inside
hexadecimal digits. Since hexadecimal notation requires counting from 0 to 15, hexadecimal digit
values are represented by the numbers 0 to 9 and six additional letters: A, B, C, D, E, and F
(table 1.2). For example, the decimal value 4096 is 1000000000000 in binary, but 1000 in hex. The
decimal value —32,767 is written in hex as 8001, and the decimal value 32,767 is written in hex

as 7FFF.
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1.6 Synchronization

Sampling is a kind of selection process that arises when an observer momentarily regards an aspect
of an object as a consequence of a triggering event. Ideally, observer and object are at least nom-
inally independent so that the one can perceive the other objectively, without affecting it so much
as to spoil the measurement.

Depending upon the intention of the experimenter, the trigger may be derived from some feature
of the observed object, or it may be something independent, such as the expiration of a timer. Con-
trol over the triggering circumstances is synchronization. In the example of measuring the tides,
the synchronizing trigger was a periodic timer (the position of the sun at noon). Periodic sampling
is synchronous with a time-based trigger and asynchronous with the measured system. (Of course,
the sun is a factor in the flow of the tides, so the trigger and observed system are not entirely inde-
pendent.) If instead we wanted to observe the height of wave crests, we would sample synchro-
nously with arrival of wave crests (and asynchronously with time).

Synchronization is fundamentally about how a nominally independent system (the observer) is
made temporally dependent on another system (the object).

If the observed object provides both the conditions for the trigger and the state to be sampled,
then the operation is synchronous; if the trigger and state arise from separate systems, the
operation is asynchronous.

We may need to sample just once or repeatedly depending upon the intention. To determine the
winner of a foot race, we only need a single static sample of the runners’ positions when the first
runner crosses the finish line. But we must sample the tide repeatedly to capture its frequency
behavior. For all engineering projects, intention dictates system design: sampling requires an
observer; hence sampling is subject to all the complications that sentient beings impose.

Sampling must be strictly periodic in order to accurately capture frequency information. What
if the sampling rate varies from sample to sample for some reason? Inconstancy in the sampling
period results in a form of distortion called phase jitter. Because this is a form of distortion involv-
ing time, and because time determines frequency and phase information, it follows that phase jitter
distorts the phases and frequencies of the recorded signal. A more precise description of phase jitter
is given in section 9.2.8.

1.7 Discretization

Something is discrete if it is indivisible. It is indivisible if it loses its identity when divided. A person
is indivisible; a tree is indivisible. The members of a symphony orchestra are discrete because they
can only be divided into subgroups that preserve the identity of the members. If there are three oboists,
half the oboe section can’t be sent to a rehearsal. The natural numbers are discrete because they
are indivisible: each has a minimum size limit of one unit. (This is why fractions were invented,
to express parts of whole numbers as ratios of whole numbers.)
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A length is continuous in the sense that no matter how we divide it, it retains its identity, its
“lengthness.” Area and volume are continuous for the same reason. Real numbers were invented
to represent continuities. Whereas there is no whole number that lies between two adjacent whole
numbers, there is at least one other real number between any two real numbers.

Identity is the criterion of what is discrete and what is continuous, because a loss of identity
occurs when scaling a discrete system but not when scaling a continuous system.

Discretization is fixing a point on a continuous function so that it becomes individually dis-
cernible. Discretization and quantization are not the same. If I locate two points on a line, I dis-
cretize the line at those points. If I want to measure the distance between the points, I must quantize
the distance. Thus, discretization is the precursor step to quantization.

1.8 Precision and Accuracy

Precision and accuracy are not the same thing. Precision is generally the amount of information
we have about a measurement; accuracy relates to whether the measurement is true. A measure-
ment is true if there is fidelity between the value being observed and the resulting measurement.
Inaccuracies introduce distortion into the measuring process.

Increasing the precision of a measuring system increases the amount of information it provides.
Information is a quantity that relates to the number of facts necessary to convey a measurement.
For example, if we know that middle C is 261 Hz, we have less information than if we know it is
261.626 Hz.

1.9 Quantization

Whenever we make a measurement, we must decide how precise we wish it to be. Measurement
with too little precision may provide unusably crude results, but too much precision can burden
calculations without providing much benefit. Useful measurement requires quantization, reducing
the true magnitude of a measured object to the available precision and discarding the difference
between the true value and its quantized approximation.

1.9.1 Linear Quantization

Since all millimeter marks on a meter stick span a uniform distance, it is linearly quantized. We
can define linear quantization as

r(kx)
k’

0(x) =

-1<x<1, Linear Quantization (1.7)

where Q(x) is an integer function of a real variable. The function r is the rounding operator. If
the fractional part of a real number is less than 0.5, rounding reduces the value to the nearest lower
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integer; a fractional part greater than or equal to 0.5 is promoted to the next higher integer. Round-
ing is defined as

Ha) = {a—l_aj<0.5, Lal,
a-|al=05, [al,

where the operator | a | is called the floor function, thatis, the largest integer less than a, and [ a ']
is the ceiling function, the smallest integer greater than a.

For binary quantization, if we set k = 2¥~! 'where N is the number of bits, then equation (1.7)
can be written in terms of binary quantization, Q,:

r(2N-1x
0,(x) = %, -1<x<1 (1.8)
Equation (1.8) partitions the signed unit interval [—1, 1]into N steps. Figure 1.24 shows a binary
quantization function with N = 8. The quantization function partitions the continuous input value x
into a discrete set of N ranges. Each range corresponds to an integer output level Q, (x), also called
a reproduction level. Rounding causes each x to be mapped by the function to its nearest repro-

duction level. In this example, values of x in the range —1/4 to nearly 1/4 map to the reproduction
level value of 0.

4/4

3/4

2/4

1/4

Op(x) 0

—-1/4

Reproduction Level

-2/4

-3/4

—4/4

Range

Figure 1.24
Quantization into N = 8 steps.
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We can also perform dequantization, Q;'(x), the inverse operation of quantization, which
reproduces the input value x from the value encoded by the quantizer. The value that the dequan-
tizer reproduces is the centroid of the reproduction level.* For example, suppose we set the input
to x = 0.74. Then using the quantizer shown in figure 1.24, Q,(x) = 3/4. Dequantizing, we
have Q;'(3/4) = [5/8,7/8], and the centroid of the range [5/8, 7/8] is 0.75, which is not
0.74 . The quantizer/dequantizer has discarded the difference between the true input value and the
nearest quantization step.

The difference between the output value (0.75) and the input value (0.74) is called the quan-
tization error. It is the difference between the input value of the quantizer and the corresponding
output value of the dequantizer.

What is the worst quantization error possible? Suppose we have a 100 m tape that is marked in
meters. The most precise measurement we can make reliably with this tape is to choose the meter
mark that is nearest to the true length of the measured object, which can be at most 1/2 meter away.
Therefore, in general, the maximum quantization error is one half of the quantum. The more precise
the measurement system, the smaller will be both the quantum and the maximum quantization error.

A measurement system is characterized by its range, its origin, and the span of its quantum. For
example, the range of the piano keyboard is 88 semitones, its origin is A0, and its span is A0 to C8.
The equation for the decibel establishes a range (from the threshold of hearing to the limit of hearing),
an origin (the reference intensity /), and the span of a quantum (the decibel) (see volume 1,
equation (4.40)).

1.9.2 Beat Quantization

The quantum need not be of uniform size. The frequency span of a semitone increases as one goes higher
up the piano keyboard. Similarly, the intensity span of a decibel grows as one goes higher up the
decibel scale. Such measuring systems have nonlinear quantization. Rhythmic quantization in music
can also be nonlinear. An audio example of nonlinear-quantizing codecs is given in section 1.12.1.

When taking musical dictation, a transcribing musician must accurately write down the pitches
and rhythmic durations of a performing musician. Even if the performer follows the beat of a met-
ronome, there will still be small discrepancies in the performance that must be ignored in order to
determine the underlying rhythm of the music. That is, the transcriber must quantize any misplaced
beats in the act of reducing the performance to notation.

The same transcription problem is faced by MIDI sequencer software that is designed to receive
musical performance information from a MIDI keyboard or other MIDI controller.’ By quantizing
notes to the nearest beat, MIDI sequencers allow a poorly timed performance to be justified to the
beat, and many musicians, the author included, have used this technology to clean up the beat tim-
ing of a ragged performance.

The simplest approach just rounds or truncates each performed note to the beginning of the near-
estbeat. But the size of the beat quantum must be picked carefully. For instance, if the beat quantum
is the quarter note, two consecutive eighth notes played within a quarter note’s duration will be
quantized to start at the beginning of the same beat, wrecking the music (figure 1.25). Similarly,
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Figure 1.25
Quarter note quantization wrecks eighth notes.

M

Eighth note quantization wrecks triplet eighths.

if the beat quantum is the eighth note, and the music contains triplet eighths, their identity as triplets
will be destroyed (figure 1.26).

This is reminiscent of the discussion in section 1.7 about the loss of identity that occurs when scaling
a discrete system. Even though music is a time-based art form and time is continuous, musical time
is discrete. To convey a particular thythm requires that beats of various sizes be held in strict propor-
tion, and any scaling or quantization that compromises this proportionality destroys the music.

But that can’t be the whole story. Continuous time obviously plays a role in musical expression.
Performers speed up (accelerando), slow down (ritardando), hold notes (fermata), perform notes
briefly (staccato), and take other liberties with the beat. Jazz performers lag behind the beat in order
to give arelaxed, “cool” sound; rhythmic phrasing in Mozart’s music sometimes has a mincing qual-
ity; Beethoven’s music has a kind of swagger. We are incredibly attuned to the subtleties of rhythmic
timing, and we glean an amazing amount of information from it. Temporal nuance lends a signature
to the music that allows us to identify not just a particular style, not just a particular era, composet,
or musician, but even how the performer was feeling that day. We may favor or disfavor musicians
depending upon whether their interpretation of rhythmic minutiae moves us emotionally.6

Subdivisions of a phrase, measure, or beat that show a characteristic pattern of temporal dis-
tortion are called grooves. Grooves are regular but nonlinear quantizations of musical time. For
example, consider swing rhythm. Figure 1.27a shows the way eighth notes in a measure of 4/4 time
are interpreted using even quantization. The written duration of each eighth note is identical to the
performed duration, as shown by the proportions of the boxes below the notes. Figure 1.27b shows
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Figure 1.27

Straight time and swing time.

the quantization graph for this groove. Written time flows left to right, performed time flows bot-
tom to top. The quantization function assigns the written beat duration evenly to both performed
eighth notes.

Figure 1.27¢ shows how the swing groove works. The music notation still shows straight
eighths, but the written durations and the performed durations are different: the second eighth of
each beat is always delayed. Ordinarily, the proportion between two swing eighths is 2/3 + 1/3,
as shown by the proportion of the boxes below the notes. If swing rhythm were written explicitly,
it would look like this:/.J. This notation is a lot more tedious than writing straight eighths with an
accompanying note specifying a beat quantization pattern to skew them during performance.

Figure 1.27d shows the quantization graph for this groove. Again, written time flows left to right,
performed time flows bottom to top. Here, the quantization function assigns 2/3 of the written beat
duration to the first performed eighth and the remaining 1/3 to the second performed eighth. The
result is a rhythm akin to that produced by a child skipping.

1.10 Noise and Distortion
All systems for transducing, recording, and transmitting audio are plagued to a certain extent with
loss of fidelity in the form of noise and distortion.

1.10.1 Noise

Noise is an unwanted signal added to one being measured. If an input signal to a system is x(#)
and the output of the system is f(), we can describe the noise contributed by the system as

J(2) o< x(1) + n(z)
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where n(t)is the noise signal that we must contend with. Noise is additive because the resulting
measurement is proportional to the sum of the input signal and the noise.

Noise comes in many sorts. It may be unrelated to the input signal, or it may be the result of some
horrid interaction between the input signal and the recording equipment. Noise may be broadband,
containing energy at all frequencies in equal proportion. In analog electrical systems such as
microphones and amplifiers, noise arises naturally as a consequence of the random thermal motion
of matter. Narrowband noise such as hum from power lines can also sometimes be a problem.”

Noise in digital systems comes mostly from artifacts of quantization. As mentioned in
section 1.9.1, quantization discards the difference between the true input x and the nearest quan-
tization step Q, resulting in a quantization error of € = x — Q. The quantization error signal is
&(t) = x(t) — Q(t) measured at each sample time .

The shape of the error signal £(¢) depends serendipitously upon precisely how the input signal
happens to land among the quantum boundaries at each sample. Suppose x(#) is a white noise sig-
nal, that is, one that is completely random and unpredictable from moment to moment. Then at any
given sampling time ¢, x(¢)is equally likely to lie anywhere within the quantum that it falls into.
Since x(t)is random and uncorrelated to the quantization function Q(¢), &(¢)is also random and
uncorrelated to x(¢). This allows us to think of £(#) simply as an uncorrelated white noise signal
added to the recording by the digitization process. This is in fact what &(¢) commonly sounds like
in practice. The quantization error signal is usually small in comparison to the magnitude of the
recorded signal because it is bounded by one half quantum whereas the recorded signal can range
over the entire available precision.

This simplistic analysis breaks down somewhat if x(#)is a musical signal. Since music is not utterly
random, it will show some similarity (correlation) with the quantization function Q(#). In this case,
&(t) will also show some correlation with x (7). The more correlated x(¢) is with Q(#), the more £(t)
ends up resembling a distorted version of x(¢). The ear finds it easier to ignore £(¢) if itis a colorless
(white) noise, but £(¢) can be a magnet to the ear if it changes sound color in a way that is related to
the input signal. Techniques to work around this problem are discussed in section 1.13.4.

1.10.2 Signal-to-Noise Ratio

We can characterize the amount of noise in a system by relating the amplitude of its largest useful
signal A, to the amplitude of the noise signal A, . The ratio, the signal-to-noise ratio (SNR), is
defined as

A
SNR = 20log,, ;‘mx dB. Signal-to-Noise Ratio (1.9)
&
See volume 1, equation (5.31).
A and A, are usually measured in terms of their RMS amplitude level (see volume 1,
section 5.5.1).
Since quantization error is the main source of digital noise, what is the quantization SNR for typ-

ical digital audio systems? Suppose the full-scale range of the ADC is £ A. A signal that uses all
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available precision will have a positive amplitude of +A and a negative amplitude of —A, for a total
range of 2A. The maximum quantization error will be one half the quantum size, or 24 /2V, where
N is the number of binary bits in a sample. So the question is, What is the SNR corresponding to
these values? To begin with, let A, = 2A, and let A, = 2A/2V. Then

An 24

= = 2N,
A, 24/2V

Plugging this value into the equation for SNR yields
SNR = 20log,,2¥ = 6N dB. Quantization Error Signal-to-Noise Ratio (1.10)

Equation (1.10) says that each bit of sample precision provides a 6 dB increase of SNR. So, for
example, standard 16-bit compact disc audio quality has an SNR equal to 6 - 16 = 96 dB. That’s pretty
good, actually. However, this only means that the loudest possible signal will be 96 dB above the quan-
tization error noise. Weaker signals will have correspondingly worse SNR. Moreover, as the signal
becomes small with respect to the size of the quantum, the reconstructed waveforms increasingly
resemble square waves. In the extreme, when the signal is so small that only one bit is changing, quan-
tization will cause the signal to be reconstructed as a square wave regardless of its original shape. Thus,
at low amplitudes, digital encoding creates harmonic distortion as well as noise. These objectionable
artifacts of digital audio technology have spurred industry to introduce better conversion systems.

Input signals x(#) that are weaker than the error signal £(¢) will be masked by it (see volume 1,
section 6.6). Because the amplitude of the error signal A, of most digital systems for most types of
audio signals is relatively constant, A, represents a good rule of thumb for the minimum intensity of
recordable signals. The strength of the maximum useful signal A, is typically a fixed constant for
most types of recording systems. Signals louder than A_,, will be subject to distortion. So the useful
dynamic range that a system can process is limited by A, at the top and A, on the bottom. On the
whole, it’s important for recording engineers to adjust the input sensitivity of the recorder to keep the
signals being recorded near A, so that the softest sounds will hopefully be substantially louder than
£(1). Of course, the engineer must simultaneously be sure never to exceed A Digital systems are
particularly bad at handling inputs in excess of A, for reasons that are described in section 1.10.3.

max*

Like cobwebs and dust bunnies, noise is a ubiquitous fact of life. Though it’s best to keep noise
out to begin with, that’s not always an option, as is the case with historical recordings. A wax cyl-
inder recording of the composer Johannes Brahms playing the piano was made at the dawn of
recording technology, but the recording has become so degraded over time as to be practically
unrecognizable as music. Some exciting noise-reduction techniques have recently become avail-
able that have made it possible, as it were, to reach into the jaws of entropy and snatch the infor-
mation back out (see section 10.4.1).

1.10.3 Distortion

Distortion, like a fun house mirror, disarranges the proportions of the signal being recorded. Many
kinds of systems including audio recorders can be thought of as mirrors that reflect their input to



36

a) Linear System

System Output
Function Function
0
Input
Function

¢) Clipping

b) Nonlinear System

System Output
Function Function
2n
AN
0
Input
Function

d) Frequency Doubling

Chapter 1

System Output System Output
Function Function Function Function
2r 2n
A
Wl .
0 0
Input Input
Function Function

Figure 1.28
Linear and nonlinear system functions.

their output. If the system is linear, the mirror is flat and the input is reflected by the system to the output
undistorted. Figure 1.28a shows a linear system. In fact, a system is linear because the mirror—
properly, the system function—is a straight line. The mirror is not flat if the system is nonlinear.
The system function in figure 1.28b has a discontinuity in its middle and the center of the output
signal is distorted by it.

Nonlinear distortion called clipping (figure 1.28c) arises when the input signal exceeds A .,
the upper limit of the system’s dynamic range. The system is unable to reproduce the input signal
when its magnitude exceeds the system’s precision limit. If we wish to capture the input signal
undistorted, we must keep its magnitude in the linear range, less than A .. Of course, distortion
isnotalways a bad thing. People like to see themselves in fun house mirrors. Distortion can be artis-
tic, such as the “fuzz box™ effects applied by rock-and-roll guitarists to give themselves an edgy
sound. The effect of these devices is essentially the same as the one in figure 1.28c.
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Clipping can be used to show an important property of linear systems. A linear system may scale
the signal to be bigger or smaller, but the characteristic shape of the signal will not change. The
system in figure 1.28c is nonlinear because doubling the input will not double the output since the
limit A, has already been exceeded and the output is clipped. Suppose x; and x, are input signals,
y; and y, are output signals, and a and b are scaling terms. If a system behaves such that ax; e y,
and bx, o< y,, then it is linear if it preserves ax, + bx, o<y, +y, for all possible values of a and
b . In other words, if input x; produces output y,, and input x, produces output y,, then any
weighted combination of x; and x, will resultin a proportional combination of outputs y; and y,
if the system is linear.

In all cases, the effect of distortion is to modify the spectrum of the input signal. A strikingly
simple example is shown in figure 1.28d. The system function is a parabola, and it exactly doubles
the frequency of the input signal without otherwise changing its shape: one period of the input
waveform results in two periods squeezed into the same time interval on the output. There is an
interesting artistic application for this type of distortion (see section 9.4.11).

Distortion appears to be a result of a function (the system function) that modifies another func-
tion (the input function). This suggests that we can model distortion mathematically as a system
function S that modifies the input function w:

J(1) o= S(w(1)). Distortion (1.11)

If S is a linear function, such as the simple gain scaling function S(x) = ax, then there is no dis-
tortion. However, if S is nonlinear, such as S(x) = x2, then f(t) will be distorted.

When distortion and noise are considered together, the result is the distorted input signal plus
the noise:

J(2) o< S(w(1)) + n(2).
1.10.4 Overflow, Wrap-around, and Clipping

In the two’s complement system, the number that is 1 greater than the most positive number is the
most negative number. With 3 bits of precision, the maximum positive value is +3, or 011 binary,
because the most significant bit is taken as the sign bit. In binary arithmetic, 011 + 1 = 100, but
in two’s complement notation, binary 100 is —4, not +4. Similarly, it follows that 1 less than the
most negative value is the most positive value.

If the magnitude of a sample ever exceeds the available precision, there will be a sudden
full-scale discontinuity in the recording because the value wraps around (figure 1.29a). If even just
one sample wraps around, listeners may hear a click. If one sample or a few samples wrap around
every period, a distorted buzzing will be heard. If many samples wrap around, sound quality
quickly degrades into a dreadful garbled crashing noise.

One way to fix wrap-around error is to use saturating arithmetic to prevent the limit of precision
from being exceeded. If the magnitude overflows the most positive value, saturating arithmetic
forces its result to remain at the positive maximum,; similarly, if the magnitude overflows the most
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Managing overflow.

negative value, the result is forced to remain at the most negative value (figure 1.29b). Saturation
is defined as

Amax’ X 2 Amax’
o(x) =4 x, Ape >X>=A 0 Saturation (1.12)
_Amax’ X< _Amax'

Saturation is equivalent to clipping. Though saturation is an improvement over wrap-around, it can
still create very harsh distortion.

A further refinement to handling overflow is soft clipping, which is really a kind of dynamic
range limiting: as the signal strays closer and closer to the limits of precision, it is progressively
attenuated so it comes in for a soft landing, so to speak. The harmonic distortion is less severe
because the signal doesn’t suddenly bump into a hard clipping boundary (see figure 1.29c¢). This
is still a form of distortion, although its effect on the recording is much milder than wrap-around
error. The only way to completely avoid clipping is to keep signal levels within the available
range.

1.11 Information Density of Digital Audio

Take another look at figure 1.9. After sampling, the only information that remains about the input
signal is the list of quanta that it visited. Except for the value of the signal at the discrete moments
when itis sampled, all other information, such as what may have happened between measurements,
is discarded. The true magnitude of the measured phenomenon is discarded by quantization, and
we preserve only the quantized measurement.

The dimensions of the quantum are therefore a measure of the uncertainty in the measuring pro-
cess: the bigger the area of the quantum, the less certain we can be about the true value of the input
signal. Certainty is thus proportional to precision and sampling rate because as these parameters
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increase, the area of the quantum decreases. Increasing measurement precision narrows the span
of the quantum and reduces uncertainty. But increasing precision increases the amount of infor-
mation that each measurement carries, making the data less tractable to store and manipulate.
Increasing the sampling rate narrows the size of the sampling period and also reduces uncertainty.
But increasing the number of samples likewise increases the amount of information, making the
data set larger and calculations less tractable.?

Sampling systems must strike a balance between too much uncertainty and too much informa-
tion. To strike the right balance between information and uncertainty for audio recording requires
that we understand how the limits of hearing interact with sampling theory. The ear is capable of
discerning a dynamic range of about 120 dB. At 6 dB per bit, a minimum of 20 bits of precision
is required to adequately capture this dynamic range. Fresh young ears can hear frequencies up to
about 20 kHz. To remove all frequencies above the Nyquist barrier, practical anti-aliasing filters
require a cutoff frequency of about 40 percent of the sampling rate. So, to achieve a passband of
20 kHz requires a sampling frequency of about 50 kHz.

From these calculations, we see that the compact disc standard of 16 bits at 44.1 kHz does not
cover the whole range of human hearing. Nonetheless, since it is the least common denominator
of current audio standards, let us use the compact disc to develop some ballpark figures for the
amount of information required to store digital audio.

1.11.1 Storage Requirements of Digital Audio

One second’s worth of 16-bit audio at 44.1 kHz requires 16 - 44,100 = 705.6 kilobits/s. For stereo, we
must double this to 1411.2 kilobits/s. If we were to store 1 second of CD-quality audio on a computer
disk, how much memory would be required? Computer disks are conventionally measured in mega-
bytes (MB). A byte is 8 bits of data, and so a megabyte is . . . well, there is more than one definition
for this basic unit of storage. It is defined either as 22° = 1,048,576 bytes or as10¢ = 1,000,000 bytes.
The first definition derives from the common computer practice of counting bytes in powers of 2
because computers universally use binary arithmetic. By this reasoning, a kilobyte of memory is
1024 bytes, so a megabyte would be 10242 = 220 bytes. Common usage overwhelmingly favors this
definition of a megabyte. On the other hand, world standards bodies have legislated in favor of the sec-
ond definition. An advantage of the second definition is that it is consistent with the SI prefix mega,
meaning 1 million. Since this book attempts to be consistent with ST units, I'll use the 10° definition.?

So, 1 second of CD-quality stereo audio at 1411.2 kilobits/s equals 1.4112 megabits/s, or
0.1764 SI megabytes/s. That works out to 5.67 seconds of stereo audio per SI megabyte. So an
hour of 16-bit 44.1 kHz stereo audio on a computer disk would require about 340 SI megabytes.
Standard CDs store about 74 minutes of music, so their audio information storage capacity must
be on the order of 783 SIMB.!°

1.11.2 Computational Requirements

If we wish to generate music in real time, synthesizing each sample of audio as we go along, how
fast a computer will we require? How many operations per sample can today’s computers support?
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Of course, the answer depends in part upon how complex a calculation is required to make
interesting-sounding music.

How much real time do we need in order to calculate a single audio sample at CD-quality rates?
With a sample frequency f,=44.1kHz, the sampling period 7" equals 1/44,100 = 0.226 X 10
(about 23 microseconds). Since we have to calculate two samples for stereo in that amount of time,
we actually have half of that duration for each sample. Thus we have about 11.3 s to calculate each
sample. Suppose it takes 1000 machine operations to calculate one sample. That means the computer
must execute each instruction in the time of 0.114 x 107 s in order to operate in real time at audio
sample rates. The computer would have to execute on the order of 88 million operations per second
to keep up with this rate.

Fortunately, today’s computers are able to perform well beyond this level, meaning that a reason-
able amount of digital audio processing can be calculated in real time on most modern computers.
This is a fairly recent development. In 1990, F. Richard Moore figured that the fastest computers of
that day would require “about two or so orders of magnitude improvement” in speed “to allow much
general-purpose computer music processing to be accomplished in real time” (Moore 1990, note,
p.- 54). It is really only since about the year 2000 that the requisite computational bandwidth has
become affordable in inexpensive personal computer systems. Up to that time specialized digital
hardware was required for high-quality audio signal processing tasks. Modern affordable general-
purpose computers are increasingly capable of performing interesting real-time audio signal process-
ing without specialized hardware. This is really good news, in my opinion.!!

1.12 Codecs

A codec (coder/decoder) is any device that encodes and decodes a signal. The analog-to-digital and
digital-to-analog converter are a codec pair.

Pulse Code Modulation (PCM) is the name of the codec technology discussed so far in this chap-
ter. The term PCM was coined by engineers to describe the steps of sampling, quantization, binary
encoding, and transmission of binary data via a carrier signal. It’s called PCM because to transmit
digital data, a transmission medium such as light, electricity, or microwaves was switched on and
off (modulated) in pulses of varying length according to a binary code.

There are many kinds of codecs besides PCM. Standard PCM can be very high quality, but it
requires a great deal of data to store and bandwidth to transmit. Two alternative codec technologies
emphasize data compression. y-Law quantization for telecommunications and MP3 for Internet
audio both focus on reducing the amount of data required to store or transmit audio signals.

1.12.1 Nonlinear-Quantizing Codecs

For speech, intelligibility is most important. Speech signals have a wide dynamic range, but only
intermittently use their full range, spending the majority of their time at relatively low amplitudes.
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Companding codec.

Unfortunately, linear quantizers have the worst SNR at low amplitude and a relatively limited
dynamic range. Therefore, linear quantizers are suboptimal for telephony.

We can increase the SNR for speech at low amplitudes by warping the quantization scale so that
quanta near zero are small. This lowers the quantization error for speech signals that are mostly
low-amplitude. The quantum size (and the attendant quantization error) grows with increasing
amplitude (figure 1.30). Since quantization error increases with amplitude, the SNR is constant at
all dynamic levels.

The u-Law codec used in telephony in the United States and Japan, and the A-Law codec used
in Europe, perform nonlinear quantization. u-Law encoding compresses the wide dynamic range
of hearing into a mere 8 bits per sample. The dynamic range is expanded again during decoding.
A compander is a system that compresses and then expands a signal, and so u-Law and A-Law are
companding codecs.

To reduce the data bandwidth further, the sampling rate f; is lowered to 8 kHz. Using the 0.4
scaling coefficient for practical anti-aliasing filters, this results in an upper frequency limit of
3.2 kHz. This is okay for speech because the highest vocal formant frequency is less than this limit.

The combination of companding and lowered sampling rate provides a useful and very economical
codec for voice communications. It provides adequate intelligibility for speech at low data rates.

1.12.2 Lossy Quantization—MP3

MP3 audio format is widely used to transmit music on the Internet and to store music on portable
audio players. MP3 is short for its official name: ISO-MPEG Audio Layer-3, set forth in IS
11172-3 and IS 13818-3.

MP3 is a member of the class of lossy codecs. Here’s why: Regular linear digital audio (such
as for compact discs) encodes a verbatim copy of the sampled acoustical waveform. All the infor-
mation that was captured in the recording process is stored and reproduced regardless of whether
the ear can detect the information or whether the information is redundant.
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The MP3 codec achieves high audio data compression without significant loss of quality by being
smarter about these two points. Clearly, if no one can perceive certain information, there’s no need
to store or transmit it. MP3 includes a psychoacoustic model of hearing that allows it to avoid encod-
ing information that we can’t hear (see volume 1, section 6.9.4, for a discussion of the psychoacoustic
model of critical bands). The information that is lost because of this step is unrecoverable because
it is not encoded at all. Therefore, the psychoacoustically driven encoding step is lossy. Because it
is based on psychoacoustics, MP3 is sometimes classified as a psychoacoustic codec.

MP3 also includes a lossless data compression step that comes after the psychoacoustic encod-
ing. This step squeezes out all redundancy in the encoded signal. To understand what I mean by
redundancy, suppose we have a text message that reads “AAAAABBBBCCCDDE”. If we sent the
message verbatim, it would require transmission of 15 bytes of data (one per character). Instead,
we institute a rule at the sending and receiving ends that says in effect, “Send only the first instance
of a new letter followed by a count of its immediate repetitions.” By this rule, we might transmit
something like “A5B4C3D2E1”. We’ve reduced the transmission to 10 bytes for a savings of
33 percent by eliminating redundancy in the original message. At the decoding end, we reverse
the rule and are able to reconstruct a verbatim copy of the original message, demonstrating that
removing redundancy is lossless. This is a useful technique if there is a high degree of redundancy
in the signal, as is the case with most audio signals.

Because there is a good deal of musical information that we can’t hear because of psychoacous-
tical masking effects, and because there is quite a lot of redundancy in most music, MP3 can gen-
erally achieve quite dramatic data compression without substantially degrading audio quality. This
format has been a boon to the distribution of music over relatively slow channels such as the
Internet. The combination of the Internet, MP3, and personal computer hardware and software has
created an industry-shaking worldwide revolution in the distribution of music. A fuller discussion
of MP3 is presented in chapters 3 and 10.

1.13 Further Refinements

The lowpass filters required for A/D and D/A conversion present converter designers with some
serious challenges. For a 44.1 kHz sampling rate, the Nyquist sampling theorem allows signals
up to exactly 22.05 kHz to pass without aliasing and requires all signals above exactly 22.05 kHz
to be attenuated by at least 96 dB so that they are under the level of the quantization noise
(assuming 16 bits of precision). The ideal lowpass filter would behave like a brick wall to fre-
quencies above the Nyquist limit and would have no effect on frequencies below the limit.
Unfortunately, realizable lowpass filters are not able to switch from passing to rejecting fre-
quencies so quickly.

1.13.1 Realizable Anti-Aliasing Filters

Practical lowpass filters can only gradually switch from passing low frequencies to attenuating high
frequencies. The transition band is the span of frequencies required to switch from passing to
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Idealized response of an anti-aliasing filter.

attenuating. The frequency where the filter begins attenuating is the cutoff frequency. The cutoff fre-
quency is that frequency where the signal strength is attenuated by 3 dB from its maximum. For this
reason, the cutoff frequency is also sometimes called the —3 dB point. For a 44.1 kHz sampling rate,
a practical lowpass filter’s transition band will be about 4.5 kHz wide, so the —3 dB point is about
22.05 -4.5 = 18 kHz, which is dangerously close to humanly hearable frequencies we’d like to
preserve (see figure 1.31). We’d like the lowpass filter to have a very abrupt transition band so we
don’tlose any frequencies of interest in the baseband. But the narrower we make the transition band,
generally the worse the lowpass filter performs. Problems can include amplitude, phase and har-
monic distortion artifacts introduced by the filter. Figure 1.31 shows an idealized view of the
response of an anti-aliasing filter. Depending upon its design, the transition band may be wider or
narrower and may include amplitude ripples in the response in exchange for a sharper transition.
How can we reduce the artifacts of anti-aliasing filters?

1.13.2 Solution 1: Increase the Sampling Rate

Rather than squeezing the transition band of the lowpass filter and degrading the audio quality, a
relatively simple fix is to increase the sampling rate. For example, with a sampling rate of 88.2 kHz,
the anti-aliasing filter only needs to eliminate frequencies above 44.1 kHz. If we set the —3 dB point
of the filter to 22.05 kHz (comfortably above the highest frequency we can hear), the transition
band can stretch over an ample 22.05 kHz to reach the —-96 dB point at the Nyquist frequency.

If both recording and playback take place at this higher rate, we’re done. If the playback sam-
pling rate is to remain at44.1 kHz, we must add a sampling rate reduction step, called a decimation
filter. Since this filter is digital, it is uncomplicated to design and does not impose any untoward
effects on the signal, so the net effect is positive.

Increasing the sampling rate above the minimum required by the Nyquist sampling theorem is
oversampling. The two-times oversampling example just given can be extended arbitrarily to
N-times oversampling. Not only does this continue to relax the anti-aliasing filter design require-
ments but it also reduces the quantization noise without increasing the sampling precision. How
is that possible?
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Oversampling reduces audible quantization noise.

The Nyquist sampling theorem implies that all frequencies lie within the baseband. Therefore,
all the quantization noise in such a signal also appears in the baseband. Assume that the quanti-
zation noise is spread uniformly over the baseband (it is white noise). If we increase f,, we spread
the white noise out over a wider band. We are spreading out a constant amount of white noise into
a broader frequency band; therefore the average noise in any part of the band is reduced. In par-
ticular, the noise in the band of hearable frequencies goes down as the sampling rate goes up. Let’s
call f,the highest frequency of interest. Let’s say f;, = 20kHz. Then we can define the oversam-
pling ratio (OSR) as f,/(2f,). It can be shown that oversampling reduces the in-band quantization
noise by the square root of the OSR. This can be demonstrated intuitively. Figure 1.32a shows
the quantization noise spectrum of a standard ADC converter. Figure1.32b shows the effects on
quantization noise of oversampling. Since the Nyquist frequency limit f,/2 is much higher, the
quantization noise is spread over a wider range. Although the total quantization noise is
unchanged, the quantization noise that lies in the band of interest is greatly reduced. We see this
by comparing the areas of rectangles A and B in the figure.

The combination of a gentler transition band for the anti-aliasing filter and reduced quantization
noise makes the technique of oversampling a useful improvement. The decimation filter used to reduce
the sampling rate back to the desired lower rate actually helps increase sample resolution: we are cre-
ating N extra samples at the higher rate for each one sample at the final rate. The decimation filter will
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basically average those extra samples together, increasing the resolution. For example, if we sample
at 16f, and then decimate by a 16:1 ratio, we end up with log,16 =4 extra bits of dynamic range.
Of course, the price to be paid for this extra resolution is to record at a much higher sampling rate.

1.13.3 Solution 2: Sigma-Delta Modulation

Delta modulation means quantizing the change in the signal from sample to sample. This is accom-
plished by subtracting the current sample from the previous sample and encoding the difference.
This allows a radical simplification of the digitization process: instead of needing at least 16 bits
to indicate absolute sample value, we need just one bit running at 16f,. At each sampling time,
we simply observe whether the signal has gone up or down and output a corresponding 1 or 0. We
lowpass-filter this 1-bit signal to reconstruct the original analog input. (While this represents an
improvement in circuit design, it does not affect the amount of information that must be encoded.)
A refinement of this process, sigma-delta conversion, has an additional benefit: it lowpass-filters
the signal and highpass-filters the quantization noise so that the spectrum of the quantization noise
is no longer uniform. Quantization noise density is highpass-filtered out of the band of interest into
inaudible higher frequencies. (Precisely how this works is outside the scope of this book.)
Sigma-delta conversion combines the advantages of oversampling, noise shaping, and decima-
tion filtering. It is inexpensive and easy to manufacture because the analog anti-aliasing filter
requirements are less demanding, and the sample-and hold circuit for a 1-bit converter is easy to
design. Sigma-delta converters can be more linear than standard converters, and the background
noise level is independent of the input signal level. They can be easily fabricated in large integrated
circuits with relatively simple analog design criteria, and they are in widespread use today.

1.13.4 Solution 3: Dithering

Even where the input signal is strong, a great deal of important audio information—ambience,
warmth, stereo sound field, reverberation, and the final decay of instruments—Ilies in the lowest
dynamic ranges and therefore is captured in the least significant bits of the quantized audio signal.
Quantization error is introduced during analog-to-digital conversion and also during certain mas-
tering operations whenever sample precision must be reduced. Quantization error can mask and
distort this sensitive and important low-amplitude information. Dithering provides a way to reduce
the impact of quantization error.

In section 1.10.1 we saw that if the input signal x(#) fed into a quantizer is completely random, then
the quantization error signal £(¢)is also completely random and sounds like white noise hiss. But if x(#)
is a musical signal, £(¢) is more correlated to x(¢). In the worst case, where £(t) is highly correlated
to x(t), the quantization error signal resembles a horribly distorted version of x(7). A constant white
noise signal is relatively easy for the ear to forget about, rather as we stop noticing that the sky is blue,
but noise that noticeably changes color over time is much harder to ignore. This coloration can sound
dreadfully bad, especially for low-amplitude signals where &(t) is not far below x(¢) in amplitude.

Since &(t) sounds worse the more correlated it is to x(¢), an ingenious way to improve things
is to add to x(r) a very low-amplitude noise signal u(t). This dither signal decorrelates the



46 Chapter 1

lowest-amplitude components of x(#) from the quantization function Q(#) and makes the quanti-
zation error signal &(t) sound like white noise again. The type of noise added is critical: it must
decorrelate weak components of x(¢) without adding much noise on its own account. There are
many types of dither signals that have been found to be useful, for example, least significant bit
triangular probability density function dither (LSB TPDF).

The disadvantage of dithering is that some noise is added to the signal, although the reduction
in quantization error noise far outweighs this liability. The dithering noise itself can be reduced by
oversampling and sigma-delta modulation (see section 1.13.3).

Dithering the ADC Input Quantization noise is inherent in analog-to-digital conversion because
the input x(¢) is continuous but the output of the ADC is of finite precision. Adding dithering to
x(t) prior to conversion prevents the quantization error signal from being correlated to low-level
signals in x(¢). The dithering noise in this case must be analog because it must be added to x(#)
prior to conversion.

Employing high oversampling (in the range of 64f, up to 512f,) allows us to spread the added
noise from dithering over a wider frequency range, as shown in figure 1.32b.

Dithering during Mastering Mastering is the final step in preparing a recording for mass rep-
lication. Final alterations include gain scaling, filtering, and reverberation. In the digital domain
these are arithmetic operations such as multiplication that result in an increased sample precision.
For example, if we have a sample value of 0.875, and scale its amplitude by 1/2 (that is, reduce it
by 6 dB), the result is 0.4375. Notice that the multiplication converted three digits of precision to
four. If we can’t preserve all four digits of this result, then we must truncate it back to three, but
then we are throwing away whatever information resided in the least significant digit.

Many signal-processing operations result in an increase of precision, so these calculations are
typically done using extended precision. For example, 16-bit audio samples are typically processed
using 24- or 32-bit binary arithmetic. In this way, little or no low-level information is lost during
intermediate calculations because it is carried along in the least significant bits of the result.

However, when it comes time to go back to 16-bit samples, the excess precision must be trun-
cated, which introduces quantization error. But dithering can be used to decorrelate the error sig-
nal prior to truncation. It is important to note that once final dithering has been performed, any
additional operations on the signal will undo the benefits of dithering. This is because any such
additional operations will likely require another quantization/dithering step. Dithering multiple
times will build up the noise and degrade the signal quality. Thus, dithering should be the very
last step performed during mastering.

1.14 Cultural Impact of Digital Audio

Digital audio allows music to be copied without introducing any additional noise. Audio editing
has benefited enormously from this. To modify an analog recording without destroying it requires
that it be copied, and each new generation introduces additional noise and distortion. Noiseless
digital copying has dramatically improved the ability of artists to edit, process, and archive their
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work. Nondestructive editing systems make copies of the audio to be edited, allowing changes to
be seamlessly undone if necessary.

Of course, unlimited verbatim copying is a double-edged sword. Once a recording is published,
anyone possessing the requisite equipment (which can be obtained for relatively little money) can
copy it perfectly as many times as they like. It is possible for fans to “love an artist to death” by
widely sharing the artist’s work without paying a royalty. This is not a new problem, actually.
Mozart carefully guarded his musical scores to prevent piracy, handing out parts to musicians at
rehearsals and performances, and gathering them up again at the end.

The problem of digital audio copying has led some music industry groups to seek limits on copy-
ing and sharing music recordings. Tactics include adoption of mandated copy protection systems,
digital watermarking, legislation to outlaw circumvention of antipiracy measures (DMCA 1998),
and even lawsuits against their own customers. However, though art may be regarded by some as
a commodity, it is actually an integral part of our shared culture, and transmission of culture from
place to place and across the generations is accomplished by sharing, which involves copying, bor-
rowing, and imitation. Richard Dawkins coined the term meme to mean “a unit of cultural trans-
mission, or a unit of imitation.” As examples, he cited “tunes, ideas, catch-phrases, clothes
fashions, ways of making pots or of building arches.”!2

The fair use doctrine is a social compact by which our society attempts to balance the need of
artists to earn money from their art against the culture’s need for freedom to copy and imitate its
cultural memes. This doctrine is currently experiencing great strains because of digital audio. The
health of our musical culture hangs in the balance. We will all be impoverished if the common-
wealth of music is shackled by forces whose only concern is the commercial value of copyright.
But we will be similarly impoverished if artists cannot achieve success because they have no viable
means of earning a livelihood.

There seems to be a kind of conservation law that something is gained and something is lost with
every technological innovation. When we get what we want, our world is changed by it. All tech-
nology has this kind of good-news/bad-news nature: who would guess that the same technology
that allowed Daedalus to escape from the prison of King Minos would lead his son Icarus to fall
into the sea and perish? What is required for a good outcome in the debate over fair use of digital
audio is simply that the participants not make Icarus’s prideful mistake.

Summary

A continuous function of time such as the pressure of air on a microphone diaphragm can be
recorded as an analog function of time (on a phonograph or analog magnetic tape) or as a discon-
tinuous sampled function of time. The result of sampling is a time-ordered set of discrete mea-
surements. Digital audio recording employs an analog-to-digital converter (ADC) to sample the
continuous input audio signal.

Precision characterizes how much information a measurement yields; accuracy has to do with
the fidelity between the value being observed and the resulting measurement. Inaccuracies and
imprecision introduce distortion into the measuring process.



48 Chapter 1

Discretization is the isolation of a point on a continuous function. Quantization establishes the
nearest measuring mark to that point. Sampling quantizes the value being measured at a discrete
point in time.

The analog-to-digital conversion process begins with an anti-aliasing filter that removes energy
content from the signal above the Nyquist barrier. It allows us to specify whatever sampling rate
we desire by preventing aliasing of components above the Nyquist barrier. The lowpass-filtered
analog signal is then fed to a sample-and-hold system that stabilizes the signal during sample
capture. The sample-and-hold system’s value is then measured and converted into a binary repre-
sentation. The binary samples are then stored on a medium, such as a writable compact disc.

The digital-to-analog conversion process starts with fetching the binary samples one per sample
period from the medium. The binary values are converted to an analog voltage and sent to a
sample-and-hold system to convert them into a staircase function. The staircase function is then
lowpass-filtered with a reconstruction filter that is equivalent to the filter used for anti-aliasing. The
result is an analog signal equivalent to the anti-aliased input signal.

For a given sampling frequency, all frequencies greater than 1/2 of that rate are aliased. The aliasing
effect occurs because actual frequencies outside this range are indistinguishable from frequencies
within this range because of the way sampling affects our observations. The Nyquist theorem states
that we must sample at twice the rate of the highest frequency we wish to represent. Given the
difficulties of designing good anti-aliasing filters, a transition band or guard band near the Nyquist
rate progressively attenuates components to prevent aliasing.

There is an equivalence for sampled waveforms between sampling rate and angular velocity. We can
say that frequency f is to the Nyquist barrier f,/2 as angular velocity 8 is to 7. Therefore, when plot-
ting a spectrogram, we can simply plot frequency as radian velocity between —z and 7 and leave sam-
pling rate out of the picture entirely. This allows us to graphically interpret frequency information on
a uniform scale without reference to the underlying sampling rate. The magnitude of spectral com-
ponents can be represented in two dimensions by graphing positive and negative amplitude on the
y-axis and using the x-axis to show phase angle between —7 and 7 instead of frequency.

Linear-quantizing digitizers can be quite data-intensive for audio. To reduce bandwidth, a log-
arithmic quantization is used for telephony; MP3 exploits psychoacoustics to remove unhearable
components. Audio codecs use oversampling, 1-bit sigma-delta modulation, and noise shaping to
achieve highest quality.



2 Musical Signals

Music is fashioned wholly in the likeness of numbers. Whatever is delightful in song is brought about by
number. Sounds pass quickly away, but numbers, which are obscured by the corporeal element in sounds and
movements, remain.

—*“Scholia Enchiriadis”

It has been written that the shortest and best way between two truths of the real domain often passes through
the imaginary one.
—Jacques Hadamard

Mathematicians aren’t above imagining new kinds of numbers when circumstances warrant. The
natural numbers—whole numbers greater than zero—are probably as old as civilization. But when
the natural numbers failed to solve equations such as ¢ = a — b for all possible natural numbers a
and b, mathematicians invented negative numbers. The result was the birth of the integers. Rational
numbers were developed when integers failed to solve equations such as ¢ = a + b for all possible
integers a and b. When a careful look at irrational numbers such as 7 showed the limitations of
rational numbers, mathematicians invented real numbers. Yet there are straightforward mathemat-
ical situations that can’t be handled by real numbers either.

2.1 Why Imaginary Numbers?

Table 2.1 shows a sequence of simple equations requiring increasingly advanced number systems
for their solution, starting with natural numbers and progressing through solutions requiring real
numbers. But what about that last equation? How can it be solved?

Table 2.1

Some Simple Equations and Their Requirements

Equation Solution Requires

2x=4 x=2 Natural integers
2x+4=0 x=-2 Signed integers
4x=2 x=1/2 Rational numbers
x2=2 x= ﬁ, x= —ﬁ Real numbers

x2+2=0 x=7? ?
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First, rearrange it a bit:
x2 = 2. 2.1

Solving for x means taking the square root of both sides. This would require a number on the
right-hand side that, when squared, results in a negative number. But squaring is multiplying a
number by itself, and the result is always positive. So there can be no solution to (2.1) under the
standard rules of mathematics. Although (2.1) is simple to write, its solution poses a contradiction
to familiar mathematical understanding.

What if we attempted to “quarantine” the minus sign, to factor it away from the 2? For example,
we can rewrite equation (2.1) as x2 = 2(—1). In algebra we frequently let a variable or an expression
stand for an unknown quantity. Let’s put the unknown and troublesome aspect of (2.1) into this expres-
sion: i2 = (=1). Using this definition, we can rewrite (2.1) as x2 = 2 - i2. Solving for x, we obtain

x=A2-i. (2.2)

We managed to banish the minus sign by embedding it in i, but we’re hardly any better off
because we don’t know how to interpret i, which is still unknown. All we know is that it would have
to be a number that, when multiplied by itself, equals —1. But we also know that there is no such
number under the rules of mathematics as we currently understand them.

We have a choice: stick with the rules we have (which we’d very much like to do) or fiddle
around with the rules (which might lead to chaos, so we’d rather not). But having observed that
the current rules do not cover all outcomes, we can’t just ignore this problem.

So, consider inventing a new kind of number that, when multiplied by itself, produces a negative
result. We’d have to modify the rules of mathematics carefully to allow such a number without fal-
sifying anything we already know to be true.

To pick up where we left off, let

2 =-1. Imaginary Rule (2.3)
Now let’s assert that the square root of 2 is
i= -1 Imaginary Number (2.4)

Without a doubt, equations (2.3) and (2.4) stand conventional mathematics on its ear.! But these
turn out to be just what we need. Start with equation (2.2): x = J2-i0 Square it to prove that it
leads back to equation (2.1).

X2 = (J20)? Square both sides.
= (J/2)*-i2  Square the terms separately because (ab)? = a2 - b2.

= (ﬁ)z(—l) Substitute —1 for i2 by equation (2.3).

2(-1)
= 2.
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Using (2.3), the Imaginary Rule, we have found a solution to x2 = —2 . But what sort of number
is created in equation (2.4) to facilitate this solution? It is certainly not a real number because
no real number when multiplied by itself produces a negative result. Mathematicians have named
J-1 the imaginary number (although it is worth pointing out that in fact all numbers are imag-
inary insofar as they are all free creations of the human mind). The usefulness of the imaginary
number is actually quite real; its use leads to some particularly beautiful insights about music
and sound.

2.2 Operating with Imaginary Numbers

Let’s take a moment to summarize. In order to solve all the equations in table 2.1, we had to create
a new kind of number—the imaginary number—which produces a negative result when squared.
So far, there’s one number in this entire class of numbers, i = J?l .

This is unsettling because we have to relate this new kind of number to all other kinds. Clearly,
if we have some numbers that produce only positive results when squared and others that produce
negative results, we must figure out how to tell them apart and keep them distinct. Some things we
already know about imaginary numbers can help.

For instance, whenever the imaginary number is multiplied by a real number, the result is also
an imaginary number. For example, if x = 2 - i, then xis also an imaginary number. We can prove
this by squaring it: if the result is negative, x is imaginary, and if the result is positive, x must be
a real number. This was already demonstrated, but here it is again:

¥ = (J2i)
= 2(-1) (2.5)
= 2.

So, we know several facts about multiplying imaginary numbers.

The product of an imaginary number and a real number is an imaginary number.

Squaring an imaginary number turns it back into a real number.

If the square of a number is negative, then it is imaginary.

But can we combine imaginary numbers with other mathematical operations, like addition?
We can’t add real numbers and imaginary numbers any more than we can directly add apples
and oranges because their differing characteristics require that we treat them distinctly. How-
ever, we could add apples and oranges together if we kept them distinct. Imagine the following
conversation:

“Hi. How many apples do you have in your bag?”’
“Five.”
“And how many oranges do you have?”
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“Four.”
“Here, take these three apples and these three oranges; now how many do you have?”
“I have eight apples and seven oranges.”

This conversation can be notated using a for apples and o for oranges: (5a + 40) + (3a + 30) =
8a + 7o. Everything is fine so long as we preserve the distinction between apples and oranges and
operate on them separately. We could even formalize this rule by defining a new class of object
named “fruit” and declaring that “fruit consists of a certain number of apples plus a certain number
of oranges.” For example, we could have the following quantities of fruit: (5a + 40)or (3a +30)
or, if we had none, (0a + 00) or, if I had no apples and owed you an orange, (0a — 10).

We can combine real numbers and imaginary numbers the same way. Just as we defined the term
fruit to mean the combination of apples and oranges, mathematicians have adopted the term com-
plex numbers to mean the combination of a regular number and an imaginary number. I think this
name is unfortunate because it suggests these numbers are complicated. In fact, complex numbers
are no more complicated than regular numbers.

2.3 Complex Numbers
In the preceding example, I represented a sum of apples and oranges using a notation that allowed com-
bining them but keeping them distinct. We can take a similar approach to constructing complex numbers.

A complex number is the sum of a real and an imaginary number.
The imaginary part of the sum is distinguished by i.

Table 2.2 shows some examples of complex numbers. The third column shows how these numbers
are sometimes abbreviated in practice.

2.3.1 Operations on Complex Numbers

We need a way to isolate parts of complex numbers so we can take them apart. We do so with two
functions, Re and Im. If z = a + bi, then

Re{z}.  Evaluates to the real part of z.

b = Im{z}. Evaluates to the imaginary part of z as a real number.

Table 2.2

Some Complex Numbers

Complex Short
Number Description Equivalent
0+ 0i Zero real part and zero imaginary part 0

0+ bi Zero real part and imaginary part with value b bi

0+1i Zero real part and imaginary part of 1 i

a+(=b)i Real part a and imaginary part —b a—bi
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For example,
Re{a+ (-b)i} = a,
Im{a+ (-b)i} = —b.

Notice that the result returned by Im{ }is the imaginary part converted back into a real number.
That is, Im{a + bi} = b, not bi.

Remembering always to keep the real and imaginary parts of a complex number distinct, we can
make up rules for how complex numbers behave under standard mathematical operations. First,
letu = a+biandv = ¢+ di, where a and c are the real parts and bi and di are the imaginary parts
of u and v, respectively. We now can define the following operations.

Complex Equality For two complex numbers to be equal, their real parts must match and their
imaginary parts must match. That is, if u = v, thena =c¢, and b =d.

Complex Addition If we add two complex numbers, we must add the real parts and the imag-
inary parts separately:

u+v = (a+bi)+ (c+di)
= (a+c)+ (bi+di) Complex Addition (2.6)
= (a+c)+(b+d)i.

Complex Multiplication If we multiply two complex numbers, we follow the usual procedures
for multiplication, remembering that a real number times an imaginary number yields an imaginary
product, and that an imaginary number squared yields a negative product:

u-v = (a+bi)(c+di
= ac+bdi’+adi+ bci

Complex Multiplication (2.7)
= ac—-bd+bci+adi

(ac-bd) + (bc+ad)i.

This rather complicated arithmetic result will become a lot clearer with a graphical technique (see
section 2.3.4).

Complex Negation Negating inverts the sign of both the real and the imaginary parts of the com-
plex number u:

—u = —(a+bi) = —a-bi. Complex Negation (2.8)

Complex Conjugation Since complex numbers provide two sign values to operate on, it would be
convenient to be able to change the sign of the real part or the sign of the imaginary part independently.

The conjugate of a complex number is the negation of its imaginary part.
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I indicate the conjugation operation by putting a bar over the quantity to be conjugated:

Z=a+bi =a-bi, Complex Conjugate (2.9)

which reads, “The complex conjugate of a + bi is a — bi.”
When we multiply a complex number (a — bi) and its conjugate, the imaginary component
drops out, and the result is real:

(a=bi)(a+bi) = a?+abi—abi - b%i?
= a?+b2.
A complex number multiplied by its complex conjugate is a real value.

Complex Division Dividing acomplex number by a real number is easy; divide the imaginary and
real parts separately. For example, (6 + 8i)/2 = 3 + 4i. But what if the denominator is not real?

Sometimes it’s easier to work around a problem than face it head-on. What if we could make
the imaginary component drop out from the denominator? Then the problem would revert to trivial
division by a real value. We know we can convert a complex number into a real number by mul-
tiplying it by its conjugate. But whatever we do to the denominator we must also do to the numer-
ator to keep the ratio balanced. For example, find the dividend of

242i

3-2i

Multiplying the numerator and denominator by the complex conjugate of the denominator will
make the denominator real and allow us to divide the complex numerator by a real denominator:

(2+20)(3+2i) _ 6+10i+4i® 2+10i _ 2 10,
(3-2i)(3+2i)  9-42 13 13 13~

Consider a + bi divided by c+di:

(a+bi)(c=di) _ (ac+bd)+(bc—ad)i
(c+di)(c—di) 2+ d? ct+d*

Complex Division (2.10)

Fortunately, we won’t be needing this rather complicated equation because there is a much
simpler method for complex division (see section 2.3.6). Meanwhile, the following rule may be
helpful.

To divide complex numbers, multiply the numerator and denominator by the conjugate of the
denominator, then reduce.

2.3.2 Graphical Representation of Complex Numbers

If carrying around two numbers in order to represent one complex number seems difficult, remem-
ber we do this with rational numbers, too. Like rational numbers, complex numbers combine two
numbers to create a new kind of quantity.
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a .o
A
.g ,
A
(0,0) X-axis

Figure 2.1
A point p on the Cartesian plane.

Imaginary
Axis

>0 z = a + bi as a complex number
A z=(a, b) as a Cartesian point

(0+0i7) Real Axis

Figure 2.2
A complex number z on the complex plane.

Number pairs also combine to create a new quantity in plane geometry: a point in the Cartesian plane
is defined as a pair of numbers, one for the x-axis, and one for the y-axis. For example (figure 2.1),
a point p on the plane can be defined by a combination of horizontal and vertical values (a, b).

If we add Cartesian point p to another point g, we must add the x and y values separately. That
is, if p = (a, b), and g = (c, d), then

p+qg =I[(a+c),(b+d)].

This is like operating on the two halves of a complex number separately. In fact, this suggests a
way to interpret complex numbers graphically.

If we associate real numbers with the x-axis and imaginary numbers with the y-axis, then we
could think of a complex number as forming a point on the complex plane.2 For example, we could
associate the complex number z = a + bi with the point z = (a, b) in the Cartesian plane
(figure 2.2). This would allow us to apply geometry to understand complex numbers.

Let’s look at some examples. Numbers like 1 and 3.14 are pure real numbers (complex numbers
with a 0 imaginary part) lying on the real axis, whereas numbers like 17 and 3.14i are pure imaginary
(with a O real part) lying on the imaginary axis. All other numbers z = a + bi, such that a # 0 and
b # 0, are complex numbers in the complex plane. Note that since i = 1i,iisrepresented graphically
as 1 on the imaginary axis (figure 2.3). The figure shows the position of some constants on the complex
plane and the complex number z, its negation —z , its conjugate Z, and its negated conjugate —Z.
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Imaginary
Axis
—Z=—q+bi o314 z=aqa+ bi
° °
ol
Real -3.14  -1.0 1.0 3.14
Axis - - - -
0oy
—z=—a-bi z=a-bi
° °
o 3.14i

Figure 2.3
Numbers on the complex plane.

2.3.3 Trigonometric Representation of Complex Numbers

Complex numbers really begin to pay off when we view them through trigonometry. They provide
a compact, powerful representation for sinusoids that we will come to depend upon. Then the com-
plicated algebraic rules of complex math become unnecessary.

Figure 2.4 shows a triangle in the complex plane. The location of the complex point z can be
found in two ways. First, using geometry, if we define the lengths of the sides of the triangle as a
and b, then the pointis z = a + bi.

Equivalently, we could find z by determining the magnitude (length) of the hypotenuse r and its
angle 0 above the horizontal plane. If r # 0, and 0is the angle of the hypotenuse relative to the pos-
itive real axis, then by trigonometry,

a = r-coso,
bi = r-isiné.

(See appendix section A.2 for an introduction to trigonometry.)
Substitute these trigonometric definitions for a and bi back into the geometric definition for z:

z=a+bi
= (r-cos0) + (r-isinb).
Factoring out the common term r,

z = r(cosB@+isinb). Trigonometric Form of a Complex Number (2.11)
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Imaginary
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z=a+bi
’
bi
0
(0+0i)| a Real Axis
Figure 2.4

A complex number as a magnitude and an angle.

Equation (2.11) provides a way to find a complex number just by knowing its distance r from the
origin of the complex plane and its angle 6. More important, (2.11) suggests that we can treat com-
plex numbers as vectors. A vector is simply the combination of a magnitude and a direction. Equa-
tion (2.11) identifies a complex number as a magnitude (r) and a direction (6). Furthermore, using
(2.11), we can view any complex number equally as the sum of two orthogonal vectors (lying at
a 90° angle from one another), the first on the real axis with a magnitude of a and the second on
the imaginary axis with a magnitude of b.

The larger significance of equation (2.11) is that, by relating trigonometric functions to the con-
struction of complex numbers, we now have a bridge between these two realms.

The Angle and the Magnitude Infigure 2.4 the variable Ois called the angle of z.> The variable
r, showing the distance from the point z to the origin, is called the absolute value or the magnitude
of z. The latter definition does not conflict with the absolute value of a real number, which is sim-
ilarly the distance from a point to the origin; we’re just expanding the definition to cover points
other than those on the real line. The absolute value of a complex number z is written r = |z/, just
as with integers and real numbers. For example, |-3| = 3, and |-3i| = 3i.But what about com-
plex numbers that do not lie on the real or imaginary axis?

Suppose we have determined the location of a point in the complex plane by its magnitude » and
angle 6, but now we wish to rediscover its Cartesian coordinates a and b. Trigonometry again comes
to the rescue because this is the same as finding the length of the sides of a right triangle from the
length of its hypotenuse and its angle. The length of the side along the real axisis a = rcos @, and
the length of the side along the imaginary axisis b = rsin 6. So now we can convert back and forth
between the complex and Cartesian coordinate systems.

Pythagoras Revisited Another useful relation between the complex number z = a + bi and the
magnitude of its hypotenuse r involves z and its conjugate 7. The relation is 2 = zZ. Here’s how
to see it. Define a right triangle anchored at the origin of the Cartesian plane with sides a and b,
and hypotenuse r (figure 2.5). Then by the Pythagorean theorem, we can write

r2 = a2+ b2.
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y-Axis

(0 +0i) ' a "~ x-Axis
Figure 2.5

Triangle in the Cartesian plane.

Now add the term abi — abi to the middle of the right-hand side. Clearly we can do this because
adding and then subtracting the same value from an equation does not alter the equality. So we have

r2 = a%>+ abi—abi+ b2. (2.12)
Focus on the b2 term for a moment. Because of the nature of i,
b2 = —b%- i = bi(-bi). (2.13)

We can do this because by equation (2.3), i2 = —1. Repeating equation (2.12) but substituting the
definition for b2 from (2.13), we get

r2 = a2+ abi— abi+ bi(-bi).

Factoring,
r2 = (a+bi)(a-bi) (2.14)
=%,

by the definition of the complex conjugate.* Now if r2 = zZ, then it must be that the hypotenuse
r= A2z = Ja?+ b2,

This will come in handy later.

2.3.4 Multiplication Interpreted Trigonometrically

Equation (2.11) showed that we can find a complex number z if we know its angle O and its distance
from the complex origin r:

z = a+bi = r(cos@+isin0). Complex Number Interpreted Trigonometrically (2.15)

What would happen if we multiplied the trigonometric form of two complex numbers? If
u = r(cos@+isinf), and v = s(cos @+ isin @), their product is

uv = r(cos@+isin@) - s(cos ¢+ isin Q).
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We can simplify thisif welet a = cos 0, b = sin, ¢ = cos@, and d = sin ¢. Substituting these
definitions into the equation yields

uv = r(a+ib) - s(c+id).

We can then expand it as follows:

uv = rs(a+ib)(c+id) = rs(ac+ aid + ibc + bdi?).

Remembering that i2 = —1, we have

uv = rs(ac+aid+ibc — bd).

Grouping terms into complex number format,

uv = rs[(ac—->bd)+i(bc+ad)].

Now if we substitute back the original terms for a, b, ¢, and d, we end up with

uv = rs[(cos@cos@— sin@sin¢) + i(sin O cos @+ cos O sin )] (2.16)

Where is all this leading? I believe there’s an unwritten rule in mathematics that equations must
get longer before they can get shorter. The good news is, we’ve reached the point where this one
starts getting shorter. But first, there are two tools we need. A modest application of trigonometry
(see appendix section A.2) demonstrates that

cosB@cos¢—sinfsing = cos(0+ ¢),
and
sin@cos@+ cosOsing = sin(6+ ).

These trigonometric identities allow us to reduce the size of equation (2.16) substantially. Substi-
tuting these identities back into (2.16), we get:

uv = rs[cos(0+ @) +isin(6+ )] . Complex Multiplication Interpreted
Trigonometrically 2.17)

Equation 2.17 tells a much simpler story about the product of uv than (2.16) does. The product of
uv is scaled by the product of the magnitudes r and s, and the angle of uv is the sum of the angles
0 and ¢.

The product of two complex numbers is the product of their magnitudes and the sum of their angles.
This is much simpler and more intuitive than the algebraic definition given in equation (2.7).

Interpreting i Geometrically How can we represent i itself as a complex number in trigonomet-
ric form? What are its angle and magnitude? By definition, i corresponds to the value +1 on the imag-
inary axis (figure 2.6). So we can represent i as having magnitude » = 1 and angle 6 = 90°. With
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Imaginary
Axis

[y
>

‘\9:90°

(0 +0i) Real Axis

Figure 2.6
Geometric value of i.

this information, and recalling equation (2.15), we can write the trigonometric form of i:

1(c0s90° +isin90°)
2.18
1(0057—r+ ising). ( )
2 2
Now, cos(7/2) = 0 and sin(m/2) = 1. Substituting, we have

1(0057—[+ isin’—r)
2 2

i

~.

=0+1.

We have demonstrated that the complex value of i is (0 + i), ending up right back where we
started. But now we also know its trigonometric expression and have an idea of how to visualize
it graphically.

Multiplying by i What happens if we multiply i times a complex number z? Recalling equations
(2.17) and (2.18),

z-i = r[cos(8+90°) + isin(6+90°)]. (2.19)

We just rotate z counterclockwise by 90°. Suppose we set z = 1 + 0i, which makes it a positive
vector lying on the real axis of magnitude 1. Its trigonometric form is z = 1(cos0 + isin0)
because this is also a positive vector lying on the real axis of magnitude 1. Equation (2.19) says that
if we multiply z times i, we end up with

2 = [cos(0+90°) +isin(0 + 90°)],

which is a positive vector lying on the imaginary axis of magnitude 1. In other words, we’ve just
rotated z by 90° counterclockwise, leaving its length the same.
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(0 +0i)

Figure 2.7
Successive multiplications of 1 by i.

Multiplying a number by i rotates it 90° counterclockwise; its magnitude remains the same.

Note that this rule works for complex numbers, real numbers, and imaginary numbers alike.
For example, if we start with 1, and multiply it by i, we rotate it by 90° counterclockwise, obtaining
1.0i . Similarly, multiplying i - i rotates i by 90° counterclockwise, and gives —1 (because i2 = —1).
Multiplying —1 - i yields —i, and multiplying —i - i gives 1 again. This is shown graphically in figure 2.7.

2.3.5 Squaring a Complex Number

Using equation (2.17), we know that z2 will have an absolute value of 2 and an argument of
60+0 =20:

72 = r2(cos260+isin26).
To square a complex number, square the magnitude and double the angle.
2.3.6 Complex Division with Trigonometry

If multiplying two complex numbers means multiplying the magnitudes and adding the angles, it
follows that division means dividing the magnitudes and subtracting the angles. The ratio of two
complex numbers u# and v can be expressed as
u  r(cos@+isinf) r ..
-= = - 0-9¢)+ 0-9)].
v s(cos¢+ising) s[cos( 9)+isin(0-9)]

The angle of the argument will be rotated in the clockwise direction. What if the denominator
is i? In that case,
u r[cos @+ isin 0]

i T[c0s90° + 75in90°] = r[cos(0-90°)+isin(8-90°)].

To divide a number by i, rotate it clockwise 90°; its magnitude remains unchanged.
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2.3.7 Tricks with i
Remember these useful tricks, they will come in handy soon:

= Multiplying by —i is the same as dividing by i. That is, 1/i = —i. To see this, rotate a complex
vector of unit length clockwise by 90° (figure 2.7).

= (1/0)(1/i) = (-i)(-i) = —1. To see this, rotate a complex vector of unit length clockwise by
180° (figure 2.7).

2.4 de Moivre’s Theorem

So far, we have been laying the groundwork for our trip up Complex Mountain, buying supplies
and trekking to the edge of the foothills. In the following sections we begin to see some lofty sights.
The first is de Moivre’s theorem.

The square of a complex number 7 is

72 = r2(cos 20+ i sin 26).

Multiplying again by z, we have z2- z = r3(cos 30 + i sin 30), and in general,
"= r"(cosn@+isinnd), n=012,.... (2.20)

Consider the set of all complex numbers whose magnitude is 1. They are all a unit distance from
complex zero, 0 + 0i, the origin of the complex plane, which means they form a circle around
complex zero (figure 2.7). The points are complex numbers on the unit circle because they are all
a unit distance from complex zero.

If we view complex numbers as vectors, complex multiplication and division are nothing more
than rotating these vectors around complex zero and scaling their magnitudes.

What if the magnitudes of the two complex numbers being multiplied are both exactly unity?
Since we are multiplying unities, we’d expect that all we do is spin the vector around while the mag-
nitude remains the same, and this is indeed what happens. For example, in equation (2.20), let
r =1, and observe that no matter what value we assign to n, z* will always have a magnitude of
1, placing it always on the unit circle.

Though perhaps it is not obvious at first, we can easily rewrite the term cosn 8 + isinn 6 from
(2.20) as (cos O+ i sin 8)" . Clearly, (cos 6+ i sin )" is acomplex number with unity magnitude
raised to a power. Let z* = (cos 0+ i sin 6)".

But we also know that any complex number z” can be written as z" = r*(cos n 6+ i sin n8) for
some value of . And, in this case, r = 1 because we are looking only at points on the unit circle
with unity magnitude:

7" = r"(cos 8+ isin 0)" = r"(cos n@+isin nb)

1"(cos n@+ i sin n6),
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and since 17 = 1, we have shown that
cosn@+isinn@ = (cos 6+isin 6)".

de Moivre’s® Theorem: Raising a complex number with unity magnitude to a power n is equiv-
alent to multiplying the angle of the complex number by n.

For example, if we raise a complex number with unity magnitude to increasing powers of n, we
set the number to spin counterclockwise around the unit circle. The greater the value of 6, the
greater the angular distance covered by each increase in n.

If the magnitude of the vector r is not unity, then in general,

r"(cosn@+isinn@) = [r(cos O+isin 6)]". de Moivre’s Theorem (2.21)

This provides a simple formula for calculating powers of complex numbers. If z = r(cos 0+ i sin 6),
then

Z"=r"(cosn@+isinno).
2.4.1 Taylor Series for Sine and Cosine

Brook Taylor¢ knew that some series had been shown to be equivalent to trigonometric functions.
For example, he knew that

3 5 7

. X
s1nx=x—%+§—%+~~ (2.22)
and
x2 X4 x()
cosx:1—2—!+ﬂ—a+---, (2.23)

where x is a real number in radians. The ellipses in these equations mean these series must extend
to infinity before they are equal to the expressions on the left side.” The ! operator is the factorial
operator in mathematics. For example, 3! = 3 -2 - 1. In general, n! = n(n-1)(n-2) --- (1).

Note the symmetry of these equations. Both begin with positive terms, then alternate signs,
+, — +, . ... The series for sin x is defined using only odd numbers, and the series for cos x is
defined using only even numbers.

Many such series were developed by Brook Taylor and others because they wanted to find quick
ways to approximate the numeric value of trigonometric relations. Each subsequent term in equa-
tions (2.22) and (2.23) is much smaller than the preceding one, so these series converge quickly to their
target values. Hence, we can compute the sine or cosine of an angle to any degree of precision desired
simply by summing more and more terms of these equations. The more terms that are summed, the
more precise the result. Summing an infinite number of terms produces the value exactly. Although
with modern computers this application of the Taylor series is no longer a pressing concern, (2.22) and
(2.23) can be combined in a kind of Chinese puzzle that reveals a most startling result.
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2.4.2 Valueofe

What is e? A dictionary will indicate that it is the base of the natural logarithms, whose symbol
honors the great mathematician Leonhard Euler.® The first few decimal places of e offer very little
additional insight into its nature. They are 2.718281828459045235. . . . Like , e is an irrational
constant that is useful in a variety of mathematical contexts. We can take a kind of “black box”
approach to it, that is, use it without thinking too much about what it is.

Then why did I even bring up the subject of e? Well, it turns out that the Taylor expansion of e,

e= Zl' = (%+ T + % +..., Taylor Expansion of e (2.24)

links up with the sine and cosine series in (2.22) and (2.23) in a way that has great practical bearing.
Consider this series for e raised to a power x:

oo 2 3 4 5

X X X X X X

e:1+2x‘21+ﬂ+5+§+4ﬂ+§+”” (2.25)
n=1"""

As with the sine and cosine series, the series in (2.25) provides a way to compute an approximate
value to any desired precision of e to any power x.

2.5 Euler’s Formula

If we substitute the complex number z into equations (2.22), (2.23), and (2.25), we have

3 5 7
sinz=z—%+%—%+~~» (2.26)
2 4 6
COSZ:l_%JF%_%JF..., 2.27)
and
2 3 4 5
eZ=1+%+%+%+fﬂ+%+"" (2.28)

The similarities in the patterns of (2.26), (2.27), and (2.28) are striking. It seems that the series for
e* is made up of the sine and cosine series interleaved together in some way . . . except that the
sine and cosine series alternate plus and minus signs whereas the series for e only sums positive
terms. If we could find a way to relate these three series, we’d have a path toward linking e to the
cosine and sine functions.



Musical Signals 65

It looks like the expansion of e* somehow combines the terms for the expansions of sin z and
cos z. What if we sum the sine and cosine series just to see what they look like together?

2 3 4 5 6 7

Z Z % z Z
cosz+smz—+l+z—5—§+4‘+5‘ a T (2.29)

\ \— Repeating pattern of signs

Notice that the signs in (2.29) show a repeating pattern: +,+,—,—,+,+,—,— . This feels familiar. Look-
ing back at figure 2.7, recall that the powers of i have the same periodicity of signs:

i =1 +
B .
i =1 +
2
im=-1 -
3 _
i = —i

4

i =1 +

So the series for e is identical to the series for cos z + sin z except that the terms of the cos z + sin z
series switch signs with the same periodicity as successive powers of i. If we modify the equation for
e? to be e'?, the effect on the right-hand side of equation (2.28) would be as follows:

' e - I

174
e—1+’+'+3'+ +5'+6'+7'+

N
N

(2.30)

. . 3 4 .5 6 .
JR_z w2z 12
21 3 417 5 6! 7!

1l
—
|
|
|
|

We can see the destination hidden in equation (2.30). Notice that the even exponents correspond
to the series for cos z, and the odd exponents correspond to the series for sin z. This might be clearer
if we rearrange (2.30) to group the even exponents and then group the odd exponents, which all
contain i:

2 4 6 Z 13 ZS 7’
1—5+4'—a+ +z(—.——.+———.+---). (2.31)

Since the left group of terms equals cos z, and the right group of terms equals sin z, we have shown that
el = cosz+isinz. Euler’s Formula (2.32)

This famous result is known today as Euler’s formula or Euler’s equation. It links the hyperbolic
functions involving e to trigonometric functions involving 7.
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2.5.1 But Where Is 7?
If equation (2.32) indeed links e and 7, where is 7?
First, let’s add a new variable a on both sides of equation (2.32):

¢ = cos(z+a) +isin(z+a). (2.33)

Second, recall from trigonometry that because there are 27z radians in acircle, cos z = cos(z + 27)
and sin z = sin(z + 27x). In general, the same is true for any integer multiple of 2. This means
that the sine and cosine functions are periodic:

cosz = cos(z+n2m),
sinz = sin(z+n2nm),

where n is any integer. As shown in figure 2.8, this makes intuitive sense if we remember that add-
ing n2 x to some angle z returns us to the same spot on the circle each time, so long as n is an integer.
Now, if we let a = 27 in equation (2.33), we have

i(z+2 .
P = cos(z+2m) +isin(z+2m).

But, as we’ve just seen, this is identical to

¢ = cos(z+0) +isin(z+0),

and therefore we’ve shown that

¢ = o (2.34)

As promised, we’ve introduced 7to Euler’s formula. But that’s not all we get for the effort. It follows
that e’% is periodic with period 27 just as the sine and cosine functions are:

LEn2m _ iz (2.35)

i

z+n2mn

Figure 2.8
Scaling an angle by n27.
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where 7 is any integer. Perhaps this is not so surprising when we remember that we have related
ez to functions of circles, and circles are . . . well, circular.

2.5.2 The Most Beautiful Formula

To see more of this interesting view, let’s climb a little higher. Because cos 27n = 1, and sin27n = 0,
for integer values of n, it follows that

i27n
e

cos(2mn) +isin(27n) (2.36)

= 1+0i,

revealing that ¢27" equals 1 regardless of the value of n (so long as n is an integer). This is a pretty
startling result, actually. We are within striking distance of a truly breathtaking vista. Suppose we
simplify equation (2.36) by setting n = 1/2 (relaxing the requirement that » be an integer). Sub-
stituting, we have

i2m(1/2 in
S22 _

e’ = cosm+isinT,
and since we know that cos 7 = —1 and sin 7 = 0, we have
"= —1+0i 2.37)
=-1.
Finally, if we rearrange equation (2.37) slightly, we get
e+ 1 = 0. Euler’s Identity (2.38)

This equation brings together five of the most important numerical values in mathematics, e, i, 7, 1,
and 0, in one simple, elegant relation. Equation (2.38) has been described as the most beautiful for-
mula in mathematics. It’s like seeing the entire panoply of the planets together with a crescent moon
at sunset. By analogy, this equation can also be seen to integrate the four main branches of mathe-
matics: 0 and 1 from arithmetic, 7z from geometry, i from algebra, and e from analysis.

Equation (2.38) is the cornerstone of a major mathematical edifice that represents musical signals,
among other things, in a crisp and penetrating way. This goes to show, as Sir D’ Arcy Wentworth
Thompson (1917) wrote, “The perfection of mathematical beauty is such . . . that whatsoever is most
beautiful and regular is also found to be most useful and excellent.”

2.5.3 What Is ¢’ by Itself?

We got such a fine result by introducing 7 into Euler’s identity that it seems a shame to remove it,
but to find out the value of e’ by itself, we go back to the Taylor series definition of e raised to a
power, given in equation (2.25):
2 3 4 5
x X X X
€ =1+ +m+n+ gt g+
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We want to find the solution to this equation for x = 0 + 1i. Substituting, we get

0+1i
e —

Grouping even and odd terms yields

i 1,1 1 . 1,1 1
e 1—2—!+ﬂ—a+~--+z(1—§+5—!—ﬁ+--~) (2.39)

= cosl +isinl,

which says that e is a complex number with a real part equal to cos 1 and an imaginary part equal
to sin 1. Remembering that the arguments to the sine and cosine functions are in units of radians,
we can write

¢ = 1(cos 1 +isin 1), (2.40)

which allows us further to say that equation (2.40) represents a vector in the complex plane of unit
length and angle of 1 radian. The Cartesian values are approximately x = cos 1 =0.543 and
y =sinl =0.841.

2.6 Phasors

Consider the complex number z = x+iy. If welet x = cosf and y = sin 6, then
z = cos@+isinf,

and we know by Euler’s formula that

cos O+isinf = . (2.41)
Now, if we set 0= 1, we’ve simplified back to equation (2.40), where we established that by itself
e! can be thought of as a vector from the origin of the complex plane with length 1 and angle of
1 radian. But let’s leave 0 in the equation and assume 6 represents a real number.

Suppose 6 gradually decreases from 1 to 0. At first, when 6 = 1, the value will be ei! = cos1 +
isin1, justasinequation (2.41). Butas Odecreases, e'? rotates clockwise (figure 2.9). When 0 gets
to 0, we have
¢’ = cosO+isin0

1+1i0,
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Figure 2.9
Unit vector as 6 decreases toward zero.

that is, the vector e’® will be lying along the positive real axis:

i0
e

>

|
|
0 1

Let’s check out some other interesting values for 8. We’ve already seen by equation (2.38) that
when 0= T,

in

cosS T+ 1isin T

242
= —1+0i, (242)
which means the vector ¢’ will be lying along the negative real axis:
< i |
Pl |
-1 0
Two other values of 0 are noteworthy. If we set 0= 71/2:
¢"™? = cos §+ i sin g
(2.43)

0+1i,

which means the vector ¢’® will be lying along the positive imaginary axis. And if we set

0=m3/2,

e“”yz) = cos 3_7r+ i sin 3z
2 2°

—0-1i, (2.44)

which means the vector ¢’ will be lying along the negative imaginary axis.
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i(m3/2)

Figure 2.10
Complex unit circle.

Finally, if 6 = 27,

i2 ..
" = cos2m+isin2xw

(2.45)

1+0i,

which means the vector ¢ has gone back to lying along the positive real axis, making one com-
plete rotation.

Thus, as 0 goes from 0 to 27, the vector €9 spins once counterclockwise on its axis in the com-
plex plane. This is shown in figure 2.10. One complete rotation is called a period. The different
positions the vector reaches on the unit circle during a period are referred to as its phases. Since
the angle 6 controls the phase, it is called the phase angle.

To summarize, e’ is a unit vector, that is, a vector of length 1 and angle of 1 radian. For e’?, as
6 goes from O to 27, the unit vector visits every point on the complex unit circle, including
+1, i, -1, and —i. As 6 increases past 27, ¢!? will just continue to spin, returning to +1 whenever
0 is an integer multiple of 2.

Notice how much more compact it is to write e?¢ rather than cos 6 + i sin 6. This provides tre-
mendous economy of expression for discussing wave motion later.

There’s only one thing missing: a way to make the vector other than unit length. If we scaled
e'? by a real variable r, we could change the length of the vector as well:

z = re'®. Phasor (2.46)
As r changes, the vector’s length changes, and as 0 changes, the vector’s direction changes.
Equation (2.46) is convenient polar representation of any complex variable. It is easier to write
z = re'? than to write z = r(cos 6+ i sin 8), and we get the intuitive advantage of visualizing
zas a vector spinning around the origin of the complex plane. Polar representation of complex variables
is so powerful that it has its own name: equation (2.46) is called the phasor.
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The two variables r and 81n (2.46) allow us to identify uniquely any point on the complex plane.
Imagine a line of length r called the radial coordinate with its base anchored at the origin of the
complex plane. The counterclockwise angle of this line above the real axis is given by 6, called
the angular coordinate, or polar angle. Together, r and 0 are called the polar coordinates. They are
related to Cartesian coordinates by

x=rcosf, and y=rsinb,

where r is the radial distance from the origin, and 6 is the angle from the real axis traveling coun-
terclockwise. In terms of x and y, by the Pythagorean theorem,

r = A/xz +y2,

0 = tan'2.
X

2.6.1 Circular Motion
In the previous section, we scaled Euler’s formula by a real variable r,
re'® = r(cos 6+ i sin 9),

defined as a phasor of magnitude r. Figure 2.9 showed that as 6 decreases, the phasor spins clock-
wise, and figure 2.10 showed that as @ increases, the phasor spins counterclockwise.

2.6.2 The Upside-Down Bicycle

Imagine a phasor as a spoke on a bicycle wheel that has been painted red. It spins one way or
another depending on whether 8 is increasing (becoming more positive) or decreasing (becoming
more negative). The variable r can be thought of as the length of the spoke and hence the size of
the wheel.® One spoke on the other wheel is also painted red so we can track them both easily. Now
spin one wheel counterclockwise, corresponding to 8 growing more positive, and spin the other
clockwise, corresponding to 6 growing more negative.

As the wheels spin, how many revolutions do the wheels make per second? Suppose we observe
that the red spokes on both wheels rotate once every second, or 1 Hz. We can relate the speed of
rotation to the rate at which the angle of the red spoke on each wheel changes. Since the spokes
are rotating at 1 Hz, the angle of each red spoke travels through 27 radians per second. The faster
they spin, the higher the frequency and the greater the angular velocity.

Now close your eyes and quickly blink them open and shut, noting the phase angles of the red
spokes on the two wheels. If you blink quickly enough, the spokes seem not to be moving. You
have observed the instantaneous phase angle of the spokes.

Now stop the bicycle wheels and spin one, and then the other, clockwise. Observe the instan-
taneous phase angles again. Since one wheel started after the other, their instantaneous phase
angles will not be equal even if they rotate with the same frequency: one wheel will lead the other
by some amount. This is their phase difference.
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If the wheels travel at the same exact frequency, the phase difference will be a constant. If, as
is more likely, one wheel travels faster than the other, the phase difference will change gradually
as the wheels turn, and one red spoke will overtake the other and then pass it. One wheel is said
to be precessing the other. The rate of precession is the time it takes for the phase difference
between them to return to the initial phase difference.

Again, spin one wheel clockwise and the other counterclockwise so that they are traveling at the
same rate of speed in opposite rotation. Even if they travel at exactly the same speed, the angular
velocities of the two wheels are not equal because the radian velocity of the wheel turning coun-
terclockwise is 27 radians per second, whereas the radian velocity of the wheel turning clockwise is
—2 1 radians per second. Thus, if the wheel turning counterclockwise with positive radial velocity has
a frequency of 1 Hz, the one turning clockwise with negative radial velocity must have a frequency
of —1 Hz. Positive frequencies correspond to counterclockwise rotation and negative frequencies
correspond to clockwise rotation.

2.6.3 Positive and Negative Frequencies

How can we express positive and negative radian velocity mathematically? We can understand
positive frequencies with the phasor

re'® = r(cosO+isin@), (2.47)

such that as @increases, the phasor spins counterclockwise, corresponding to positive frequencies.

Can we represent negative frequencies simply by inverting the sign of 87 That is, what about
e!-9) = 7197 It should work, but let’s check. Going back to Euler’s formula, we see that if
€% = cos@+isin@, then

¢ % = (cos —6) + (i sin —0) (2.48)
= cos@—isinf
because cos —0 = cos 0, and sin —0 = —sin6.

By (2.48), as 0 begins to increase from 0, the real part, cos 6, will go from 1 toward O (shrinking
along the x-axis toward 0) while the imaginary part, —i sin 8, will go from 0 toward —i (growing
along the negative y-axis). When 0 = 0, the negative phasor e~ starts off lying along the real axis
line just like its positive cousin e‘f. But as 6 begins to increase from 0, the negative phasor drops
down and to the left, beginning a clockwise rotation, just as we wanted.

Thus, we can use the negative-frequency phasor ¢~ to represent negative, clockwise-turning
frequencies and the positive-frequency phasor e'® to represent positive, counterclockwise-turning
frequencies. This is summarized in figure 2.11.

2.6.4 Complex Harmonic Motion

We know that simple harmonic motion is the projection of circular motion onto one-dimensional
displacement (see volume 1, section 5.1, especially volume 1, figure 5.7). And sinusoidal motion
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Positive-Frequency Phasor: Negative-Frequency Phasor:
ei® = cos0 + isin e19 = cosf — isind
- -

*. For increasing 6

\

0 ‘.

7
,

.- For increasing 6

Figure 2.11
Positive- and negative-frequency phasors.

Figure 2.12
Projecting sine and cosine from the same circular motion.

is the projection of simple harmonic motion through time (see volume 1, figure 5.9). The root
motion governing both is circular motion.

Figure 2.12 shows two spotlights at right angles to each other projecting the shadow of a cone
mounted on a turntable onto two screens. As the turntable turns, the harmonic motion of the shadows
projected on the screens will show a phase difference of 90°, precisely the phase difference between
sine and cosine. If we think of the cone on the turntable as a phasor on the complex plane, then the
shadows describe the motion of the projected sine and cosine harmonic motions. The only difference
between sine and cosine is the angle of projection.

If we look at figure 2.12 from directly overhead, as shown in figure 2.13, we see that the phasor
% does indeed embody both the cosine and sine relations simultaneously. In this graph the circle
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Figure 2.13

Complex phasor projected on the real axis and the imaginary axis.

is plotted in the complex plane, but the projected sine and cosine waves are plotted as real values
of amplitude against angle 0 as it moves in time from O to 2.

Project along the real axis in figure 2.13 as 6 goes from 0 to 2. When 8= 0, the phasor lies to
the right of complex zero along the real axis, and it swings around counterclockwise as fincreases.
We see that the phasor ¢’ makes a full circle counterclockwise, beginning and ending at
e’ = 1+ 0i. As the phasor turns, we see by inspection that the projected point sin 8 describes a
sine wave because it begins at amplitude 0, gradually increases in amplitude to 1, works its way
back to 0, then to —1, and finally returns to 0, just as a sine wave does. Similarly, the projected point
cos 0 describes a cosine wave because it begins at amplitude 1, decreases in amplitude to —1, then
works its way back to 1.

When signals are lock-stepped at a 90° phase difference like the sine and cosine projections of
circular motion, the signals are said to be in quadrature. Although quadrature has a number of
meanings in mathematics, in this context it means a 90° phase relation between two periodic quan-
tities varying with the same period.
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2.6.5 Sinusoids

Looking at figure 2.13, we see that if we project vertically across the real axis, the phasor e®
generates cos 6 as 0 increases, and if we project horizontally across the imaginary axis, the phasor
generates sin 0 as 0 increases. Recalling Euler’s formula, figure 2.13 shows that a phasor is indeed
the sum of a cosine and a sine in quadrature because they both emerge as projections of
e® = cos@+isinf.

But why restrict ourselves to projecting just along the two dimensions of the complex plane? We
can swivel the projector around to any arbitrary angle and create a host of different but related wave
functions. Swiveling the light to 45°, we produce a wave that is halfway between a sine and cosine
wave (figure 2.14). The formula for this wave is

cos(0+45°) +isin(6+45°).

As the projector is swiveled around an entire circle, we observe all possible combinations of sine
and cosine wave. A slight modification of Euler’s formula allows us to represent this process of
projecting from different angles:

¢ = cos (0+ ¢) +isin (0+ ¢), Sinusoids (2.49)

2n

0

5 N cos(0 +45°) +isin(0 +45°%)

45°

Figure 2.14
Phasor projected at 45°.



76 Chapter 2

where ¢is the phase angle of the projector. The family of curves defined by (2.49) are the sinusoids.
By allowing the projected angle to vary, we allow all projections through a phasor from all possible
angles.

2.6.6 Mixing Sine and Cosine to Create Sinusoids

Another way to create a sinusoid of any phase does not require complex arithmetic: we add a sine
and a cosine together, varying the strengths of each to get the desired phase offset. For example,
acosO+ b sinf, with a =1, b =0, reduces to cos 0; and with a = 0, b = 1, to sin8; and with
a =b =1, to an equal mixture of the two. What does that look like? Plot sine and cosine waves of
equal amplitude and sum them point by point (figure 2.15). Note the resemblance of this shape to
figure 2.14.

We have shown experimentally that cos 8+ sin@ = sin(6+ 45°) . Using trigonometry, we can
generalize this to show that

sin(0+ @) = acosO+ bsin6 (2.50)
for appropriate choices of a, b, and ¢.
2.6.7 Positive and Negative Frequencies and Amplitudes

Recall from section 2.6.1 that frequencies are positive or negative depending upon the direction
of their circular motion. As shown in figure 2.11, a negative-frequency phasor e~¢ turns clock-
wise, and a positive-frequency phasor ¢?? turns counterclockwise. Both these phasors have pos-
itive magnitudes. What is the behavior of negative-amplitude phasors —e?® and —e=9?

Figure 2.15
Sum of cosine and sine.
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A negative-amplitude, positive-frequency phasor —e? still generates a positive frequency
because it still turns counterclockwise as @increases. However, it has negative length, which means
that it points in the opposite direction to a corresponding positive-length phasor. Consider the
phasor ¢© = 1 + 0i, which is a unit vector lying on the real axis, anchored at complex zero and
pointing to the right along the real axis:

i0
| ¢ -
0 1
If we negate it, we have —e’® = —1 + 07, which points to the left along the real axis:
i0
< . I
o [
-1 0
Recall from equation (2.42) that e!™ = —1 + 0i,s0 —e'® = ¢!, Think of it this way: if we start out

with e/0, areal unit vector pointing to the right, there are two ways we can make it point in the oppo-
site direction: we can rotate it around complex zero (clockwise or counterclockwise) by a half cir-
cle, e'™, or we can negate it, —e©.

Similarly, if a negative-frequency phasor e~ is negated, it becomes —e~. It still has a negative
frequency because it turns clockwise as 6 increases.

If we want to reverse the direction of a negative-frequency phasor, we have the same two choices
as with the positive-frequency phasor: we can either rotate the phasor a half-circle around complex
zero or flip its direction by negation.

These concepts are shown graphically in figure 2.16. A positive-frequency phasor with negative
amplitude is identical to that same positive-frequency phasor rotated forward or backward
by mradians (180°). In other words, —e’® = e Similarly, —e=9 = PR

Another way to view this is to look directly at the sine and cosine of 6 when we add 7 to it
(figure 2.17). We can see by inspection for sine and cosine that adding 7 to any angle is the same
as negating it.

2.6.8 Phasors and Sinusoids

What would happen if we took a positive-frequency phasor ¢/® = cos 6+ isin 6 spinning coun-
terclockwise and a negative-frequency phasor e~¢ = (cos —0) + (isin —6) spinning clockwise
and added them together?

When a positive-frequency phasor and a negative-frequency phasor are tied to the same angular
displacement, they are in conjugate symmetry, so

0 -6
e+e’

(cosB) + (isinB) + (cos —0) + (isin —0)
= cos@+isinf+ cos@—isinO (2.51)

2cos 6.
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Positive Complex Frequency Negative Complex Frequency
with positive amplitude: with positive amplitude:
ei®=cos6 + isin® e~10=cosB —isin®
with negative amplitude: with negative amplitude:
ei® = _(cos0O + isin0) e—i0=_(cosB —isinO)

- -

"~ For increasing 0

i HE/ 6 ﬁ
\

5 ’.'
) +n\ ’} !

.-~ For increasing 0

- -

Figure 2.16
Positive and negative frequencies and amplitudes.

9’* O+m > —>|6|<—6+n

Magnitudes are
the same.

Y

Figure 2.17
Adding 7 to an angle 6.

The result takes a bit of explaining, but it will prove to be crucial information. Rearranging (2.51)
slightly, we get
i, -io 0 -i6
cosf = g-——§--— = %— + % . Real Cosine as Sum of Two Phasors
in Conjugate Symmetry (2.52)

That’s areal cosine on the left side of equation (2.52). We’ve already seen a couple of other ways
to create cosine waves, but this formula is the root of all other explanations. When summed, the
real parts of phasors in conjugate symmetry add constructively and the imaginary parts cancel
(figure 2.18). The sum of phasors in conjugate symmetry is always on the real number line. As 0
varies, the length of the sum vector varies as cos6.
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Real

%maginary

Figure 2.18
Sum of phasors in conjugate symmetry.

A real cosine consists of the vector sum of two half-amplitude phasors of opposite frequency.
Now, what if we subtract two phasors in conjugate symmetry?

efye = (cos @) + (isin@) — (cos—0) + (isin —0)

= cos@+isinf — cosO + isinO (2.53)
= 2isin6.
Rearranging (2.53) slightly, we get
S0 0
sinf = - Real Sine as Difference of Two Phasors in Conjugate Symmetry (2.54)
To get i out of the denominator, since 1/i = —i, we can flip the sign of i:1°
o0 if
sin@ = —iT . (2.55)

This result might seem counterintuitive. How can a real sine wave be made of entirely imaginary
components? When subtracted, the imaginary parts of phasors in conjugate symmetry add con-
structively, whereas the real parts cancel (figure 2.19). If we then multiply this imaginary differ-
ence by —i , we rotate it 90° clockwise to the real number line to obtain a real sinusoid. As @ varies,

this difference varies as sin 6.

A real sine consists of the vector difference of two half-amplitude phasors of opposite frequency

and amplitude.
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Imaginary Axis\

Real Axis

S~

Figure 2.19
Difference of phasors in conjugate symmetry.

Equations (2.52) and (2.54) are really just variations on Euler’s formula. They are the foundation
of a great deal of important modern music technology. They are so important, in fact, that I present
another visualization.

2.6.9 Cosine Machine

Figure 2.20 is a visual aid for equation (2.52) that I call the cosine machine. It forms the vector
sum of two phasors mechanically. It has a motor with an arm attached to its rotor. At the end
of the first arm is another arm of equal length connected to the first with a bearing. The end
of the second arm slides from side to side in a slot. Figure 2.21 shows the cosine machine’s
stages of movement. Figure 2.22 shows the operation of the cosine machine with a pen attached,
producing a cosine wave.

The length of each rotating arm is 1/2, so when the bars lie flat along the slot, they add up to 1.
The arm attached to the motor turns counterclockwise (6), and the outer arm turns clockwise
(—0). The total side-to-side excursion of the arms is 2, and this motion outlines cosine movement
as 6 goes from 0 to 2.

2.6.10 Sine Machine

Figure 2.23 shows an interpretation of equation (2.55) that I call the sine machine. This machine forms
the vector difference of two phasors. We can split equation (2.55) into two phasors as follows:

i0 —-i6 —-i6 i6
. .e .€ .e
sinf = —i———— = [— —i—.
2
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Figure 2.20
Cosine machine.
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The black arm in that figure spins clockwise and is associated with the negative-frequency phasor

e~19/2; the white arm spins counterclockwise, matching the positive-frequency phasor e/%2. The

black arm is connected at one end to a fixed bearing mounted behind the center of the slot that the
black arm swivels around. The motor housing is attached to the other end of the black arm. The motor
shaft is attached to the white arm. The other end of the white arm is attached to the slot via a pin to
hold itin the slot. A pen is attached to the white arm in such a way that it always points straight down.

When the motor starts, both arms are directly above the center of the slot, corresponding to 6 = 0.
As 0 increases, the white arm moves clockwise, and the black arm moves counterclockwise. The
vector difference generates a sine wave as 0 goes from 0 to 27.
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Paper sheet moves under the pen.

Figure 2.22
Rotating armature generating a cosine wave.

This end is attached
to a bearing mounted o-i0
behind the center
of the slot.

Pin to hold
arm in slot

foo \

Paper sheet moves under the pen.

Figure 2.23
Sine machine.
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Note that the cosine machine (figure 2.22) could have been used to create a sine wave by lifting the
penuntil 8 = 90°, then dropping it, introducing a phase delay. We could do exactly the same thing
with the sine machine (figure 2.23) to generate a cosine wave. But the figures illustrate how to gen-
erate sine and cosine waves directly and in phase. For 0 < 8 <27, the cosine machine (figure 2.22)
generates a cosine wave, and the sine machine (figure 2.23) generates a sine wave.

2.6.11 Energy of a Phasor

Kinetic energy is proportional to the square of velocity (see volume 1, equation (4.28)). In terms of real
waveforms, energy is the square of amplitude. But what corresponds to the energy of a phasor?
If the magnitude of the phasor z = re’? is r, then by equation (2.14), r2 = zZ, and

r = Azz = Ja? + b
Thus, if we associate the magnitude r of the phasor with the amplitude of a wave, r? is its energy.
2.6.12 Even and Odd Functions

Notice that the shape of the cosine wave is symmetrical around x = 0. The cosine function has
the same value for both positive and negative x indexes. That is, cos x = cos —x, as shown in
figure 2.24. Because of this, the cosine function is an even function. In general, a function f is even
if f(x) = f(—x).

The shape of the sine wave is antisymmetrical around x = 0. If we negate the sine function, we
have —f{(x) , shown as a bold curve in figure 2.25. For any x, the positive and negative functions are
equal, and sin x = —sin x. Because of this, the sine function is an odd function. In general, a func-
tion fis odd if f(x) = —f(x). Table 2.3 summarizes these observations.

With the exception of the zero function f(x) = 0, all functions are either even or odd, or a mix-
ture of the two:

Jx) = f.(x) +f,(x). (2.56)
cos(—x) cos(x)
ix; - p -
Sx)=f(=x)
Figure 2.24

Cosine as an even function.
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J)

—f(x)
S ==f0)

Figure 2.25
Sine as an odd function.

Table 2.3

Properties of Even and Odd Functions

Function Definition Property Example
Even fx) =f(—x) Symmetrical around 0 Cosine
Odd fx) =—f(x) Antisymmetrical around 0 Sine

Given the definitions for even and odd functions in table 2.3 and equation (2.56), it follows that:
fx) = fo(=x) +f,(=x)
= fe(x) = fo(x).

Equation (2.56) says that a function of a positive index x is the sum of its even and odd parts. Equa-
tion (2.57) extends this slightly to say that a function of a negative index x is equal to the difference
of its even and odd parts. If we add (2.56) and (2.57),

f(x) +f(_x) = fe(x) +fo(x) +fe(x) _fo(x)
= 2f,(x),

and rearrange to solve for f,(x), we see that

(2.57)

Sl = %[f(x) +f(=x)]. (2.58)

Equation (2.58) shows how to extract the even portion of any function f{x): compute 1/2 times the
value f(x) + f(—x), and the result will be the even portion of the function.
If we subtract equation (2.57) from equation (2.56),

fx) =f(==x) = f,x) +f,(x) —f,(x) +f,(x)
= 2f,()
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and rearrange to solve for f,(x), we see that
fox) = %[f(X) —f(=0)1. (2.59)

Equation (2.59) shows how to extract the odd portion of any function f(x): compute 1/2 times the
value f(x)—f(—x), and the result will be the odd portion of the function.

Now, how can we be sure that equations (2.58) and (2.59) fully represent the whole of the
function f(x)? Well, if we add them together, we should get back the original function, which
we do:

FL0)+£,06) = 3L +F-0)1+ 3100 (0]

= f(x).

We have proved that equations (2.58) and (2.59) fully represent the function f(x), unrestricted in
any way.

All functions can be broken down into even and odd parts using equations (2.58) and (2.59).
In particular, if we define f(6) = e'®, we immediately demonstrate, as in equation (2.52), that

[

£08) = 50+,

and also demonstrate, as in equation (2.54), that

—i6

£,(0) = 3=

Understanding even and odd functions will come in very handy in chapter 3.
2.6.13 Making Phasors Spin in Time

In figure 2.13 we saw that the phasor ¢/ makes one complete period as 6 goes from 0 to 27. If
we wish to specify that this period should occur over a particular duration 7, we can let
0 = 2mt/T, where t is time. For example, if we wish the phasor to complete one period in 1 sec-
ond, we set 7= 1. Then, as the real-valued time parameter # goes from 0 to 1 second, the phasor
e27/T goes through 27 radians, one full rotation.

Making a phasor spin at a particular rate puts it into the temporal realm. To signify this, let’s say
that the phasor with time ¢ in its exponent is the complex sinusoid.

What if we want the complex sinusoid to go through two periods in 1 second? The most con-
venient approach would be to introduce a frequency variable f, so that @ = 27zft/T. Now the com-
plex sinusoid is defined as

eif = pi2nft/T. (2.60)
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If we set f=2, then the phasor ¢?2%"/T will make two cycles in 1 second. If we set f =440, it will
make 440 cycles per second. Defining 8 = 27xft/T causes 60 to express angular velocity, the rate
at which the phasor spins.

It is common to simplify equation (2.60) by defining w = 27f, so that the phasor becomes
e!®/T _Since most often T = 1 (because we’re mostly measuring frequency in Hz, which is
cycles per second), we can simplify a bit further by leaving out 7. The time-based phasor is then
simply e!® . If we want amplitude to be other than unity, we can add an amplitude term A to
scale the phasor’s magnitude, so that we have the following canonical representation for the
complex sinusoid:

Aei®t = Agi2nft Complex Sinusoid (2.61)

This powerful but economical representation of the complex sinusoid is used throughout the rest
of the book.

2.7 Graphing Complex Signals

Suppose a bright light were mounted on the tip of an airplane’s propeller as it flies past at night.
The forward circular motion of the light would create a helix as it cuts through the air. To represent
the complex sinusoid graphically (figure 2.26a), we use a 3-D representation where the y-axis is the
imaginary number line, the x-axis (shown sloping up to the right) is the real number line, and
the z-axis (sloping down to the right) is time. Figure 2.26b shows a complex sinusoid as a helix.
We can project along the real axis to see just the sine wave component (shown on the “wall” behind
the helix), or project along the imaginary axis to see just the cosine wave motion (shown on the
“floor” below the helix).

a) b) Sine Wyye

= pi0t
sO=e Im{s(f)}

Imaginary

Z_ |Real

X y Time z

Re{s(?)}

COSjHe Wav
(5

Figure 2.26
Projection of a complex signal.
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If the equation for the helix is s(#) = e/, then the cosine projection is just the real part, denoted
Re{s(t)}, and the sine projection is just the imaginary part, denoted Im{s(7)}. The value of the
helix when ¢ =0 in figure 2.26 is

s(0) = €@ = cos 0+ isinO0,
which in Cartesian coordinates corresponds to the 3-D point
(%, y,2) = (Re{s(n)}, Im({s(1)}, 1))

= (cos 0, sin 0, 0)

= (1,0,0).

The point on the helix for any other time can be similarly determined by plugging in the appro-
priate values of Oand t. The helix in figure 2.26 is spiraling counterclockwise, indicating positive
frequency.

2.8 Spectra of Complex Sampled Signals

In section 1.3.3 we established an equivalence for sampled waveforms between sampling rate and
angular velocity, saying that frequency fis to the Nyquist barrier R/?2 as angular velocity 6 is to
7. Therefore, when plotting a spectrogram, we can simply plot frequency as radian velocity
between —z and 7, and leave sampling rate out of it entirely. This is an advantage when comparing
spectra that were sampled at different rates.

In section 2.6.7 we saw that there are positive and negative frequencies and amplitudes. As was
shown in figure 2.11, the negative phasor e~’¢ turns clockwise, producing negative frequencies,
and the positive phasor e’? turns counterclockwise, producing positive frequencies. Negating the
sign of a phasor is the same as giving it a 180° phase shift. So, for some radian velocity 6, there
are four possible phasors:

eif Positive frequency, positive amplitude
_ei® Positive frequency, negative amplitude
e-i0 Negative frequency, positive amplitude

_e-if Negative frequency, negative amplitude

If we want to show the spectrum of a complex signal, we must find a way to represent each of
these phasors distinctly. Figure 2.27 shows a complex spectrum with one of each kind of phasor. The
positive-amplitude phasors are shown with bold arrows, and the corresponding negative-amplitude
phasors are shown shaded. Positive and negative amplitude is graphed on the y-axis. The x-axis
shows angular velocity between —7z and 7 instead of frequency.
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-0 + ei® ‘ Positive
. Amplitud
: f f Radian | mpitude
- 0 0 frequency P Negative
_e—i® el Amplitude
Negative Frequency Positive Frequency

Figure 2.27
Complex spectrum of the four kinds of phasors.

Figure 2.28
Complex spectrum of a real cosine wave.

2.8.1 Complex Spectrum of a Real Sampled Cosine Wave

In equation (2.52) we found that cos8 = (e'?+ ¢~7%)/2, which says that a real cosine equals the
sum of two half-amplitude phasors of opposite frequency. Now that we have a way of representing
complex spectral components mathematically, we can diagram spectrograms of these relations.

The complex spectrum of equation (2.52) is shown in figure 2.28. The Nyquist barrier is shown
as *7, so the frequency 6 corresponds to +6/x. The distance of the two arrows from zero along
the x-axis represents the frequency of the two phasors: the left one has negative frequency, the right
one has positive frequency. Both arrows point up because the signs of both phasors are positive,
and they each have a magnitude of 0.5.

2.8.2 Complex Spectrum of a Real Sampled Sine Wave
The complex spectrum of the sine wave

o elf_ei® o .
sin@ = -i————— = j— —j—
2 2 2

_ ,.(e_"e_ie)
S22

is shown in figure 2.29. Both components are imaginary. This graphical representation does not
allow us to show real and imaginary components together. Later in this chapter, I develop a 3-D
representation of complex spectra that does. We see that real sine wave sin 6 is made of two imaginary
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T'
l

Figure 2.29
Complex spectrum of a real sine wave.

half-amplitude phasors, one with positive frequency and negative amplitude, the other with neg-
ative frequency and positive amplitude.

2.9 Multiplying Phasors

In section 2.3.4 we observed that to multiply two complex numbers, we multiply their magnitudes
and add their angles. Similarly, to multiply two phasors, we multiply their magnitudes and add their
angles. For complex sinusoids (that is, phasors containing time ¢ in the exponent), we must mul-
tiply their magnitudes and add their angles at every point in time.

What happens if we multiply the time-based phasor ¢®! by itself (thereby squaring it)? Recall
that unless a scaling term is added the magnitude of a phasor is unity (that is, |¢/®| = 1), so mul-
tiplying e‘®* by itself won’t change its magnitude. But its frequency will double because we sum
the angles at each point in time, doubling the rotational velocity: (@ + w = 2 w). Figure 2.30
shows the rotation of phasors through time as a helix. Figures 2.30a and 2.30b are identical phasors,
so multiplying them is effectively a squaring operation. Figure 2.30c shows the product signal,
which spins twice as fast but has the same amplitude. Multiplying phasors to raise their fre-
quency is modulation.

If we multiply a positive-frequency phasor e¢!® by a phasor of equal but negative frequency
e~i® the magnitude of the product will be unity, but the frequency will be 0 Hz, because
® — ® = 0. The result is a signal that has the value of complex unity (1 + 07) at all points
(figure 2.31). Multiplying phasors to lower their frequency is demodulation.

We can change the frequency of a phasor by an arbitrary amount. Say we have two signals,
s = Aleﬂ"f " and Sy = A2ei2”f 2! Their product is a signal with magnitude A, - A, and frequency
fi +f,. Forinstance, if f; =4 Hz and f, = -3 Hz, the product will be a phasor at 1 Hz with mag-
nitude A, - A, (figure 2.32).

Modulation and demodulation are used, for example, to convert between audio-frequency sig-
nals and radio-frequency signals. For instance, suppose a radio receiver detects a signal
f1 = 1 MHz. If the receiver has an internal oscillator tuned to f, = 0.999 mHz and multiplies these
two signals together, the result would be an audio-frequency tone of 1 kHz.
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a) b) )

eiwt X eiwt = (eiwt)z

Figure 2.30
Squaring a phasor.

elot X e-iot = 1+0i

Figure 2.31
Multiplying identical positive- and negative-frequency phasors.

eli2n4t X e—i2mn3t - ei2nt

i Fr

Figure 2.32
Changing the frequency of a phasor.
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By far the most important musical application of modulation and demodulation is frequency
detection. The Fourier transform operates somewhat like a radio receiver to tune in and register the
frequencies present in a signal (see chapter 3).

Recall equation (2.52), which shows that a real cosine waveform is the sum of two half-amplitude
phasors with opposite frequencies:
iwt . e—i wt
2 2

s(t) = coswt =

If we set @ =4, we could plot the spectrum of s(7) as shown in figure 2.33.
Now let’s define a complex waveform containing a single phasor:

m(t) = e,

If we set ¢ = —4m, we could plot the spectrum of m(f) as shown in figure 2.34.

What happens if we multiply the real signal s(f) shown in figure 2.33 containing two phasors
and the complex signal m(f) shown in figure 2.34 containing just one phasor? The spectrum of the
product of the waveforms,

m(t) - (1),

is shown in figure 2.35.

e—idnt eldnt
° €
g 2 2
=)
ah
<
=
-2 0 2
Frequency
Figure 2.33
Spectrum of a real cosine signal.
(] .
o e—idmnt
=
=
&
<
=
-2 0
Frequency
Figure 2.34

Spectrum of a phasor at —47.
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Figure 2.35
Spectrum of product of m(f) and s(z).

We can interpret figure 2.35 to say that all components of the real cosine signal s(¢) are shifted in
frequency by the frequency of m(¢). In general, multiplying a signal by a phasor of frequency fadds
frequency f to the frequencies of all components of the signal. All components of the signal are
shifted by the same amount, no matter how complicated the signal is. (If the resulting spectrum is
not conjugate symmetric, the resulting waveform is complex.)

2.10 Graphing Complex Spectra

Just as we need three dimensions to represent complex sinusoids in the time domain (as in figure 2.26),
so we need three dimensions to represent complex spectra. For complex spectra, the z-axis represents
frequency, and the y-axis and x-axis represent the imaginary and real number lines, respectively. The
frequency of a sinusoid is represented by its position along the frequency axis (z-axis), but its magni-
tude is represented by a vector whose length is the sum of its real and imaginary parts.

For example, recall equation (2.52), which shows that a real cosine wave is the sum of two
half-amplitude phasors with opposite frequencies. If in equation (2.52) we set 6 = 27tft then we have:

ei2nft  p-il2nft
+ —.
2 2

cos2rxft =

Figure 2.36a shows the real cosine wave in the complex time domain, and figure 2.36b shows the
complex spectrum of the real cosine. Each of the bold arrows in the spectrogram corresponds to
one of the phasors in the cosine equation. The position of these arrows along the frequency axis
corresponds to the frequency of the positive phasor f and the frequency of the negative phasor —f.
The length of each arrow corresponds to the magnitude of each phasor (in this case, both have mag-
nitudes of 1/2). The orientation around the x-axis is determined by the vector sum of the real and
imaginary components of the phasors. Since the magnitudes of both phasors are real (that is, the
imaginary part of their magnitudes is zero), they lie parallel to the real axis. Since the amplitudes
of both phasors are positive, they are on the positive side of the real axis.
Here’s another example. If in equation (2.55) we set 8= 27ff then we have:

. [ e—i2nft i2mft
sin 2 7tft = l(e ¢ )

2
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a) Complex Time Domain b) Complex Frequency Domain

(Complex Spectrogram)
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cos(anfi) = 5+ &5

Figure 2.36
Cosine wave in the complex time and frequency domains.
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Imaginary Imaginary

e2nft l,eZtht

sin(2mft) =i

2

Figure 2.37
Sine wave in the complex time and frequency domains.
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This can be graphed as in figure 2.37. Both components are imaginary, so they are parallel to
the imaginary axis. The positive-frequency component has a negative imaginary magnitude, so it

points down.

Some useful terminology: components of a spectrum that are parallel to the the real axis are said
to be in phase, and those that are parallel to the imaginary axis are said to be in quadrature phase.
By this definition, the cosine wave’s components are purely in phase, and the sine wave’s com-

ponents are purely in quadrature phase.

2.10.1 Graphical Proof of Euler’s Formula

We can use 3-D representation of spectra to demonstrate a graphical proof of Euler’s formula,

equation (2.32),

ez = cosz+isinz.
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sin(w?)
Imaginary

Real

Frequency

Multiply by i
isin(®?) cos(w?) !
Imaginary Imaginary Imaginary
Real + 7 Real Real
0 - 0

S

Frequency Frequency / Frequency

Figure 2.38
Geometric demonstration of Euler’s function.

Signal Represented: cos(®? + )

Imaginary part

—f Real part

Imaginary axis

Real axis
Imaginary part Real part
Frequency

Figure 2.39
Real signal with a phase offset.

First, let z= @t so e/® = cos t + isin or. Let’s start by graphing sin e, as shown at the top left of
figure 2.38. Next, we must multiply this by i, which has the effect of rotating both phasors counter-
clockwise by 90°, as shown at the lower left of that figure. Last, we must add cos @t to the rotated pha-
sors. Note that the negative-frequency components cancel, leaving only the positive component, ¢ .

What is the complex spectrum of a real signal with a phase offset? Consider the spectrum of the real
signal cos (@t + ¢) (figure 2.39). Adding a phase offset to a real signal rotates its components in the
complex spectral domain around the frequency axis. Notice that adding a phase offset to the cosine wave
rotates the positive frequency phasor counterclockwise and the negative frequency phasor clockwise.

2.10.2 Frequency Components of Real Signals
Here are some useful conclusions to draw from the preceding examples:

= The magnitudes of the components of real signals are always balanced between negative and pos-
itive frequencies. For example, figures 2.36 and 2.37 show the positive- and negative-frequency
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components balanced in magnitude. If |X(f )| represents the magnitude of a signal at frequency f,
then for real signals we always have |X(f)| = |X(-f)| . This is true for real sines, real cosines, and
in general, real sinusoids with any phase angle.

= The positive- and negative-frequency components of real signals that are in phase (that lie along
the real axis) always have even symmetry around 0 Hz, that is, their phasors point in the same
direction. For example, in figure 2.36, the components are real and in phase, and have even sym-
metry around O Hz (that is, both point in the same direction). These signals are invariably real
cosine signals.

= The positive- and negative-frequency components of real signals that are in quadrature phase
(that lie along the imaginary axis) always have odd symmetry around 0 Hz, that is, their phasors
point in opposite directions. For example, in figure 2.37, the components are imaginary and in
quadrature phase, and have odd symmetry around 0 Hz (that is, they point in opposite directions).
These signals are invariably real sine signals.

For real signals, these rules always obtain. Therefore, the negative- and positive-frequency com-
ponents of any real signal will, when summed, always cancel any imaginary magnitude, resulting
in a signal that lies entirely along the real axis. This is what equations (2.52) and (2.55) show.

Complex signals have no such restrictions. When the negative- and positive-frequency compo-
nents of a complex signal are combined, the result does not necessarily cancel the imaginary part.

If the real part of a signal is an even function, and its imaginary part is an odd function,
its spectrum is said to be Hermitian.

The spectrum of every real signal is Hermitian.

The symmetry of a Hermitian spectrum allows us to discard all negative-frequency spectral infor-
mation of a real signal because it is redundant with the positive-frequency information. We can
regenerate it later if necessary because we know by the preceding rules exactly what the negative-
frequency components will be with respect to their positive-frequency counterparts. This is why
spectral plots of real signals are typically displayed only for positive frequencies: we can easily
infer the negative frequencies by reflecting the positive frequencies around O Hz. In contrast, the
spectrum of a complex signal must be explicitly specified over both positive and negative frequen-
cies because the positive-frequency and negative-frequency components of a complex signal are
independent.

2.11 Analytic Signals

A function is said to be analytic if it has no negative frequencies.!' Analytic signals provide a con-
venient spectral representation of real signals because they remove the redundant negative-frequency
information in such a way that it can be restored if needed.
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2.11.1 Hilbert Transform

The method of creating an analytic signal from a real signal is based on the Hilbert transform.!2
We have already seen an example of the process in figure 2.38, where a single positive-frequency
phasor is created from a real cosine plus a real sine multiplied by i. The Hilbert transform can be
used to create signals in quadrature.

The Hilbert transform of a signal x(f) is another signal y(f) whose frequency components are all
phase-shifted by 90° (—7/2 radians):

y(t) = H{x(1)}, Hilbert Transform (2.62)
where H{ } is the Hilbert transform.

Using the Hilbert Transform to Create an Analytic Signal We can interpret the processing
in figure 2.38 using the Hilbert transform as follows. For some real frequency @,

x(t) = Acoswt. Begin with a real input signal.

y(t) = H{x(1)} Apply Hilbert transform (phase shift by 90°) to create y(7).
= Acos (wt - g)
= Asinot.

2(1) = x(t) +iy(1) Multiply y(#) by i and combine with input signal to create

analytic signal z(?).

Acoswt + i(Asinwt)
_ Aeiwt

The result, z(7), is an analytic signal because the resulting phasor Aei®? is a single positive ampli-
tude phasor representing a single positive frequency component that has no complementary
negative-frequency component.

Using the Hilbert Transform for Arbitrary Signals The preceding method converts individ-
ual components of real signals to analytic form, but real-world signals tend to have many compo-
nents in combination. We must generalize the procedure to all sinusoids in order to apply the
Hilbert transform to more complicated signals.

Start by recalling that multiplying a phasor by e¢!#2 = i causes it to rotate 90° counterclock-
wise, and multiplying by e=##/2 = —j causes it to rotate 90° clockwise. We can create the quadra-
ture signal y(¢) for any real signal x(¢) as follows:

= Rotate the positive-frequency components of x(f) counterclockwise 90° by multiplying them by i.

= Rotate the negative-frequency components clockwise 90° by multiplying them by —i .

This procedure is shown graphically for real cosine and sine signals in figure 2.40. Notice that putting
a cosine signal through the Hilbert transform produces a sine signal, and putting a sine signal through
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Figure 2.40
Hilbert transform.
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Figure 2.41
Quadrature phases of a sinusoid.
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the Hilbert transform produces a negative cosine signal. A negative cosine signal passed through the
Hilbert transform will produce a negative sine signal, and one more transformation will return it to
the original cosine signal. We can also observe this by delaying sinusoids successively by 90° in the
time domain (figure 2.41). The Hilbert transform is sometimes called a quadrature filter because it
generates these four cyclic transformations of sinusoids (see section 3.9).

2.11.2 Creating an Analytic Signal

Applying the Hilbert transform is the first step in creating an analytic signal. To complete the operation,
we multiply the Hilbert transform output y(¢) by i to rotate it an additional 90° counterclockwise. When
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Figure 2.42

Analytic signal generator.

we add this signal to the original signal x(¢), the negative frequencies cancel, leaving just the positive
frequencies. This process is pictured in figure 2.42 with a cosine wave input (shown in complex form).
Summing up, the analytic signal x,(¢) of real signal x(¢) is

x,(1) = x(0) +iH{x(1) }

Analytic Signal (2.63)

x(1) + ix(1).

Figure 2.43 shows the process graphically for sines and cosines, although in fact this procedure
will convert any real sinusoid into an analytic signal. Note that the amplitude of the analytic signal
is doubled with respect to its original real signal. (The component at 0 Hz, the DC component,
remains unchanged.) That’s because this process effectively wraps all negative frequencies onto
their corresponding positive frequencies with a phase inversion, thereby doubling their amplitude.
So this is an energy-conserving process. Because it is energy-conserving, the Hilbert-transformed
signal can be regenerated into the original real input signal x(7).

2.11.3 Applications of the Hilbert Transform

The Hilbert transform has many musically relevant applications that are presented in later chapters.
In the meantime, here are two straightforward applications.

Envelope Follower We can use the Hilbert transform to extract the time-varying amplitude
envelope from a musical tone. Suppose the tone has a waveform cos @¢ and an amplitude envelope
A(?) so that the tone’s waveform is defined as x(f) = A(r) cos wt. If the rate at which A(f) changes
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Figure 2.43

Creating analytic signals using the Hilbert transform.
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is sufficiently slow compared to w, then it’s reasonably safe to say that the tone’s Hilbert transform
is approximately y(#) = A(¢)sin @t . Constructing the analytic signal,

z(1) = x(t) +iy(¢)

= A(t)e'™.
and since |eianythmg| =1,
A1) = |z(1)].. Instantaneous Amplitude (2.64)

Equation 2.64 says that the amplitude envelope of a signal is the absolute value of its analytic
signal through time if the rate at which A(#) changes is sufficiently slow compared to w. This is a
relatively painless way of extracting the amplitude envelope of a signal though it works only for
sinusoidal or quasi-sinusoidal signals. In fact, it’s really too good to be true, because though it
seems that we’ve managed to extract instantaneous amplitude for all times ¢ in A(?), in practice
the best we can do is to get local amplitude, not true instantaneous amplitude. For non-sinusoidal
signals, it is common to follow the Hilbert transform with a lowpass filter.

Frequency Detector Using the definitions for x(¢), y(f), and z(f), we can express the instanta-
neous phase of a signal as

w(t) = tan*l%. Instantaneous Phase (2.65)
Equation 2.65 says that the phase angle at time ¢ equals the arctangent of the ratio of the
Hilbert-transformed input signal to the input signal. The instantaneous frequency is the derivative
of instantaneous phase y/(#) with respect to time. We will learn about the derivative in chapter 6.
Specifically, the instantaneous frequency is

o ld

S 2rdt

(). Instantaneous Frequency (2.66)
Once again, practical systems provide local frequency information, not true instantaneous frequency.
Other interesting effects such as frequency shifting are also possible using analytic signals (see
chapter 9). The Hilbert transform is of fundamental importance to many disciplines as diverse as
quantum mechanics and modern music-encoding technologies such as MP3 (see chapter 10).

Summary

The imaginary number i was invented to allow the square of a number to be negative. Complex

numbers were created so that imaginary and real numbers could coexist in the same quantity.
This in turn required understanding how complex numbers can be manipulated arithmetically.

Multiplication, for example, consists of multiplying the vector lengths of two complex numbers
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and adding their angles. Conjugation negates the sign of the imaginary part of a complex number.
Complex numbers can be graphed easily by assigning the x-axis to the real part and the y-axis to
the imaginary part. Graphing numbers on the complex plane shows that multiplying a number by
i rotates it counterclockwise by 90° and dividing a number by i rotates it clockwise 90°. Complex
numbers provide a compact, powerful representation for sinusoids because we can treat complex
numbers as vectors spinning on the complex plane.

Raising a complex number with unity magnitude to a power n is equivalent to multiplying
the angle of the complex number by n (de Moivre’s theorem). By combining the Taylor series
for sine and cosine, and relating it to the series for e, we found the “most beautiful formula,”
eim+1 = 0.

Adding a polar representation to complex numbers results in phasors. Adding time to a phasor
makes it spin around the unit circle at a particular frequency. Positive-frequency phasors spin coun-
terclockwise; negative-frequency phasors spin clockwise. Like the motion of a turntable, the
phasor ¢¢ embodies both the cosine and sine relations simultaneously. We observed a 90° relation
between sine and cosine motion, called quadrature. Sinusoids are simply a generalization of phasor
rotation, allowing us to project across the complex circle from an arbitrary position. Positive and
negative frequencies result from reversing the direction of the phasor.

By investigating conjugate symmetrical phasors, we found that a real cosine is made up of the
vector sum of two half-amplitude phasors of opposite frequency. Similarly, a real sine is made up
of the vector difference of two imaginary half-amplitude phasors of opposite frequency.

The cosine function is called an even function, the sine function is called an odd function. With
the exception of the zero function f{x) = 0, all functions are either even or odd, or a mixture of the
two, and we found ways to break down any function into its even and odd functional components.

By injecting time into the phasor, we found that the frequency of a phasor in Hertz is the ratio
of the angular velocity 6 to the number of radians in a circle. Multiplying phasors together mod-
ulates their frequency, making them spin faster; demodulating them makes them spin slower.

By examining complex spectra, we found that the strengths of the frequency components of real
signals are always balanced between negative and positive frequencies, have even symmetry
around 0 Hz, and are in quadrature phase. If the real part of a signal is an even function, and its
imaginary part is an odd function, its spectrum is said to be Hermitian. The spectrum of every real
signal is Hermitian. The negative- and positive-frequency components of any real signal will, when
summed, always cancel any imaginary magnitude, resulting in a signal that lies entirely along the real
axis. The symmetry of a Hermitian spectrum allows us to discard all negative-frequency spectral
information of a real signal because it is redundant.

A function is said to be analytic if it has no negative frequencies. Analytic signals provide
a convenient spectral representation of real signals because they remove the redundant
negative-frequency information in such a way that it can be restored if needed. The Hilbert transform
of a signal is another signal whose frequency components are all phase-shifted by 90°. To create an
analytic signal, apply the Hilbert transform, then multiply the Hilbert transform output i, and add this
signal to the input signal. The negative frequencies cancel, leaving just the positive frequencies.






3 Spectral Analysis and Synthesis

Mathematics and music, the most sharply contrasted fields of scientific activity, are yet so related as to reveal
the secret connection binding together all the activities of our mind.
—Hermann von Helmholtz

3.1 Introduction to the Fourier Transform

Joseph Fourier! contributed a penetrating insight to our knowledge of waveforms in general and
music in particular.

Any periodic vibration, no matter how complicated it seems, can be built up from sinusoids
whose frequencies are integer multiples of a fundamental frequency, by choosing the proper
amplitudes and phases.

Signals whose frequencies are integer multiples of some fundamental are the harmonics of that fre-
quency. The process of building up a compound signal from simple sinusoids is known as Fourier
synthesis, or spectral synthesis.

3.1.1 Fourier Synthesis

Fourier synthesis allows us to create a waveform from a specification of the strengths of its various
harmonics. That is, in fact, all a spectrum really is: a specification (in the form of a function or a
list) of the strengths of the harmonics of a waveform. If f(¢) represents a time domain waveform,
where ¢ is time, then its corresponding frequency domain spectrum is denoted F(k), where k is
frequency. Fourier synthesis starts with a spectrum F(k) and interprets it as a recipe describing the
strengths of harmonics that must be combined in order to produce the corresponding time domain
signal f(1).

Fourier’s observation only applies to periodic vibrations, a subset of all possible vibrations, so
Fourier synthesis does not apply universally. However, a great number of interesting vibrations are
either periodic or quasi-periodic, including all pitched musical instruments. All sinusoids are peri-
odic, and sinusoids are the building blocks out of which any arbitrary (periodic) vibration can be
constructed by Fourier synthesis.
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3.1.2 Fourier Analysis
Fourier also observed that the process works in reverse.

Any periodic vibration, no matter how complicated it seems, can be observed to be made up of
aset of sinusoids whose frequencies are harmonics of a fundamental frequency, with particular
amplitudes and phases.

This process is called Fourier analysis, or spectrum analysis. Fourier analysis provides a way to
measure the strengths of the individual components of a harmonic signal. It starts with a time domain
signal f(¢) and interprets it as a kind of recipe describing the spectral components and their strengths
that must be combined in order to produce the corresponding frequency domain signal F (k).

Like Fourier synthesis, Fourier analysis is also limited to periodic vibrations. It asserts that
sinusoids are the irreducible elements for the analysis of all periodic waveforms.

3.1.3 Fourier Transform

The Fourier transform is the combination of Fourier analysis and Fourier synthesis. Fourier
analysis and synthesis are called a transform pair because (ideally) the spectrum of a wave created
by Fourier synthesis may be perfectly analyzed by Fourier analysis, and vice versa, with no loss
of information.

A transform is really just a way to represent the same information in an equivalent form. Fourier
analysis receives a time domain signal and converts it into an equivalent spectral representation;
Fourier synthesis takes a spectrum and converts it into an equivalent time domain signal. The time
doman and frequency domain representations are equivalent under Fourier transformation.

In recent times, the term Fourier transform has come to mean just Fourier analysis, while the
term inverse Fourier transform means just Fourier synthesis. This can be a little confusing, so we
must be careful to distinguish two meanings of the term Fourier transform. It can stand for both
Fourier analysis and synthesis or only for Fourier analysis. In this chapter, I mostly mean Fourier
analysis when I write “Fourier transform.”

3.1.4 Additive Synthesis

Fourier synthesis states that we can create any periodic vibration by adding sinusoids together with

frequencies that are integer multiples of a fundamental frequency (harmonics) at particular ampli-

tudes and phases. For this reason, Fourier synthesis is also known as additive synthesis. Figure 3.1

shows an example of summing waveforms. The waveforms are added together point by point.
These rules govern additive synthesis:

* Only sinusoids may be combined.

= Frequencies of all sinusoids must be harmonically related.

Within these limitations, the choices of frequency, amplitude, and phase of the components are
arbitrary.
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Figure 3.1
Adding odd-numbered overtones.

3.1.5 Example of Additive Synthesis
A clarinetlike tone can be constructed from the following rules:

* Only odd-numbered harmonics are present.
= Amplitudes of harmonics decrease as the harmonic number increases.

= The phase offset of each harmonic is 0. (This is not strictly required to obtain a clarinetlike tone,
but it helps simplify the analysis.)

Equation (3.1) shows how to construct a waveform from these rules using sigma notation (see
appendix section A.3).

o

s(t) = Zisin(na)tﬂ—O) such that n is odd. 3.1)

n=1

The fundamental frequency of s(¢) is w, and the frequency of harmonic n is n®. The amplitude
of harmonic n is 1/n, and its phase offset is 0. The waveform of each harmonic n separately is

lsin(na)t+ 0).

n

Here is the expansion of equation (3.1):

s(#) = sin(@t +0) + %sin(3wt+ 0) + %sin(Sa}t+ 0)+---. (3.2)

Equations (3.1) and (3.2) say, “Let there be a function s(¢), where ¢ is time. The function s(?) is
the sum of an infinite number of terms, where each term is a harmonic waveform. The frequencies
of the waveforms are all odd multiples of the fundamental frequency ®, the amplitudes are the
inverse of the harmonic number n, and the phase offsets of the harmonics are all 0.”

Figure 3.1 shows a graphical representation of the addition of the first three terms of
equation (3.2).
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If we kept adding higher-order harmonics according to equation (3.1), we would end up with
asquare wave in the limit at infinity (figure 3.1). Other waveforms such as triangular, impulse, and
sawtooth can similarly be built up from combinations of sinusoids (see section 9.2.6).

3.1.6 Spectrum Analysis

As shown, we can build up compound waveforms by adding sinusoids together. Now let’s take
them apart.

The appeal of Fourier, or spectrum, analysis is that we can take any (periodic) waveform and
break it down into its individual sinusoidal components. With this technique, we can

= Study musical timbre to understand why musical instruments sound the way they do

= Classify sounds by their spectral content and then identify them, for instance, to recognize speech
and convert it to text

= Resynthesize sounds using Fourier synthesis based on Fourier analysis of sound (analysis-based
synthesis)

= Synthesize hybrid sounds that are a mixture of previously analyzed sounds
= Create arbitrary mixtures of frequency components
For example, suppose in equation (3.1) we set the fundamental frequency to @ = 27 - 100, which

corresponds to 100 Hz, and use it to create a waveform s(¢). If we then apply Fourier analysis to
s(t) and graph the resulting function, ideally we’d see a spectrogram like that shown in figure 3.2.

3.1.7 How Spectrum Analysis Works

The key to spectrum analysis is to understand how the Fourier transform detects that there is energy
at a particular frequency in a signal. Fortunately, there is a simple explanation. To explain what
happens when signals are multiplied together, I’ll need to review the rules of multiplication, then
apply these rules to signals.

1/3

Amplitude

1/5
| 1i7 119 1/|11 1/|13 s N7y
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-

0 100 300 500 700 900 1100 1300 1500 1700 1900
Frequency

Figure 3.2
Fourier analysis of equation (3.1).
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Multiplying Signals There are four rules of multiplication:

1. +x - +yis a one-quadrant multiply (a positive number times a positive number is a positive
number).

2. +x-txyand *x - +y are two-quadrant multiplies (a positive number times a signed number is
a positive or negative number, depending upon the value of the signed number).

3. tx -ty is afour-quadrant multiply (a signed number times a signed number is a positive num-
ber if both are either positive or negative; otherwise the product is negative).

4. Anything times 0 is 0.

These rules are summarized in figure 3.3. Which quadrants the product can lie in depends upon
the signs of the multipliers and multiplicands. For a one-quadrant multiply where x >0 and y > 0,
all possible products are bounded by quadrant 1. For a four-quadrant multiply, where x and y can
be any positive or negative value, the product can be in any quadrant. There are four possibilities
for the two-quadrant multiply. If, for example, x > 0 but y can be any positive or negative value,
the product is bounded by quadrants 1 and 4.

To multiply two functions s(f) = a(t) - b(t), we find each point a(¢) and b(z) and multiply
them, using the quadrant rules. Some examples of multiplying two functions are shown in
figure 3.4.

Squaring a Signal If we multiply a signal by itself point by point, we square it. No matter
whether the signal contains negative values, the resulting waveform will have all positive values,
because (except for imaginary numbers) a number times itself is always positive. Figure 3.5 shows
what happens when a sine wave is squared.

If there are two variables a and b, and a = b, then a - b = a?. The same goes for signals. If
two signals are identical, their product is the same as the square of either one of them.

One-Quadrant Multiply Two-Quadrant Multiplies Four-Quadrant Multiply
2 |1 2 |1 2 |1 2 |1
314 3] 4 314 314
+X -4y +X -ty tx-+y tx-ty
2 |1 2 |1
314 3| 4
X -ty tx--y
Figure 3.3

Multiplication by quadrants.
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Signal A X Signal B

Product Signal
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Figure 3.4
Examples of multiplying functions.
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1 )
Figure 3.5

Squaring a signal.
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Call the result of multiplying two arbitrary signals the product signal. Depending upon the exact
values of the signals we are multiplying, sometimes the product signal will be positive, sometimes
negative. However, for the special case where the signals are identical, the product signal is always
positive. Here is the fundamental insight of the Fourier transform.

If the product signal is all positive, then the signals being multiplied must be identical.

If the product signal is mixed positive and negative, then the signals being multiplied are not
identical.

We can adapt this to create a frequency detector, a device that indicates when the frequencies of
two signals are equal. But first we have to figure out how to measure the positiveness of the product
signal to know when signals are in fact identical.

Constructing a Frequency Detector Consider what would happen if we summed together all
the points of a product signal. Figure 3.5 showed that the square of a signal, or equivalently, the
product of two identical signals, is a signal with all positive values. (Zero is considered to be pos-
itive.) If we summed together all the values of this all-positive function, the result would be
strongly positive because all the values being summed are positive.

If we multiplied signals that are not identical, their product would sometimes be positive and
sometimes negative, depending upon the signs of the functions at each point. If we summed
together all the values of such a mixed product signal, the result might be weakly positive or
weakly negative.

Let’s combine these ideas to construct a frequency detector. We begin by defining the following
signals:

= Let x(7) be a test signal, the signal to be analyzed. It is a sine wave with an unknown fixed fre-
quency. Say it is a recording of a steady whistle tone.

= Let y(¢) be a probe signal, which we will use to determine the frequency of x(¢).Itis asine wave,
provided by a variable-frequency oscillator.

= Let c(#) be the product of the two signals.

The sum of the product signal c(¢) will be the most positive when the frequency of y(7) is equal
to the frequency of x(t).

As shown in figure 3.6, we multiply the output of the oscillator and the recorded signal, then sum
the result. The final output goes to a meter that measures the strength of the summation.

While the recorder plays the test signal, we watch the meter change as we turn the frequency
dial of the oscillator. The frequency coming from the oscillator is identical to the frequency of the
test signal when the meter achieves its most positive reading.

If x(¢) had been a compound signal containing several frequency components, the frequency
detector would still work. We’d see positive bumps of the needle any time the oscillator frequency
matched the frequency of any components of the compound signal.
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x(f)  Test signal
c(0)
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Product Sum Strength
t
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Figure 3.6

Frequency analyzer.

Formalizing the Frequency Detector We can formalize the frequency detector as follows.
First, represent the probe signal coming from the oscillator in figure 3.6 as a phasor, the probe phasor

e-i2nft. Probe Phasor (3.3)

Because its exponent is negative, this phasor represents a single negative frequency component.
The phasor spins clockwise for positive time ¢ and positive frequency f (see section 2.6.3). Why
use negative frequencies for the probe phasor? We could use positive frequencies, and some do.
However, there will be a conceptual payoff later for using negative frequencies for the probe pha-
sor, related to the ideas presented in section 2.9.

So, first multiply the input waveform and the probe phasor:

x(t) - e-i27ft

Next we need to understand the signal-summing device shown in figure 3.6. It is called an integrator.
It does just what we want: at each moment, it adds the past value to the current input value and holds
it for future use. Suppose we set the integrator’s initial value to 0 and then feed it with a function equal
to 1 at all points, {1, 1, 1, .. .}. The output of the integrator will be { 1, 2, 3, . . . }. If we zero it and
feed it a function such as {—1, -1, —1, . . . }, the output of the integrator will be { -1, -2, -3, .. .1 If
we zero it and feed it a function that alternates, { 1, —1, 1, —1, . . .}, the output of the integrator will
be {1,0, 1,0, ...]}. The integrator must always be cleared to zero before use.

Given the way the integrator works, if we feed it a positive-only signal, its output will grow more
positive with time because it’s always adding positive values together. But if we feed it a
mixed-sign signal (sometimes positive, sometimes negative) the integrator will tend to hover
around 0. The mathematical symbol for integration is ¢ for some value c. So, adding integration
to what we had before, the frequency detector can be expressed as

Jx(t)e

-i2nft Frequency Detector (3.4)
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Equation (3.4) says, “Integrate the product of the test signal and the probe phasor.” Having come
this far, it is a simple step to add the rest of the terms of the Fourier transform.

3.1.8 Continuous Fourier Transform

Here is the full definition of the continuous Fourier transform:

X(f) = J x(t)e ™t Fourier Transform (3.5)
It is continuous because it evaluates every moment of time and every possible frequency with no
gaps or skips. When people refer to the Fourier transform, this formula is typically what they have
in mind.

We’ve already seen most of the terms of equation (3.5):
= t istime, f is frequency. These are the two control variables in this equation.
= x(t) is the test signal.
= ¢727f1 ig the probe phasor. This signal is sometimes called the kernel function of the Fourier
transform.

The new elements introduced in equation (3.5) are as follows:
= The result of the equation is X(f), a function of frequency fcalled a spectrum. The value of X(f)
shows the amount of energy in the input signal at each frequency f.

= The term dt simply indicates that the integrator is operating on the time variable ¢ rather than
on the frequency variable f, that is to say, we are integrating through time.

= The equation says we are to integrate over the range too. Because the integrator is operating with
respect to time 7, this requires us to integrate over all time in the interval —eo < t < oo (see section 3.1.9).

Simply stated, equation (3.5) says that for some periodic function of time x(#), there is an
equivalent function of frequency X (). That’s all a spectrum is: a function that reveals the strengths
of the various frequency components it contains, ordered by frequency.

Here’s a detailed look at the operation of equation (3.5). The spectrum X ( f) is built up as follows:

1. Assign a periodic signal to the test signal x(t).

2. Fix fat frequency —eo.

3. Let ¢ vary over its entire range, calculating the value of the equation for every value of ¢. The
final resultis a single number indicating the amount of energy in x(#) at frequency f. Store the result
in function X at location f.

4. Choose a new value for f, and let 7 vary over its entire range again. Sum all the results of this
new calculation, and store the result in the new location in X(f).

5. Continue to fix f at all values in the range —oco < f< co.
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When we are done, X( /') will have positive values where there was energy in the input signal x(¢);
otherwise X(f) will be at or near zero. However, we only get this ideal result when we integrate over
all time. Because we can observe only local values of time, the resulting spectrum is less definitive,
though still useful. Thus the Fourier transform acts as a frequency-dependent energy detector.

3.1.9 Limits on Fourier Analysis

The Fourier transform is restricted to periodic signals. Abstract signals such as sinusoids present
no problem, but real-world signals such as music, speech, and other environmental sounds are not
strictly periodic.

What Is Periodic? Informally, we could say that a signal is periodic if it is the same every time
it repeats. For instance, a pendulum is periodic if it visits the same points at the same times on each
swing. In general,

If f(¢) is a periodic function with period 7, then for any reference point t, the value of
f(t + 1) must equal f(t), that is, the function must satisfy

SO = ft+7, (-0 <t<o). (3.6)

This is illustrated in figure 3.7. No matter what point # we choose, the value of f(7) must equal
f(t + 7) for the function to qualify as periodic. Although I’ve chosen to illustrate this with a sine
wave, note that the definition does not restrict the shape of the curve except to say that all copies
of it must be exactly alike.

The smallest possible nonzero value of 7 is taken to be the period. If T exists, the function is
said to be periodic. If ¢ represents time, it is said to be a periodic function of time.

Equation (3.6) must be true for all —eo < # < eo for a function to qualify as periodic. But no physical
signal can ever be periodic by this definition: a signal would have to exist for all time to qualify as peri-
odic. If the Fourier transform requires infinite periodicity, then it is useless in practice. Fortunately, we
can adapt the Fourier transform to deal with finite signals. What happens if we apply Fourier analysis
to some time interval, say from ¢, to #,? Theoretically, the Fourier transform does not exist if we

/o ‘/\t M\
7 N7

: M .

Figure 3.7
Periodic signal.
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retrench in from infinity because it no longer allows conversion between the time and frequency
domains without loss of information. Practically, however, it still works—sort of.

We live in a world with horizons, so perhaps it’s not surprising that the level of detail provided
by the Fourier transform should grow cruder as the time interval being analyzed shrinks. The
practical consequence of this loss of information is that the Fourier transform of a finite signal is
no longer /ossless. Mathematically, a time-limited Fourier transform is not strictly a transform at
all. But practically, a lossy Fourier analysis of a real-world signal is better than no analysis at all.

Other Conditions Some so-called pathological signals do not have Fourier transforms even if
they are periodic. For example, although the Fourier transform exists for signals with an infinite
number of harmonically related sinusoids, it does not exist if any of those sinusoids has an infinite
amplitude. Additionally, signals must have a finite number of discontinuities and a finite number
of maxima and minima. The rules that guarantee the existence of the Fourier transform of a signal
are called the Dirichlet conditions. All real-world acoustical signals meet these conditions auto-
matically, so we needn’t be too concerned.

3.1.10 Inverse Fourier Transform

Whereas the Fourier transform starts with a function of time and produces a function of frequency,
the inverse Fourier transform starts with a function of frequency and produces a function of time,
that is, it synthesizes a signal from a specification given by its spectrum. Equation (3.7) gives the
continuous form of the inverse Fourier transform.

x(t) = J‘X(f)eiznﬂdf. Inverse Fourier Transform (3.7)

The symmetry between equations (3.5) and (3.7) is striking. The only things that have changed
for the inverse Fourier transform are
= x(t) is now the output function and X( f) is the input function.
= The exponent of the probe phasor €27/ is now positive; hence the phasor spins counterclockwise.

= The integration is with respect tof, not ¢. That s, dt is replaced with df, which says that the integrator
is operating on the frequency variable f, not the time variable ¢.

= The integral operation is still constrained to operate over the range teo.
For some periodic function of frequency X(f), this equation creates a corresponding periodic
function of time x(¢). The actions of the inverse Fourier transform are as follows.
1. Assign a periodic function of frequency to X(f).
2. Fix t at time —oco.

3. Let fvary over its entire range, calculating the value of the equation for every value of f. The
final result is a single number: the instantaneous value of the signal x(7) at time ¢. Store the result
in function x at point 7.
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4. Choose a new value for #, and let f vary over its entire range again. Sum all the results of this
new calculation, and store the result in the new location in x(t).

5. Continue to fix ¢ at different values until we have covered all time.

When we are done, x(7) will be a waveform with the spectrum specified by X(f). Thus the
inverse Fourier transform acts as a frequency-dependent signal generator.

3.2 Discrete Fourier Transform

The age of digital audio has led to a need for a version of the Fourier transform that operates on
sampled signals. The discrete Fourier transform (DFT) operates on discrete sequences of time and
frequency. The fast Fourier transform (FFT, see section 3.7) is a more computationally efficient
version of the DFT. The FFT is widely used, and its name may be more familiar than the DFT, but it
performs the same transform as the DFT. Since the DFT is easier to understand, we will start with it first.

3.2.1 Discrete Input and Output of the DFT

The input to the Fourier transform is a continuous signal x.(¢), where ¢ is continuous time. The
input to the DFT is a sampled signal x,(n), where n is an integer that indexes individual samples.
The sampled signal x(n) is created by sampling x () periodically according to the equation

x,(n) = x.(nT),

where T is the period between samples expressed as a real constant. The time interval T = 1/R,
where R is the constant real sampling rate expressed as the number of samples per second. The
product nT indicates a set of particular time instants indexed by n and separated by 7 on the
continuous function x_.(¢) that is to be sampled.

The value of x.(nT) for each n is stored in the nth value of the sampled function x,(n) . (See
the discussion about sampled signals in chapter 1.) Figure 3.8 shows an example of a continuous
function and what its discrete (sampled) equivalent might look like for some sample rate R.

xe() /_\ t
T NS

xy(n) = x(nT) | ‘ ‘ : |
71T

Figure 3.8
Continuous signal and corresponding discrete signal.
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The same reasoning applies to the output of the DFT. Whereas the output of the Fourier transform
is the continuous spectrum X ( f ), where f is continuous frequency, the output of the DFT is the
sampled spectrum X (k), where k is an integer that indexes a particular harmonic in the spectrum.

The sampled spectrum is created by sampling X .( /) at periodic frequencies according to the equation

X,(k) = X (kF),

where k indexes individual frequencies, and F is the frequency interval between harmonics. The
product kF indicates a set of particular frequency values indexed by k and separated in frequency
by F.

In the rest of this chapter, when I say X(f), I mean the continuous form of the spectrum, and
when [ say X(k), I mean the discrete form. Similarly, x(#) refers to a continuous waveform, and
x(n) refers to a sampled waveform.

3.2.2 How Does the DFT Extract a Spectrum?

Here is the equation for the DFT:
N-1 ,

X(k) = ]l\lz x(n)e_lkw"/N ) Discrete Fourier Transform (DFT) (3.8)
n=0

where @ = 2, Nisthe number of samples in the input signal x(n), the variable n indexes the input
signal, and k indexes the frequencies in the output spectrum X (k). Both n and & are integers, so the
input signal x(n) and the output spectrum X (k) are discrete functions of time and frequency,
respectively. The probe phasor for the DFT is e~#k@1/N Because k, n, and N are integers, this probe
phasor does not spin continuously but skips between discrete positions on the unit circle. The exact
positions visited depend upon the values of k, n, and N. It will probe for energy in the input signal
at discrete frequencies.

Example Let’s run the test signal defined by equation (3.9) through the DFT and see what happens.
x(n) = A sin(fwl%). DFT Test Signal (3.9)

A is amplitude, @ = 27, f is frequency, and 0 <n < N — 1 for a signal of length N.

If we do not assign a value for A, and if welet f = land N = §, we generate eight samples for
x(n) numbered 0 through 7 (figure 3.9). For orientation the figure also shows the underlying con-
tinuous sine wave.

Simplifying the DFT To further simplify things, let’s break down the DFT’s complex probe phasor
e~tkon/N into its real and imaginary parts and handle them separately. Remembering Euler’s formula
(section 2.5), e® = cos 6+ i sin 6, the form that corresponds to a negative frequency phasor is

e7® = cos O—isin 6.
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Figure 3.9
DFT test signal: eight samples of a sine wave.

Using this, we can break the DFT down into two simpler versions, the discrete cosine transform
(DCT), containing only the real part of the probe phasor,

N-1
X(k) = Zx(n) . cos(ka)]%). Discrete Cosine Transform (DCT) (3.10)
n=0

and the discrete sine transform (DST), containing the imaginary part,

N-1
X(k) = Zx(n) . —isin(kw]%). Discrete Sine Transform (DST) (3.11)
n=0

The DST multiplies the input by i to make the result imaginary, as required by Euler’s formula.
However, for the moment, let’s further simplify things by ignoring the negative imaginary
component of the DST, and operate instead on a positive real-valued version of the discrete sine
transform,

N-1
X(k) = Zx(n)sin(kwl%). DST, Positive Real (3.12)
n=0

3.2.3 Analyzing a Frequency at Which Energy Is Present

According to equation (3.12), the DST multiplies each sample x(7) by the appropriate value of the
probe phasor, sin [k® (n/N)], sums the result, and stores it in X (k) for each k. It then adds 1 to k
and repeats the calculation, storing the result in X(k + 1), and so forth, N times.

Let’s focus on that point in the analysis where the probe phasor is ready to detect the same
frequency as the test signal. Recall that the test signal is Asin [f® (n/N)] and that the
DST probe phasor from equation (3.12) is sin [kw (n/N)]. Thus they have the same frequency
when k = f. And since we set the test signal to f = 1, let’s set k = 1as well so we can watch it
detect the input test frequency. That means, for N = 8, the DST multiplies the following two
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signals sample by sample:

Sample 0 1 2 3 4 5 6 7

Input 0 % A % 0 - % -A —%
Probe 0 %2 1 % 0 —é -1 —ﬁ
Product 0 % A % 0 % A %

We see that, for k = f,

N-1
zx(n)sin(kwﬂ) — 0+ 444450484444
P N 2 270T3 2

= 4A.

When we sum all the terms with N = 8, we get the answer 4A. Because all the product values
are positive, the more of them we sum, the larger would be the positive result. For instance, if
N = 16, we’d getthe answer 8A. Therefore, when the input signal and the probe phasor have iden-
tical frequency, we can write
N-1

x(n)sin(kwﬂ) = N4 if x(n) = sin(ka)ﬂ).

frr N 2 N

So, if the input signal is a sine wave with frequency f, the amplitude of the DST when it is
analyzing frequency f is A/2 scaled by N. The larger the analysis window (that is, the greater
the value of N ), the larger this result will be. This is unfortunate, because it would be better if
the result did not vary with the length of the input signal so that we could compare the spectra
of signals regardless of their length. We can eliminate N from the result by scaling the whole
equation by 1/N:

1 . ny_A . o n
N%x(n)sm(ka)ﬁ) =3 if x(n) = sm(kwﬁ). (3.13)
The 1/N term normalizes the amplitude of the spectrum so that when the test waveform matches
the probe signal, the output will be A /2 instead of N - A/2.Fromnow on, I’ll add this normalizing
term to the DFT, DST, and DCT.
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3.24 Analyzing a Frequency at Which Energy Is Absent

The previous section explained what happens when a probe phasor matches the frequency of the
input signal. But what happens when a probe phasor is aimed at a place where the test signal has
no energy? For instance, using the techniques developed previously, can we show that there is no
energy in the test signal x(n) at the frequency k = 2f? Clearly there shouldn’t be. Using the DST
(equation (3.11)) now we want to compute

]lvNix(n) sin(Zfa)]%) .

n=0

If we set N = 8, we have the following sample values:

Sample 0 1 2 3 4 5 6 7
Input 0 A A A 0 A -A A
2 2 2 V2
Probe 0 1 0 -1 0 1 0 -1
Product 0 A 0 A A 0 A
2 2 N2 N2

Summing the product terms, we get

0+1+0—£+0—A+0+i =0

2 V2 J2 2
as expected. So the analyzer correctly reports that there is no energy at k = 2f.
3.2.5 Negative Frequencies in the DFT

Let’s go back to the definition of the test signal in equation (3.9). When we probed for frequency
k = f inthe test signal, why did we end up with a value of A/2? Why did we only detect half the
amplitude of the input signal? Where is the other half of the input signal’s amplitude?

I'have a hunch that we should look for it among the negative frequencies; specifically, we should
look at k = —f. We want to compute

1 n
N’Z‘ax(n)sin(—ka)ﬁ).
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If we set N = 8, we have the following sample values:

Sample 0 1 2 3 4 5 6 7
Input 0 A A A 0 A -A A
N2 2 2 2
Probe 0 ~L -1 ~L 0 L 1 L
2 2 V2 2
A A A A
Product 0 -3 -A ) 0 ) -A )

Summing the product terms, we get

0-A_a_B40-4_4_4_- 44
2 ATtV

and normalizing by 1/N, we get
1 . n A

= ZX(n) sm(—ka)——) =-=.
N&= N 2

So, according to the DST, half the signal is a negative frequency with a negative amplitude. What’s
going on?

Let’s put the two halves together. To simplify, set the frequency of the test signalto 8 = fwn/N.
Then it appears that according to the DST, the spectrum of our signal is

x(n) = S1(sin6) - (sin-)]. (3.14)

The function x(n) appears to be odd. Recall from section 2.6.12 that an odd function is of the form
1

Jo(x) = F1f(x) =f=x)].

Could it be that we got this result because we’ve been using the DST? What if we redid the analysis

using the DCT (equation (3.10))? Rather than going through the motions, let me just say that if we

let x(n) = Acos(fwn/N) and set the probe phasor to cos(kwn/N), we would end up extracting:

x(n) = ’%[(cos@)+(cos—0)], (3.15)

which is an even function.
If we use the DST to look at an all-cosine waveform, it won’t find any signal, and if we use the
DCT to look at an all-sine waveform, it won’t find any signal. The DST only detects odd
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0 1 2 3 4 5 6 7

Figure 3.10
New test signal, offset in phase.

components of the spectrum, and the DCT only detects even components. Since the DFT combines
the DST and DCT, it shows the entire spectrum.

3.2.6 DEFT of Arbitrary Phase Signals

In the preceding section, I developed the use of the DST and DCT to detect the even (cosine) and
odd (sine) components of the input signal separately. But real-world signals are seldom purely just
one or the other, so it would be more desirable to have a frequency detector that could detect sinu-
soids of arbitrary phase. What would we have to do in order to analyze such signals?

Consider a new test signal x(n), shown in figure 3.10, which is a mixture of sine and cosine. Its
generating equation is

x(n) = acos(fa)]%) + bsin(fw]%) , (3.16)

where, as before, ® = 27, f is frequency, and 0 < n < N — 1 for signal length N. Let’s set both the
a and b coefficients of this test signal to l/ﬁ, andset f = 1,and N = §, as shown in figure 3.10.

To confirm that this equation generates the test signal sequence in figure 3.10, look at the eight
values of the cosine and sine terms generated by equation (3.16):

Sample 0 1 2 3 4 5 6 7
1 1 1 1 1 1 1
—cos(fwn/N) — - 0 —= -— = 0 -
2 . 2 2 2 J2 2 2
1 . 1 1 1 1 1 1
—sin(fwn/N) 0 - — = 0 = — _2
2 2 J2 2 2 J2 2
x(n) = 1 1 1 0 _1 -1 1 0

Sure enough, there is our signal.
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Figure 3.10 shows that x(n) is a sinusoid with phase ¢ = 45°. In order to properly detect this,
the frequency of the probe phasors of the DST and DCT would have to be setto kw(n/N) +45°.
But this opens a Pandora’s box: must we test each of the infinitely many possible phase angles in
order to detect sinusoids of arbitrary phase? Fortunately not.

Finding a Sinusoid from a Sum of Sine and Cosine Remember from section 2.6.6 that a
sinusoid of arbitrary phase ¢ can be constructed from the sum of a cosine wave of amplitude a
plus a sine wave of amplitude b. It also works the other way around: for a cosine wave of amplitude
a and a sine wave of amplitude b, we can determine the appropriate amplitude A and phase ¢
for a single equivalent sinusoid. In other words, for any frequency 6,

Asin(0+ @) = acos 0+ b sin 0 (3.17)

for suitable choices of A, ¢, a, and b. (See appendix section A.4 for a proof.) We can use this
knowledge to generalize the probe phasor in the DFT to detect signals of arbitrary amplitude and
phase. What are the suitable choices of A, ¢, a, and b?

Start with an unknown test sinusoid x(n) of arbitrary amplitude and phase, such as
equation (3.16). The method of discovering its amplitude A and phase ¢ goes back to the
Pythagorean theorem:

1. Use a cosine probe phasor to get the DCT of the test signal:
1< n
a, = N%x(n)cos(kwﬁ). (3.18)

The values a, are the even components of the spectrum.

2. Use a sine probe phasor to get the DST of the test signal:
1 n
b, = N%x(n)sin(kwﬁ). (3.19)

The values b, are the odd components of the spectrum. Together, the a, and b, terms are called
the spectral coefficients of the test signal.

3. By the Pythagorian theorem (figure 3.11), the amplitude of each component is

A(k) = JaZ+b7. (3.20)

In this way we have detected the amplitudes of sinusoids with arbitrary phase.

4. To get the phases of each component ¢,, we must find the angle of the hypotenuse of
the triangle for each component. This is defined in trigonometry as the arctangent of b/a,
that is, atan(b/a) (see appendix section A.2). Itis also written tan~!(b/a). So, the phase of each
component is
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4

Figure 3.11
Pythagorean theorem.

o(k) = tan-12¢ (3.21)
ay

In this way we have detected the phases of sinusoids with arbitrary phase.

Using this approach, we can create a frequency detector that can detect signals of arbitrary
phase. The result gives both the amplitudes and phases of the detected spectral components.

Amplitude Spectrum, Phase Spectrum, and Power Spectrum The preceding method is an
effective if rather inelegant means of analyzing sinusoids of arbitrary phase. To restate, sub-
stituting equations (3.18) and (3.19) into equation (3.20) yields the amplitudes of the spectral
components:

N-1 2 N-1 2
A(k) = L%],;)x(n)cos (kw]%)} + L%/;)x(n) sin(kw]%)} ) Magnitude Spectrum (3.22)

Equation (3.22) is the amplitude spectrum, or magnitude spectrum. Each A(k) represents the
amplitude of the component at frequency k.

Substituting equations (3.18) and (3.19) into equation (3.21) yields the phases of the spectral
components:

1 n
N’;)x(n)sin(ka)ﬁ)
¢(k) = tan~! ~ . Phase Spectrum (3.23)

1 n
N%x(n)cos(kwﬁ)

¢(k) in equation (3.23) is called the phase spectrum. The numerator is the strength of sinusoidal
energy at frequency k; the denominator is the strength of cosinusoidal energy. The arctangent of
this ratio is an angle ¢(k) that characterizes in one value the contribution of positive and negative
cosinusoidal and sinusoidal energy occurring at frequency k.
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The power spectrum is a variation on the magnitude spectrum. It is defined as

P(k) = az+bi, Power Spectrum (3.24)

which is the same as equation (3.20) but without the square root operation, because power is
proportional to the square of amplitude.

These equations allow us to find the amplitude, phase, and power of an arbitrary signal x(n)
using nothing more complicated than sines, cosines, and summation. But they look complicated.
We can do better.

Complex Version of the Amplitude Spectrum Fortunately, we can simplify equation (3.22)
quite a bit by using Euler’s formula e® = cos 8+ i sin  to recombine the DCT and the DST
into the DFT.

If we set 8 = kwn/N, the frequencies of the probe phasor, then Euler’s formula allows us to
combine the sine and cosine terms in equation (3.22) into a more compact and elegant
representation:

N-1 .
X(k) = ]lvg)x(n)e""“’”“, (3.25)

where X (k) is now a complex function that contains both the amplitude spectrum A (k) and the
phase spectrum ¢ (k). This relatively tidy equation replaces equations (3.22) and (3.23). Thus it is
written: complex is simpler.

3.2.7 Detecting Multiple Frequencies

Equation (3.25) is a powerful general-purpose frequency detector of sinusoids of any phase. But
will it detect multiple components simultaneously? To get an answer, let’s observe how the probe
phasor e~ik@n/N behaves.

The magnitude of a phasor’s exponent determines its rate of spin. Because the probe pha-
sor’s exponent in equation (3.25) is negative, the phasor spins clockwise. The spin rate of the
probe phasor is directly proportional to i, k, @, and n, and inversely proportional to N. But only
k and n change during calculation. The variable k grows by 1 every time we evaluate the
expression on the right side of equation (3.25). The variable n goes through all integers from
0 to N - 1every time k increments. Let’s try some sample values for n and k to get a feel for
how it works.

= When k = 0, the phasor is e~*®"/N = ¢0 = | + (i regardless of the value of n. So when
k = 0,wemultiply every input sample by (1 + 0i7), sum the results, divide by N, and store the result
in X(0).

= When k = 1, the probe phasor is e~?@"/N  During evaluation, n gradually increments by 1 from
0to N— 1. At first, when n = 0, the complex exponential equals e“®0/N = ¢0 = | + (/. Butas
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n increases, the angle of the probe phasor will grow in a clockwise direction. Because 7 is divided
by N, the phasor makes one clockwise rotation. At the end of evaluation, the complex exponential
equals e i@ -1)/N which is one step short of a complete clockwise rotation.

= When k = 2, the phasor is e2@7/N Tt will spin clockwise twice as n goes from 0 to N — 1.
When k = 3, the phasor spins three times, and so on.

Summarizing the roles of k£ and n,

= k selects the frequency on which to operate and determines where in the output function X to
place the result.

= n steps through the samples of the input function x and also determines the phase value of the
phasor for each calculation.

3.2.8 Frequency Range of the DFT

We’ve seen that n is bounded by 0 <n < N — 1, but what are the bounds of k? Since frequency can
be infinitely positive or infinitely negative, there are no bounds to the spectral function X(k), and k
can take any values in the range *eo. But since the DFT operates on sampled functions, a curious thing
happens when & reaches the Nyquist frequency. I illustrate with an example.

Take one period of a sine wave with N = 8, just like the test sample in figure 3.9, and play it
repeatedly through a digital-to-analog converter at a rate of R = 8000 samples per second. When
we reach the end (n = 7), we start over from the first sample (n = 0).

= Since the test signal is a simple sinusoid, the frequency we hear is 8000/8 = 1000Hz.

= If we skip every other sample each time, we hear 2000 Hz.

= If weoutput the same sample each time, the output would be a constant function, and we hear
silence.

= If we stepped backward through the samples, the frequency we’d hear is negative.

So,for N = 8and R = 8000 Hz, the frequencies we could get for skip value k (where k is an
integer) are the positive frequencies

k 0 1 2 3
Frequency 0Hz 1000 Hz 2000 Hz 3000 Hz

and the negative frequencies

k -1 -2 -3
Frequency —1000 Hz —2000 Hz -3000 Hz
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Clearly, if we used skip values outside the range —4 <k <4, all we would get is aliases of
the frequencies inside this range (see section 1.3), given that the period contains only N = 8
samples.

Generalizing, we can say that if we have a discrete signal of length N, and k is its integer index,
then the only valid frequencies we can generate are the integers in the interval —-N/2 <k <N/2.
For N = 8, we can express seven frequencies, three negative, three positive, and zero. If played
back at sampling rate R = 8000 Hz, the frequencies will be in increments of 1000 Hz. If we
double N, the number of representable frequencies goes up to 15, and if R is still 8000 Hz, we halve
the frequency distance between representable frequencies (to 500 Hz apart).

The same considerations apply to spectral analysis as well. The number of nonaliased
frequencies that can be analyzed with the DFT is bounded by the same range, -N/2 <k <N/2,
where k is the integer index.

The number of nonaliased frequencies that can be analyzed with the DFT is proportional to the
number of input samples N.

The greater the number of input samples, the greater the number of analyzable frequencies and the
finer the frequency distance between them.

The frequency distance between analyzable frequencies is inversely proportional to N.

3.3 Discrete Fourier Transform in Action

This section examines the mechanics of DFT operation, to see how the probe phasor’s radian
velocity relates to the analysis frequency. We’ll look at a concrete analysis example and review the
components of the DFT to define each precisely, so as to understand how they all relate.

3.3.1 Probe Phasor

In table 3.1, ¢ represents the angle of the probe phasor. In this example, ¢ = Le i@kn/N N = 8,
and R = 8000 Hz. The value of k determines the rate at which the phasor spins.

3.3.2 How the DFT Orders Frequencies

Notice from table 3.1 the rather curious order in which the radian velocity of the probe phasor
detects frequencies. As the phase increment k goes from 0 to 7, the probe phasor detects
frequencies in the following order:

Negative Frequencies Positive Frequencies
DC (Increasing in Frequency) Nyquist (Decreasing in Frequency)
k 0 1 2 3 4 5 6 7

Hz 0 —1000 —2000 -3000 +4000 3000 2000 1000
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Table 3.1
Example of DFT Operation
k  Angular Velocity Frequency Comments
0 Radian ¢ = Ox 0 Hz, called direct current (DC) in
k electronics. The probe phasor does not

Hertz =R = 0 Hz
N

Radian ¢ = —Z—f

Hertz KR = ~1000 Hz
N

Radian ¢ = —g

Hertz KR = —2000 Hz
N

Radian ¢ = —%n

Hertz KR = ~3000 Hz
N

Radian ¢ = £7

Hertz I%R = +4000 Hz

Radian ¢ = —in - %n

Hertz /%R = 3000 Hz

rotate.

Smallest negative frequency. The probe
phasor rotates once every N samples.

The probe phasor rotates once every
N/2 samples.

Largest representable negative frequency
without aliasing.

The Nyquist limit can be interpreted
either as a positive or a negative frequency
because either a clockwise or a
counterclockwise spin would create the
same sample sequence.

Since, from here on, k> N/2, this and all
greater frequencies alias to their equivalent
positive frequencies. The “wheel” starts
spinning the other way.
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Table 3.1
(continued)

k  Angular Velocity Frequency Comments

Radian ¢ = —gn -

Hertz XR = 2000 Hz
N

Smaller positive frequency.

Radian ¢ = _471” -z

Hertz /%R = 1000 Hz

Smallest positive frequency.

This is because the phase increment hits the Nyquist frequency boundary at k = 4, and frequencies
k>4 alias to positive frequencies. While this frequency order follows rigorously from the logic
of the Nyquist sampling theorem, it’s not a particularly intuitive ordering for looking at spectra.
When spectra are displayed in tables and graphs, it is common for the list of frequencies to be
rotated by N/2 positions and then reversed so that they appear in the following order:

k 5 6 7 0 1 2 3 4
Hz -3000 —2000 —-1000 0 1000 2000 3000 +4000

This ordering puts 0 Hz in the middle. Rotating by N/2 positions and reversing the list again
restores the frequencies to standard DFT frequency order. It is important to be aware of which fre-
quency order is being used to list or plot a spectrum. 1 will always say explicitly which order is
being used.

3.3.3 Analyzing a Sinusoid with the DFT

The best way to understand the DFT is to watch it in action.
Let’s analyze this signal:

x(n) = sin% , N=8n=20,...,.N-1 DFT Example Signal (3.26)

The eight discrete samples numbered O through 7 are shown in figure 3.12. The continuous sine
wave from which these samples are drawn is superimposed over it. The eight samples form two
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1 2 3 4 5 6 7 (8

0

Figure 3.12
Test signal x(n) shown as a bar graph.

complete sampled periods of a sine wave. Note that this is a periodic signal because sample 8
exactly repeats sample 0.
The definition of the probe phasor from equation (3.8) is

e—lka)n/N ,

where n is the integer sample number, £ is the integer frequency number, and N is the number of
samples. We know from Euler’s formula that we can break the probe phasor into a real cosine com-
ponent and an imaginary sine component. This is how we can take the operation of the DFT apart.
Table 3.2 shows the frequency analysis process of the DFT for the test signal x(n), defined in
(3.26). There are eight columns in table 3.2:

1. Phase increment, k, shows the values k = 0, 1,2, ..., 7 of the probe phasor.
2. Test signal shows the test signal x(n) for reference.

3. Cosine probe phasor, cos(kwn/N), increases in frequency because the phase increment k
increases.

4. Cosine product signal shows the product of x(n) and the real cosine probe phasor. When the
cosine probe phasor equals a frequency component in x(7), the sum of this signal will be nonzero.
Then we normalize by multiplying the sum by 1/N. Column 7 shows the (real) normalized sum
of the samples of the cosine product signal.

5. Sine probe phasor, —isin(kwn/N), increases in frequency according to the phase increment .

6. Sine product signal shows the product of x(#) and the sine probe phasor. Since the sine probe
phasor contains i, but x(n) is pure real, the result is pure imaginary. When the sine probe phasor
equals a frequency component in x(7), the sum of this signal will be nonzero. Then we normalize
by multiplying the sum by 1/N. Column 8 shows the (imaginary) normalized sum of the samples
of the sine product signal.

7. Cosine sum shows the (real) normalized sum of the samples of the cosine product signal from
column 4.

8. Sine sum shows the (imaginary) normalized sum of the samples of the sine product signal from
column 6.
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Table 3.2
Frequency Analysis Process of the DFT

M @ ©)) “ ® ©) O ®)

Cosine Cosine Sine Sine Cosine Sine
Test Probe Product Probe Product Sum Sum
k Signal Phasor Signal Phasor Signal (Real) (Imaginary)
0 % [T % 0 R
1 % Dssz iViS- Y@fﬂl SYLV.NENY . o
2 %&V BW%, APAA- W%ZL VT + ~05i
0 + 0i

A e VA e

It’s pretty easy to tell if the product signals sum to zero: if the samples are all zero, or if half
the samples are above the line and half are symmetrically below, the sum will be zero. The sum
of the product signals is nonzero at only two places: for the imaginary components at k = 2 and
k = 6 intable 3.2. In the first case, the all-negative sum of the sine product signal at k = 2 results
in a normalized value of 0 — 0.5/ for that frequency. The all-positive sum of the sine product at
k = 6 results in a normalized value of 0 + 0.5i for that frequency. The sums of all other product
signals are zero. Notice that only imaginary components were found to have nonzero energy in
the test waveform, which agrees with the fact that the test signal was a pure sine waveform and
is odd. If the test signal had been a pure cosine waveform, the DFT would have detected only
real components.
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2
k t t t t t t t t
3 l 1 0 7 6 5 4
k Can be interpreted as
positive or negative.

Negative Positive

Frequencies Frequencies
Figure 3.13

Imaginary spectrum from table 3.2 in rotated frequency order.

Representing the real and imaginary components of the DFT from table 3.2 in standard complex
number notation and in standard DFT frequency order (not rotated order), we have as a final result
the following complex spectrum:

DC Negative Frequencies Nyquist Positive Frequencies
k 0 1 2 3 4 5 6 7
X(k) 0+0i  0+0i 0-%:‘ 0+0i 0+40i 0+0i O+%i 0+0i

Figure 3.13 is a plot of the imaginary spectrum from table 3.2 in rotated frequency order. Compare
this to figure 2.29. (The signs of the components in 3.13 are flipped with respect to those in figure 2.29
as an artifact of the analysis method.)

3.3.4 Terms of the DFT
Here is a summary of what we know about the terms of the DFT:
= N determines the number of samples of the test waveform x(n) that will be evaluated, and the

number of divisions the spectrum will be broken into.

= k determines the location in X (k) where the result of each measurement will be stored, and the
frequency of the probe phasor as an integer from 0 to N — 1.

= n determines the instantaneous phase angle of the complex sinusoid during extraction of a
particular frequency.

* @ = 27 causes the ratio n/N to indicate a fraction of a revolution of the unit circle.

= —i makes the probe phasor spin clockwise.
3.3.5 The DFT Does Not Measure Absolute Frequency

Notice that R, the sampling rate, does not appear in the DFT equation. This means the DFT does
not measure absolute frequency. Instead, it measures frequencies that are harmonics (integer
multiples) of the fundamental analysis frequency, corresponding to the period of N samples,
whatever the sampling rate. Let’s call the fundamental analysis frequency f) . For some real
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sampling rate R, the fundamental analysis frequency is

fv = R Hz. Fundamental Analysis Frequency (3.27)

N

We can use this to determine the analysis frequency f; corresponding to the frequency index k
as follows:

k<%], —k}%
fk = N R
>N (NopR
2 N

for k=0,1,..., N- 1. For example, if R = 8000, N = 8, then frequency order of the DFT is
as we’ve seen before:

k: 0 1 2 3 4 5 6 7
fe: 0 —-1000 —2000 -3000 +4000 3000 2000 1000

This helps give a precise meaning to N and k: k indexes harmonics of the fundamental analysis
frequency fy .

3.3.6 Trade-off between Temporal and Spectral Resolution

N controls the amount of the input signal x(n) that is analyzed and determines the number of
harmonics into which the spectrum X (k) is broken. A principle of information conservation is at
work here.

We can obtain finer frequency resolution only by decreasing the fundamental analysis frequency
fx - Doing so requires that we increase N to analyze a larger chunk of the input signal. But what
if x(n) represents a signal with a time-varying spectrum, such as speech? If we increase N beyond
a certain size, the analysis window may begin to cover multiple phonemes in the speech signal. Too
large a value of N will cause the Fourier transform to blur the spectra of these phonemes together,
making it impossible to distinguish them.

Conversely we can obtain finer time resolution only by increasing the fundamental analysis
frequency fy. Doing so requires that we decrease N to analyze a smaller chunk of the input signal. But
as we decrease N, the frequency resolution of the Fourier transform suffers because we analyze the sig-
nal into fewer frequency bins that therefore cover increasingly large amounts of bandwidth. Below a
certain value of N, the bandwidth of the analysis bins may grow so wide that they start to cover multiple
frequency components in the input signal x(#), blurring them together and making it impossible to
distinguish them.

‘We might want to have fine frequency resolution in order to analyze a complex timbre such as a bell
tone, which contains many inharmonic partials. We might want to have fine temporal resolution in
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order to analyze a transitory event such as a single phoneme of speech. However, if we want finer
frequency resolution and finer temporal resolution, we are stuck, unless. . . .

3.3.7 Effect of Sampling Rate on the DFT

We can also change the sampling rate R at which the input signal x(#n) is recorded. If, for example,
we double R and leave N the same, the fundamental analysis frequency is doubled. Doubling the
fundamental analysis frequency means its period covers less temporal span, and the DFT is more
sensitive to transient signals. The frequency resolution of the DFT remains the same in this case
because N is unchanged. We have increased the temporal sensitivity of the DFT without decreas-
ing its frequency resolution.

Conversely, doubling N and leaving R the same, the fundamental analysis frequency is halved.
Halving the fundamental analysis frequency means its period covers greater temporal span, and
the DFT is less sensitive to transient signals. However, the frequency resolution of the DFT doubles
because N doubles. We have reduced the temporal sensitivity of the DFT and increased its fre-
quency resolution.

Summarizing:

= Frequency resolution increases (and time resolution decreases) if N grows and R remains the same.

= Frequency resolution is unchanged (and time resolution increases) if R grows and N remains the same.

Table 3.3 shows the effect of a few selected sample rates R and window sizes N on the frequency
resolution k.

Table 3.3
Frequency Resolution & for Various R and N
N R=28,192 R=16,384 R=32K R=64K
8 1,024 2,048 4,096 8,192
16 512 1,024 2,048 4,096
32 256 512 1,024 2,048
64 128 256 512 1,024
128 64 128 256 512
256 32 64 128 256
512 16 32 64 128
1,024 8 16 32 64
2,048 4 8 16 32
4,096 2 4 8 16
8,192 1 2 8
16,384 0.5 1 2 4
32K 0.25 0.5 2
64K 0.125 0.25 0.5 1
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3.3.8 Using the DFT with Real and Complex Signals

Because the DFT’s probe phasor is complex, the DFT performs a complex multiplication with
x(n). And x(n) may itself be complex. However, x(n) typically contains only real values when
it is derived from the real world, for instance, via an analog-to-digital converter (see section 1.2).
I’ve side-stepped this issue in the examples presented in this chapter by implicitly assigning 0i to
the imaginary part of each sample of x(n), which is a perfectly permissible way to make a real sig-
nal into a complex one.

However, it’s worth keeping in mind that the DFT input x(n)is expected to be a complex signal,
and the DFT output is also a complex signal. Most software implementations provide two versions
of the DFT. One assumes x(n) is complex. The other assumes x(n) is real and automatically pads
each sample with 07 before passing it along to the version that assumes x(n) is complex.

If the imaginary part of x(n) is zero (that is, if it is a real signal), the following points apply:

= Spectra of negative frequencies and positive frequencies of real signals are mirror images.

= Component amplitudes are 1/2 of their true values (except at 0 Hz and the Nyquist rate). To get
the actual amplitude, the negative and positive frequency components must be added together.

= The phase of sine (odd) components are reversed between the positive and negative frequency
sides of the spectrum (because sin —x = —sin x).

3.3.9 DFT in MUSIMAT

Following is a listing of a practical DFT program written in the MUSIMAT programming language
(see volume 1, appendix section B.1).

This example introduces a new data type, Complex, which represents complex numbers in
MUSIMAT. For example, we can define the complex value for the imaginary number
i = 0.0+ 1.0/ in MUSIMAT as follows:2

Complex I(0.0, 1.0);// I has a zero real part and an imaginary part of 1.0
The Complex representation of e is
Complex E = Complex( 2.718281, 0.0 ); // the imaginary part of E is 0.0

Operations on data of type Complex perform complex arithmetic according to the rules laid out
in chapter 2. For example, if we square I, we get the real number —1,

Complex iSquared = I * I;
and
Print ( iSquared ) ;

prints (-1.0, 0.0).
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This example also introduces a new function, Exp (), which raises the value of its first Complex
argument to the power of its second Complex argument and returns the Complex result.
The code for the DFT in MUSIMAT is as follows:

Complex I Complex( 0.0, 1.0 ); // define imaginary number i

Complex E = Complex( 2.718281, 0.0 ); // define e

ComplexList DFT( ReallList x ) ({
// Function DFT takes a Reallist argument and returns a ComplexList

Integer N = Length( x ); // get the length of x

ComplexList X; // a place to store result

Complex mI2pidN = -I * 2.0 * Pi / N; // combine constants

For ( Integer k = 0; k < N; k+ ) { // for every frequency...
X[k] = 0.0; // prepare to accumulate

For ( Integer n = 0; n < N; n++ ) { // for every phase...
Complex xn = Complex(x[n], 0.0);// cast Real input to Complex
X[k] = X[k] + xn * Exp( E, mI2pidN * n * k );

}

X[k] = X[k] / N; // normalize

}

Return( X );

3.4 Inverse Discrete Fourier Transform

The inverse discrete Fourier transform (IDFT), given in equation (3.28), turns a spectrum created
by the DFT back into a time domain signal.

N-1 .
x(n) = ZX(k)elkam/N. Inverse Discrete Fourier Transform (IDFT) (3.28)
k=0

Notice the symmetry between the DFT and IFDT:

= There is no 1/N scaler.

* x(n)and X(k) trade places.

* kand n are reversed: for each sample n, we iterate through all k.

= The probe phasor has a positive exponent, so it turns counterclockwise. Remembering Euler’s

formula, the probe phasor of the IDFT is

e = cosO+isinf.



Spectral Analysis and Synthesis 135

The DFT can be thought of as a frequency detector, and the IDFT can be thought of as a
frequency synthesizer. From this perspective, the IDFT uses the probe phasor to generate a set
of k complex sinusoids, one for each harmonic in the input spectrum. Then it scales the
amplitude and phases of the harmonics by multiplying each one by the corresponding value of
the complex spectrum X (k) . The adjusted harmonics are then summed to create the output time
domain waveform.

3.4.1 Matrix Form of the IDFT
We can alternatively express the IDFT in equation (3.28) as follows (see appendix section A.3):

i0wn/N ilwon/N ei(N—l)wn/N

x(n) = X(0)e +X(1e +o e+ X(N=1) (3.29)

This format makes clear all the calculations needed to make one sample of the output signal x(n).
To make computing examples of the IDFT easier, we can represent the terms of (3.29) using k and
n, since these two variables uniquely identify each term. We define

Xﬁ — X(k)eikwn/N_

With this definition the entire IDFT process for all x(n) can be represented in matrix form:

X0t ot xNd
X  xi XNt
x5 xi XN-1
X0 XT XNt
X0 xf AN-1
T x(0) x(1) -+ x(N-=1)

Each column computes one output sample x(#n) as given by equation (3.29). Each row calculates
one harmonic of the fundamental analysis frequency fy.

3.4.2 An Example of the IDFT

Let’s run an example through the IDFT using the spectrum computed in section 3.3.3. This
spectrum becomes the IDFT input, X(k). Using standard DFT frequency order, the test spectrum
is written

X(k) = {0, 0, —é, 0,0,0, ; 0}. Test Spectrum (3.30)
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First, create a matrix of values for the probe phasor of the IDFT. Since each row of the matrix
in section 3.4.1 computes one harmonic k of the IDFT, any value of X (k) that is zero will fill its
row k with zeros. Since for this example most values of X(k) are zero, this should be a relatively
simple calculation. The only nonzero rows are k = 2 and k = 6. So we need only compute probe
phasor values for those two rows:

k 0 1 2 3 4 5 6 7
2 1 i -1 —i 1 i -1 —i
6 1 —i -1 i 1 —i -1 i

Next, scale the harmonics by their spectral strengths given in X (k). We multiply rows 2 and 6
by X(2) = —i/2 and X(6) = i/2, respectively, and get this result:

BI—= D=

Sum x(n) 0 1

Finally, by summing the columns of the preceding table (last row), we complete the analysis and
retrieve the time domain signal, which is identical with equation (3.26), the example signal
provided as input to the DFT. This demonstrates that the DFT and IDFT are a transform pair.

3.4.3 Complex Output from the IDFT

In the IDFT’s defining equation (3.28), the output of the IDFT, x(n), is complex because it is
the result of complex operations. In the example above, I skirted around this problem because
the imaginary parts of the output samples were all zero.

Digital-to-analog converters typically only operate on real-valued signals. If the imaginary part of
x(n)is zero, we just discard it and convert only the real part through the converter to hear a sound recon-
structed by the IDFT. The imaginary part of x(n) will be zero if the imaginary part of X (k) was zero.
This will automatically be the case if X(k) was created by the DFT of a real signal. Thus, for most
real-world applications such as recording audio, the imaginary component of the IDFT can be ignored.?

3.4.4 Separating Real and Imaginary Parts of the IDFT

If the spectrum being processed by the IDFT came from a complex signal, the output of the
IDFT may have a significant nonzero imaginary part. But we can still separate the real and
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imaginary output data in a meaningful way. To see this, first remember that complex multipli-
cation is defined as

(a+ib)(c+id) = (ac—bd)+i(bc+ad)

(see section 2.3.1). We can associate the a, b, ¢, and d terms of complex multiplication with the
frequency synthesizer terms of the IDFT as follows. Recall that the function Re{x } returns the real
part of its complex argument x, and Im{x } returns the (real-valued) imaginary part of its complex
argument x.*

We can express the IDFT’s complex input spectrum X(k) as

X(k) = Re{X(k)} +i(Im{X(k)}).
a b

If we let 8 = kwn/N, we can express the complex probe phasor as

¢ = Re{cosO} +i(Im{sinB})
c d

Note that a, b, ¢, and d are all real values. Then, to compute just the real part of the IDFT,

N-1
Re{x(n)} = Zac—bd
k=0
N-1
= ZRe{X(k)}cos 06— Im{X(k)}sin 0.
k=0

To compute just the imaginary part of the IDFT,

Im{x(n)} = Nijbc +ad
k=0

N-1
z Im{X(k)}cos 8+Re{X(k)}sin 6.
k=0

(If the imaginary part of the input spectrum X (k) is zero, computing the imaginary part can be
skipped.)
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3.4.5 IDFT in MUSIMAT
The code for the IDFT in the MUSIMAT programming language is as follows:

Complex I = Complex( 0.0, 1.0 ); // define imaginary number i
Complex E = Complex( 2.718281, 0.0 ); // define e

ComplexList IDFT( ComplexList X ) {
Integer N = Length( X ); // get length of X
ComplexList x; // place to store result

Complex I2pidN = I * 2.0 * Pi / N; // calculate constants once

For ( Integer n = 0; n < N; n++)
x[n] = 0.0; // prepare to accumulate
For ( Integer k = 0; k < N; k++) {
x[n] = x[n] + X[k] * Exp( E, I2pidN * n * k );

}

Return( x );

3.5 Analyzing Real-World Signals

So far, we’ve restricted the DFT and IDFT to periodic waveforms containing only harmonics (inte-
ger multiples) of the fundamental analysis frequency. This is fine as far as it goes, but most actual
musical signals are not so well-behaved. What happens if we try to analyze a signal whose spec-
trum isn’t aligned with the fundamental analysis frequency? Consider the following waveform:

x(n) = sin(f27t}%), Nonintegral Test Signal (3.31)

where N = 16 and frequency f = 3/4.

If the fundamental analysis period of the DFT is also N = 16, then f = 3/4 is clearly not an
integer multiple of the fundamental analysis frequency. The DFT would receive input as shown in
figure 3.14. What the DFT will do with this signal—what it does with every input signal—is inter-
pret it as one period of an infinitely repeating periodic function at the fundamental analysis fre-
quency. That is, the DFT operates on the example input function x(n) as though it were like the
one in figure 3.15. This is the periodic extension of the Fourier transform.

Notice the discontinuity in the waveform in figure 3.15. Periodic discontinuities in a waveform
produce a spectrum with many high-frequency harmonics. The DFT “hears” a click in x(n) when
the waveform has such a discontinuity. This is revealed by looking at the magnitude spectrum that
the DFT produces from this signal (figure 3.16). We see that there is some energy at all analyzed
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How the DFT interprets a nonperiodic input signal.
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Figure 3.16
Magnitude spectrum of a nonintegral test signal.

frequencies. This is a problem, because we know from equation (3.31) that there is only one fre-
quency component in the test signal at f = 3/4 Hz.
There are actually two problems here:

= Picket Fence Effect. We're trying to represent a frequency that is not an integer multiple of the
fundamental analysis frequency fy, so the results don’t fit properly as harmonics of fy. We are
unable to view the underlying continuous spectrum because the DFT limits us to integer multiples
of the fundamental analysis frequency fy . This is analogous to trying to observe a row of evenly
spaced trees through a picket fence.

= Leakage. Discontinuities at the edge of the analysis window spray noise throughout the rest of
the spectrum. This phenomenon is called leakage because energy that should be in one spectral har-
monic spreads away (leaks) into adjacent harmonics.
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We must solve these problems because they arise whenever we try to analyze a signal with fre-
quencies that are not locked to the rate of the analyzer.

3.5.1 Solving the Picket Fence Problem

Because of the picket fence phenomenon, we don’t know whether two adjacent harmonics
represent distinct partials or a single partial whose frequency is not a harmonic of the fundamental
analysis frequency. There are a couple of things we can do to disambiguate these two cases.

If possible, resample the data, increasing the sampling rate R and/or the fundamental analysis
frequency N until there are enough data points in the spectrum to disambiguate the two interpretations.

Alternatively, pad the signal to be analyzed with M additional zero-valued samples. This does
not change its spectrum but increases its length. If we then increase the size of the analysis window
to include the zero-valued padding samples in the DFT, we decrease the fundamental analysis
frequency f), increasing the frequency resolution of the spectrum.’ For example, if to a signal of
length N samples we add M = N additional zero-valued samples (doubling the signal’s length)
and take the DFT of M + N samples, we increase the spectral frequency resolution by a factor of
(M + N)/N. This is like adjusting the distance between the pickets in the fence until they line up
with the evenly spaced trees.

3.5.2 Solving the Leakage Problem

The leakage problem is more serious. The best we can do is devise a work-around. We create a
function exactly as long as the analysis window that gradually fades in and fades out at the edges.
If we multiply the signal to be analyzed by this function, we decrease the effect of any
discontinuities at the edges of the analysis window because the discontinuities are heavily
attenuated at the analysis window edges. This helps reduce the impact of the discontinuities at the
analysis window edges on the resulting spectrum.

But there’s no free lunch because any alteration of the input signal will have some effect on
the resulting spectrum. This is because the function that fades in and fades out is itself a signal,
and it too has a spectrum. Later I describe several of these fade-in/fade-out functions and show
their spectra.

To summarize, when analyzing waveforms that are not strictly harmonics of the fundamental
analysis frequency:

= The spectrum of partials that are inharmonic to the fundamental analysis frequency can still be
interpreted correctly because the DFT splits fractional frequencies proportionately into adjacent
harmonics. We can interpolate between them to recover the fractional frequency components.

= The signal can be faded in and out at the edges of the analysis window to reduce the broadband
spectral influence of discontinuities that would otherwise occur. The general term for this pro-
cess is called windowing. The resulting spectrum will be a better approximation of the actual
underlying signal, but we must account for the effects that windowing has on the resulting
spectrum.
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3.6 Windowing

To focus the DFT on part of the input signal, we can extract part of the signal or we can window it.
So far, we’ve set the DFT summation limits to extract the desired portion of the signal (see equation
(3.8)), covering the range of n = O0to n = N — 1. Alternatively, we can multiply the function by 0
everywhere except for the N samples we want to select, which we multiply by 1. This is windowing
with a rectangular function, shown in figure 3.17 as the function w(n, N), defined as

1 0<n<N

w(n,N) = o Rectangular Window Function (3.32)
0 otherwise,

where N is the number of samples in the window and n indexes the window function.
3.6.1 Windowed DFT
We can rewrite the DFT to express windowing explicitly as follows:

X(k) = Y x(n)w(n, N)e-i2mn/N, Windowed DFT (3.33)

n=—oco

where w(n, N) is the windowing function given in equation (3.32). Note that the sample index n
now traverses all of time, but because of the windowing function, the result is the same as
equation (3.8).

3.6.2 Tapering Functions

Windowing can introduce discontinuities at the edges of the analysis window if the underlying
waveform is not a harmonic of the fundamental analysis frequency. The signal x(n) selected by the
window in figure 3.17 has such a discontinuity at its right edge. As shown in the figure, the underlying

w0 NN\
T

W(n,-l\f)_ [«<— 16 Samples ——l_ .
) N N\__/]
N V.

N=16

Figure 3.17
Windowing with a rectangular function.
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Figure 3.18
Spectrum of a rectangular function.

function x(n) is 16 samples long, and by inspection we see that it contains 2.25 periods of a sine
wave; hence the underlying function can be written as a periodic function:

sinm,

where N = 16 and f = 2.25.

The magnitude spectrum of this signal (figure 3.18) shows that the DFT has added many spu-
rious high-frequency harmonics, introduced by the discontinuity in the analyzed signal.

Analysis of nonharmonic signals via either sample extraction or windowing with a rectangular
function can result in spurious energy estimates such as this unless we take steps to prevent it. We
can diminish the impact of discontinuities at the edge of the analysis window by replacing the rect-
angular windowing function with a function that tapers to zero at its edges. Such functions are
called apodization functions, or tapering functions. Tapering cannot be done with plain sample
extraction; therefore windowing is necessary.

Triangular Window The simplest tapering function is the triangular window. Its shape is
shown in figure 3.19 as w(n, N). It just consists of a complementary pair of slopes that make a tent
function. Its equation is

n=(N/2)" g<n<N,
N/2 Triangular Window (3.34)

0 otherwise,

1-

w(n,N) =

where N is the length of the window and r is the current sample. The operator | | takes the absolute
value of the expression it contains. The triangular window function w behaves differently depend-
ing upon whether the value of n is inside or outside the range of 0 to N. If it is outside, then w
simply returns 0; otherwise it returns the appropriate point of the triangular function.

Figure 3.19 shows the result of windowing a sinusoid with a triangular window function. The
resulting spectrum is shown in figure 3.20. The magnitude spectrum in figure 3.20 is much less
noisy. Only frequencies near those that actually contain energy show significant strength. Thus, we
have effectively enabled the DFT to be used with realistic signals because now we can remove
much of the spurious noise that is introduced by discontinuities at the analysis window edges.
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Windowing with a triangular function.
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Figure 3.20
Spectrum of triangular windowing.

Whereas the highest peak in the rectangular-windowed DFT is about 0.43, the highest peak for the
triangular-windowed DFT is only about 0.24. It is lower because applying the triangular function
attenuates the signal wherever the triangular window function is less than 1.0 (everywhere but in
the middle).

Other Window Functions The triangular window is but one of many windowing functions. There
seems to be a rather bewildering variety of them—the Bartlett window, Welch window, Parzen
(triangular) window, Hann or hanning window, Hamming window, Blackman window, Lanczos
window, Kaiser window, Gaussian window, and so on.

While each of these windows has a particular advantage in certain situations, any windowing
function that reduces the discontinuities at the edges of the analysis window is a big improvement
over the rectangular function. Here’s a look at some of the standard window functions.

Hann (Hanning) Window The equation for the Hann window (named after Julius von Hann
and often referred to as the hanning window)® is

H(x,n,N) =

n
(l—a)cos(Zn’N+7t)+a, 0<n<N, (3.35)

0 otherwise,

where a = 1/2. Itis shown in figure 3.21a.
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Hann window and resulting spectrum.
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Figure 3.22
Hamming window and resulting spectrum.

Because it is just an inverted cosine wave scaled by 0.5 and offset by 0.5, this window is some-
times called the raised inverted cosine window. Its advantage is that, unlike the triangular window,
it has no sharp edges (no sudden change in derivative) at all, so it is more effective at eliminating
spurious artifacts from the analysis. Figure 3.21b shows the magnitude spectrum of the test signal,
equation (3.31), windowed with the Hann window. Note that the peak amplitude is around 0.24,
so there is some energy loss due to the overall attenuation of the signal, similar to what happened
with the triangular window.

Hamming Window  The equation for the Hamming window (named after Richard W. Hamming)
is the same as equation (3.35) except that @ = 0.54 (see figure 3.22). The elevated value for a
causes the Hamming window to let in more energy overall and, in particular, let in a little energy
at the edges of the analysis window. The amplitude peak is a little higher than with the Hann win-
dow, but it also lets some of the broadband energy from the window edge back in.

Figure 3.23 shows the triangular, Hann, and Hamming windows superimposed. Note that both
the Hann and Hamming windows emphasize the middle part of the input signal more than the
triangular window does.

Bear in mind that windowing a signal always modifies its spectrum. If we perform an inverse
transform on this spectrum, we will get back the windowed version of the signal. So, for example,
performing the IDFT on the spectrum in figure 3.20 would reproduce the waveform x(n), shown
at the bottom of figure 3.19, not the original signal sin On shown at the top of that figure.
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Hamming (dark gray)
Hann (black)

Figure 3.23
Triangular, Hann, and Hamming windows.

If we must window a signal x(n) but need to get the original back after DFT/IDFT analysis/synthesis,
we can divide the reproduced x(n) by the windowing function to uncompensate x(n). Any part of
the signal windowed to zero is irretrievably lost (and very attenuated values might not be properly
restored because of limited computer arithmetic precision). This means there is a problem with the
triangular and Hann windows because they go to zero at their extremes, so we’d end up dividing
by zero at those points, which is not meaningful. However, we could do this with the Hamming
window because it does not reach zero at its extremities (which may have been one of the moti-
vations for its development).

3.7 Fast Fourier Transform

With the addition of the technique of windowing, the DFT is able to handle real-world
signals—almost. The next hurdle to its practical use is the sheer amount of computation required
to analyze realistic-sized signals. If we want to perform a DFT of length N, then at each stage we
must perform a complex multiplication of w(n) against all N phasor frequencies. Since we must
repeat this operation for all N input samples, the total number of stages is on the order of N2. For
signals beyond a certain size, we will quickly run out of computing power, patience, or both. The
fast Fourier transform (FFT) reduces the number of computations from N2 to Nlog, N. For small
values, the FFT does not have a big advantage, but as N grows, the FFT outperforms the DFT by
enough to make a substantial difference, and it is widely used.

To take a practical example, say we wanted to perform the Fourier transform on just 1 second
of a stereo audio signal, recorded at the conventional rate of R = 44,100 samples per second per
channel. Since it’s stereo, there are two channels, and we must calculate two DFTs, one for each
of the two channels. Each channel has N = 44,100, for a combined total of 2N = 88,200 samples.
Further, say we perform the calculations on a computer that can perform 1,000,000 stages of the
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Fourier transform per second (a fast computer by today’s standards). For the FFT it would take
about one and a half seconds to do the calculation, whereas for the DFT it would take a little over
two hours.

N Order Stages Time
FFT 88,200 Nlog,N = 1.45x10° = 145s
DFT 88,200 N2 = 7.78x10° = 7779.24s, or 2.16 hours

The FFT requires that the input signal length be a power of 2. But this requirement can be worked
around easily: for length N choose the nearest power of 2 greater than N, and set the extra samples
to zero. (All this does is slightly compress the resulting spectrum, exactly the same as padding the
DFT with zeros.)

The FFT achieves its efficiency by reducing the number of stages that must be performed. The
first step in reducing the computation, according to the Danielson-Lanczos (1942) lemma, is to
rewrite the DFT into the sum of two smaller DFTs, each of length N/2. One DFT operates on just
the N/2 even-numbered samples, and the other operates on just the N/2 odd-numbered samples.
Here is a derivation. Let Wy, = e=®/N so that the DFT can be written as

N-1
X(k) = Zx(n)W}V', 0<k<N-1,
n=0

(ignoring the normalization of the sum by 1/N for simplicity).

The order in which we sum the terms doesn’t matter (that is, addition is commutative). We can
add two summations, one indexing only the even terms, the other only the odd terms. Stepping
through just the even terms is equivalent to indexing by 27, whereas for the odd terms it’s equiv-
alent to indexing by 27 + 1. Each DFT must perform only (N/2)— 1 summations:

(N/2)-1 (N/2)-1
X(k) = 2 x(2n)W1’{,(2”)+ 2 x(2n— I)W/\;(Z””) s (3.36)
n=0 n=0

where N is even.
Let’s take a closer look at the probe phasor in the odd DFT:

Wh@n+1) = pmiok@n+1)/N,
Remembering that x4+ = x49x’, we can expand this into
o-iOk(2n+1)/N = iok(2n)/N . p-iok/N

Notice that the term e~{?%/N does not depend upon 7 and that it appears in every term of the odd
DFT. That means we can factor it out of the entire odd DFT summation. Since e=/@*/N = W& we
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can rewrite equation (3.36) to read

(N/2)-1 (N/2)-1
z x(2n) W2 + Wk z x(2n - 1)Wk2m
n=0 n=0

X(k)

Xg(k) + W - X (k),

where Xy (k) and X, (k) are the even and odd DFTs. Notice that the probe phasors for the even
and odd DFTs are now the same. The final summation of the odd DFT is additionally multiplied
by W§ . This demonstrates that the DFT can be rewritten as a sum of two half-length DFTs.

This lemma can be recursively applied (so long as N is even), so we can progressively divide
these two DFTs into 4, 8, ... DFTs of length N/4, N/8, ... until we have subdivided all the
way down to DFTs of length 1. What is a DFT of length 1? If we set N =1 in equation (3.8), the
DFT equation reduces to X(0) = x(0). So the DFT of a signal of length 1 is just the value of
the sample.

The recursive application of the Danielson-Lanczos lemma leads directly to the so-called
radix 2 Cooley-Tukey (1965) fast Fourier transform. (A radix 4 FFT would partition the DFT into
four subtransforms of length N/4.)

In outline, the FFT algorithm is as follows. Before the main FFT algorithm begins, the data are
rearranged (by a technique called bit reversal) into a form that can be more efficiently accessed by
the algorithm, and the values of the probe phasor are precomputed. The FFT algorithm itself
consists of log, N stages in which successively longer subtransforms are computed from the
previous stages. This process is repeated N times for a total of Nlog, N times.

Since the FFT implements exactly the same transform as the DFT, only more efficiently, I don’t
pursue the implementation of the FFT further, but this information should hopefully allow readers
to make sense of other treatments of the subject (see Bracewell 1999; Smith 2003).

3.8 Properties of the Discrete Fourier Transform

Operations such as addition, multiplication, and shifting in the time domain have corresponding
operations in the frequency domain, and vice versa. This section sets out some of the Fourier
transform’s most important properties.

3.8.1 Linearity of the Fourier Transform

The Fourier transform establishes a mathematical relation between periodic signals and their asso-
ciated spectra. How the Fourier transform relates to the properties of superposition and propor-
tionality determines whether it is a linear operation or not.

Superposition As shown in figure 3.24, when two signals are added together, their spectra are
added also. The figure shows the addition of the signals f{f) and g(¢) and of their spectra F(k) and
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Sum of f(f)and g(f)  Sum of F(k) and G(k)
Figure 3.24

Addition of two spectra.

G(k). It is clear that figure 3.24f is the same as figures 3.24b and 3.24d superposed, that is, added
together point by point. We can express this as follows. Let #{ } represent the Fourier transform.
With £(#) and g(¢) as defined, figure 3.24 demonstrates that

FHf)+g(0)} = F{f()}+ F{g()}
= F(k) + G(k),
where F(k) is the Fourier transform of f(¢), and G(k) is the Fourier transform of g(7). (3.37)

The Fourier transform of the sum of two signals is the same as the sum of the transforms of each
signal separately.

Proportionality The same result can be achieved by either of the following methods:

= Scale a signal by a constant, then apply the Fourier transform.

= Transform the signal first, then scale the spectrum by the constant.

Faf()} = aF{f()}, (3.38)

where a is a constant. Intuitively, this makes sense. If we halve the strength of a signal, we expect
it will scale all the spectral components by half as well. We wouldn’t expect the transform to
introduce or take away any energy by itself.

The strength of the transformed output is proportional to the strength of the input to the transform.

Linearity The properties of proportionality and superposition demonstrate that the DFT is a
linear transformation. Linear systems are relatively easy to characterize. Nonlinear systems are
harder to characterize.
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What do I mean by linear? Let there be a function fthat represents a transform, such that for each
input to the function x, the output y is given by

y = f(x) = ax+b. (3.39)

The terms might be simple numbers or signals or anything else, depending upon the application
of the function.

The function is said to be linear if the conditions of proportionality and superposition hold.
Consider this proportionality:

flex) = ¢ flx). Proportionality (3.40)
For example, using equation (3.39),let a = 1, b = 0, x = 3,and ¢ = 0.5; then
1 _ 1
réd-3)=1ro).
Now consider this superposition:
fxy +x;5) = flxy) +f(xy), Superposition (3.41)

where x; and x, are any inputs. For example,leta = 1, b = 0, x; = 2,and x, = 3; then

J(2+3) = f(2) +f(3).

We can combine proportionality and superposition and write

Jlepx +cx5) = ¢ flxy) + ¢ f(x,). (3.42)

Using induction, we can extend equation (3.42) to as many terms as we like:

f(clx1 +eyxy e te,x,) = o f(xg) ey flxy) +- o+, flx,).

Equation (3.40) says that if we multiply the input x by some constant ¢, then the output is
multiplied by the same constant. Equation (3.41) is the more important of these two principles. It
says that if fis linear, all we really need to know about f is how it responds individually to x; and
x, and then we can automatically predict what it will do with the sum of x, and x, without even
having to measure it. This is important. Consider the following example.

Value of Linearity Suppose we were going to use the Fourier transform in a piece of medical
apparatus with the expectation that someone’s life might depend upon the result. We’d need to
understand how the Fourier transform responds to all meaningful inputs so as to understand its
performance in all meaningful circumstances. But must we examine every conceivable com-
bination of inputs to accomplish this? No. Since the Fourier transform is a linear system, all
we need to know is how the Fourier transform responds to each of its basic building blocks:
the sinusoids.
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If the outputs of the transform for each sinusoid are known, the output of the transform of any
other signal can be immediately calculated, including without limit any possible combination
of sinusoids.

We then have no need to make further measurements. The responses of the transform to any other
input can be immediately calculated based on the measurements we have already made.

Contrast this with a nonlinear system. We might find that the response to a sum of two signals
is much larger or smaller than would be expected based on the signals being taken separately. The
response to the sum might be less even when strong responses are obtained separately.

A realistic example of such a nonlinear transform is the audio limiter, often found in the equip-
ment racks of radio stations. Radio stations must be careful not to let the signals they send to the
transmitter exceed a certain amplitude so that they will not interfere with other transmissions. Lim-
iters allow signals that are below a threshold to pass linearly, but they progressively attenuate sig-
nals if their intensity exceeds the allowable threshold. Suppose two singers whose signals are
f(x;) and f(x,) are on the air at a radio station. The microphone mixer combines the signals so
that f(x; +x,) = f(x;) +f(x,)and passes f(x, +x,) to the limiter. The limiter has a threshold of
7. If f(x, + x,) > 7, the limiter reduces the gain before passing it to the transmitter. When the com-
bined signal exceeds 7,

SOy +xp) # f(x) +1(x,),

and the system is not linear.

For nonlinear systems, knowing the outputs of the system for all sinusoids is not enough. To fully
understand a nonlinear transform, we must know not only how it responds to all sinusoids but also
how it responds to all possible combinations of sinusoids—a much more daunting prospect. Thus,
it is simpler to understand and predict linear systems than nonlinear ones.

Spectral Aspects of Linearity Another important aspect of linearity for musical applications is
that linear systems do not introduce any modifications to the spectrum of their inputs, whereas
nonlinear systems typically do: they distort the timbre of signals that pass through them in some way.
Of course, distortion may be desirable or undesirable, depending upon the context. For instance, elec-
tric guitarists often pay good money for effects boxes that artistically distort their sound.

What do guitar distortion boxes do? Consider the equation

y(n) = cx(n).

We can interpret this as a function that transforms a value on the x-axis to a proportional value on
the y-axis. If ¢ = 1/1, this operation is called the identity function. The 45° diagonal line in
figure 3.25a shows a portion of the identity function, which stretches to infinity. If we think of the
diagonal line inside the box as a mirror, then the value of x(n) is reflected as y(n).

The inverse identity function is shown in figure 3.25b. It exactly restores y-axis to x-axis values,
giving the original function without loss of information. Figures 3.26a and 3.26b show the identity
transform and its inverse for ¢ = 1/2.
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Identity transform and its inverse.
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Scaled linear transform and its inverse.

This is nothing more than another demonstration of the law of proportionality given in equa-
tion (3.40): for a linear operation, it doesn’t matter if the scaling takes place on the input side
or the output side.

We can use the identity transform to demonstrate superposition as well:

g(xl(n) +x2(n)) = gx1(n) + gxz(n)s

as shown in figure 3.27: for a linear operation, it doesn’t matter whether we add and then trans-
form (figure 3.27a), or transform and then add (figure 3.27b).

All the preceding transforms are linear because they are straight lines. Now consider the
nonlinear transform:

y(x) = 24" -1, (3.43)
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a) b)

x1(n) +x,5(n)

These are the same.

Figure 3.27
Two superposed linear transforms combined.
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Figure 3.28
Nonlinear transform.

which is shown in figure 3.28. The transforming function is a parabola, and it has the interesting prop-
erty that it doubles the frequency of its input. One period per unit of distance A equals two periods
per unit of distance on the output. Observe that as the input waveform goes through one quarter of
a period, say from —1 to 0, it traverses the function from 1 to —1. During the next quarter period the
input goes from 0 to 1 while the output goes from —1 to 1, thereby completing the first period of output
while the input has only completed half a period. Thus, the output frequency is exactly twice the input
frequency. To see this mathematically, we can substitute cos 8 for x in equation (3.43):
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2x2—1,

y(x)
y(cos 6) = 2(cos 9)2— 1

_ 2(cos(9+ 0) + cos(0— 0))_ 1
2

cos 260+ cos0—-1

cos 26.

Curiously, the output is also a single sinusoid, but at twice the frequency of whatever signal it
is driven by. This is an example of an unusual kind of distortion. For more about these interesting
functions, see section 9.4.11.

Windowing is another example of a nonlinear transform. Windowing affects the spectrum of
a signal—recall that this very property is the reason we use them (see section 3.6). We can treat
a window function itself as a signal and take its DFT to reveal its spectrum. Figure 3.29 shows the
magnitude spectra of a rectangular window and a triangular window. The rectangular window
magnitude spectrum has a great deal more energy in its high frequencies than does the magnitude
spectrum of the triangular window. This must certainly relate to why signals windowed with
the rectangular function can have so much more high-frequency energy than triangular-windowed
signals.

Recall that windowing involves multiplying a window function and an input signal, and it seems
reasonable that its spectrum would somehow be superimposed on the input signal—but precisely
how? I take this up in chapter 4. Meanwhile, note that almost any signal-processing operation that
involves multiplying one signal by another or, in general, multiplying a signal by a curve of some
sort is a nonlinear operation.

Time Invariance A system that behaves the same at all times is time-invariant. For example, if
we delay the input to a system by N samples and the output is also delayed by N samples, and there
are no side effects due to the delay (that is, the output looks the same, just delayed), then the system
is time-invariant.

Magnitude Spectrum of Rectangular Window . X
° > Rectangular window spectrum contains
E much more high-frequency energy.
‘g
&
S| Magnitude Spectrum of Triangular Window / / l \ \

0 Hz

Figure 3.29

Magnitude spectra of rectangular and triangular window functions.
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For instance, if we have an input function x(n), and we apply a delaying function J;,, where
D is the amount of delay in samples, then the output function y(n) will be delayed as well:

y(n—N) = 6, - x(n). (3.44)

Time-invariant systems are easier to analyze and understand than time-varying ones. If we know
a system is time-invariant, we can be confident that if we know how it behaved yesterday, we know
how it will behave today.

The Fourier transform is time-invariant by virtue of the fact that it analyzes its input signal for
all time, as shown in equation (3.5). Think of the Discrete Fourier transform as a train traveling
from right to left on an infinitely long track stretching from —eo to o, such that each car on the train
covers one spectral sample. To delay the Fourier transform by N samples, all we do is shift the train
N samples to the right.

Let’s represent the Fourier transform at sample time n as F,, and let X, (k) be the output of the
Fourier transform at sample time n. Represent the entire input signal as x(-), and say that it rep-
resents all input samples from —eo to c<.” So now the Fourier transform reads X, (k) = ,{x(-)}.
Think of the subscript n as selecting the Fourier transform beginning at time n. Now we can show
the condition which defines time-invariance:

X, k) = F_p{x()} = F{x(-=N)}, (3.45)

where x(- — N) means delaying the entire signal x(-) by N samples. This just says that it’s
equivalent whether we shift the Fourier transform over a stationary signal, or shift the signal over
a stationary Fourier transform.

3.8.2 Limitations of the Fourier Transform

The DFT carves up the spectrum of a sound into bins of constant bandwidth. But the sensitivity of
the ear to frequency is logarithmic, that is, the ear’s sensitivity to pitch diminishes with increasing
pitch. From the ear’s perspective, the DFT overspecifies high frequencies and underspecifies low
frequencies. To sufficiently match the ear’s low-frequency spectral resolution therefore requires
a value of N that provides unneeded high-frequency resolution.

We could make the encoding of musical signals more relevant to the ear if we could progres-
sively increase the bandwidth of the higher frequency bins to more closely match the behavior of
the ear. This would amount to having a constant-Q Fourier transform, where the bandwidth of the
analysis bins increases in constant proportion as the center frequency of each band (see volume 1,
sections 6.9.6 and 8.9.6). I say more about this in chapter 10.

3.9 A Practical Hilbert Transform

An analytic signal is a complex signal that has no negative frequencies. For example, ¢i® is
analytic if @> 0 (see section 2.11).
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Real signals (signals without an imaginary component) are never analytic because their energy
is symmetrical around 0 Hz. But analytic signals can be constructed from real signals by using the
Hilbert transform (see section 2.11.1). The Hilbert transform of a signal is another signal whose
frequency components are all phase shifted by 90° (-7/2 radians). If x(#) is a real signal, then
its analytic signal is

x,(1) = x() +iH{x(?) },

where #{ } is the Hilbert transform.

In theory, we can create #{x(t)} simply by delaying all components in x(#) by a quarter-cycle
time shift. The problem is, the amount of time shift will be different for every component in
x(t). Thus implementing a practical Hilbert transform requires introducing the appropriate
quarter-cycle phase delay for every frequency in the signal. This in turn requires that we analyze
the signal into its constituent components so we can apply the appropriate phase offset to
each one.

One way to create an analytic signal is to use the fast Fourier transform. Since an analytic signal
is a real signal with zero negative frequencies, all we have to do is to take the FFT of the signal
and zero out its negative frequencies. The inverse transform of this result is the (complex) analytic
signal. There are limitations and artifacts associated with this procedure, but to a first approxima-
tion, we get what we expect. The steps are as follows:

1. Calculate the FFT of the real input signal x(¢) of length N, and store the result in X(k). The
spectrum X (k) is also N elements long, and elements 0 and N/2 correspond to 0 Hz and the
Nyquist frequency, respectively. The elements below N/2 are the negative frequencies, and those
above are positive frequencies (see section 3.3.2).

2. Zero out the negative frequencies. The easiest way is to create an array of N multiplicands—call
it h(k)—and form the elementwise product of (k) and X (k) . The formula for h(k) is

:O’

= N/2,
2,3,...,(N/2)-1,
(N/2)+1,...,N-1.

s

h(k) =

s

;X

N O = =

’

In MUSIMAT, this would be written

If (k=0 ) hl k] =1;

Else If ( k = N/2 ) h[ k] = 1;

Else If ( k >= 2 And k <= (N/2)-1) h[ k ] = 0;
Else If ( k >= (N/2)+1 And k <= N-1) h[ k ] = 2;

If all we have to do is zero out the negative frequencies, why must we scale some of the fre-
quencies by 1 and others by 2?7 The most intuitive explanation I can think of has two parts.
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First, we must double the magnitude of all positive frequencies to compensate for wiping out
all the negative frequencies, so that we end up with the same amount of total energy. Hence, we
multiply the magnitude of all positive frequencies by 2.

Second, the energy at 0 Hz and the energy at the Nyquist frequency really aren’t positive or neg-
ative frequencies. Since there is no negative frequency corresponding to 0 Hz or the Nyquist fre-
quency, we leave their strength the same, multiplying each by 1. Think of it this way: someone who
sees a dot directly and also sees it in a mirror sees two dots. But if the dot is positioned directly
on the silver of the mirror, only one dot is seen. It’s as though energy at 0 Hz and the Nyquist
frequency is on the silver of the mirror.

3. Form the elementwise product of X(k) and h(t):
X'(k) = h(k) - X (k).

The spectrum of X’(k) has no negative frequencies.
4. Finally, take the inverse FFT:

X(1) = FHX(k)}.

The signal x’(¢) approximates the analytic form of the input signal x(¢).

Summary

Fourier analysis and synthesis are called a transform pair because the spectrum of a wave created
by Fourier synthesis may be perfectly analyzed by Fourier analysis, and vice versa, with no loss
of information.

Fourier analysis creates a spectrum whose frequencies are integer multiples of the fundamental
analysis frequency. Fourier synthesis creates a periodic vibration from sinusoids whose
frequencies are integer multiples of a fundamental frequency.

Fourier analysis is often called the Fourier transform, and Fourier synthesis is often called the
inverse Fourier transform. Whereas the Fourier transform starts with a function of time and
produces a function of frequency, the inverse Fourier transform starts with a function of frequency
and produces a function of time.

The Fourier transform detects energy at a particular frequency by exploiting a property of
multiplication. A signal multiplied by itself is squared. A squared waveform will have all
positive values because (except for imaginary numbers) a number times itself is always positive.
If we multiply two signals, one with a frequency we don’t know times one with a frequency we
do know, and the result is all positive, then the signals being multiplied must be identical. This
provides a way to detect the presence or absence of particular frequency components: we can
create a frequency detector by multiplying a known signal (called the probe phasor) by an
unknown signal.
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We can determine if the product signal is strictly positive by summing the multiplicands as we
compute them. If the signals are identical, the multiplicands will all be positive, and the more of them
we sum together, the larger their magnitude becomes. If the signals are unequal, the multiplicands will
have mixed signs, and summing them together will not produce a large positive value over time. Thus,
a large positive value from the frequency detector is an indication of frequency match.

The Fourier transform combines a frequency detector with an additional step that applies it to
every frequency in a spectrum and records the result as a function of frequency.

The Fourier transform is restricted to periodic signals. By definition, periodic signals are of
infinite length. By windowing the input signal, we can apply the Fourier transform to tempo-
rally limited signals. But the transform of a windowed signal is no longer lossless.

The Discrete Fourier Transform (DFT) operates on sampled signals. The DFT spectrum is one
period of an infinitely repeating periodic function at the fundamental analysis frequency. The
number of time domain samples analyzed determines the resolution of the frequency samples of
the DFT spectrum. To increase spectral resolution, examine a larger swath of the input signal. But
doing so decreases temporal resolution. Thus, we have a Heisenbergian contradiction: we can
know either frequency content or temporal content in great detail, but not both.

The fast Fourier transform (FFT) accelerates the computation of the DFT. It reduces the number
of computations from N2 to Nlog, N.

The Fourier transform is linear, and obeys the rules of superposition and proportionality.

Since an analytic signal is a real signal with zero negative frequencies, we can create one by
taking the FFT of a signal and zeroing out its negative frequencies. The inverse transform of this
result is the (complex) analytic signal.






4 Convolution

It is not surprising that the greatest mathematicians have again and again appealed to the arts in order to find
some analogy to their own work. They have indeed found it in the most varied arts, in poetry, in painting, and
in sculpture, although it would certainly seem that it is in music, the most abstract of all the arts, the art of
number and of time, that we find the closest analogy.

—Havelock Ellis

4.1 Rolling Shutter Camera

Convolution lies at the heart of modern digital audio. The quickest and most intuitive introduction
to convolution that I've found comes by way of an antique rolling shutter camera. When photog-
raphy was first being developed early in the twentieth century, some cameras used a rolling shutter
instead of an iris to control exposure of the film. A narrow slit was cut in a roll of opaque paper
attached between two spring-loaded rollers that when released by the camera’s trigger caused the
slit to scroll quickly across the film plate between the lens and the film, exposing it to light and reg-
istering the image on the film (see figure 4.1).

Because the travel time of the shutter was not instantaneous, photographing fast-moving images
led to image-skewing motion artifacts. In the famous photograph shown in figure 4.2, the slit
moved from bottom to top while the camera operator swiveled to track the car going by. Because
of motion artifacts and other problems, the rolling shutter was eventually supplanted by the iris
shutter.

How is this relevant? The rolling shutter camera implemented a form of convolution. Suppose
we had such a camera today and that we altered the loop of opaque paper so that there were two
narrow slits, one some distance from the other. Now we retake the picture of the car driving
horizontally past the camera. As the first slit passes across the film plate, it registers the car’s image
at one location on the film, and as the second slit passes over the film plate, it registers the car’s
image at a position proportional to how much farther the car has traveled in the meantime. The film
registers the sum of the first image of the car and the second (time-shifted) image of the car—a
double exposure with the exposures very close together in time. The slits are effectively sampling
and time-shifting the image, depending upon when they pass between the film and the lens. This
is basically what convolution is all about: time shifting and combining signals.
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Figure 4.1
Camera with a slit to expose film.

Figure 4.2
“Voyage en auto; Papa a 80 km a I’heure, mars 1913.” Photograph by Jacques Henri Lartigue. © Ministere de la
Culture—France/AAJHL.
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4.2 Defining Convolution

The formula for convolution is
h(n) = Zf(m)g(”—m), Convolution (4.1)
m=0

where m and n are integers. The function g can be likened to the slit in the rolling shutter camera, and
the function f'can be likened to the image being recorded. The convolution operation scrolls function
g past function frather like the slit is scrolled past the film plate in the rolling shutter camera.

Let’s try an example to see how equation (4.1) works. Say that the length of two functions f and
g are both N =4, so that their defined values lie in the range of 0 to N — 1. For this example, the actual
defined values of the functions don’t matter because we’re just trying to get a feel for the abstract
pattern of the convolution operation. Let’s also say that values lying outside of the defined range of
functions fand g are equal to zero. We can specify this mathematically for function f by writing

0, n>N,
f(n) =4 f(n), 0<n<N, Convolution Range Rule (4.2)
0, n<0.

Equation (4.2) says that values of f outside the defined range 0 <n <N are equal to zero, and
values within this range are its defined values. We must also apply the convolution range rule to
function g.

We start off by seeing what the convolution operation would calculate for N = 0, then continue
by setting n to larger and larger values. Computing the first few elements of equation (4.1) for
increasing n we have

n=0  h0)=/(0)g(0)

n=1 h(l)=f0)g(1)+f(1)g(0)

n=2 h2)=£0)g2)+f(1)g(1)+/(2)g(0)

n=3 h3)=f0)e3)+f(1)g(2) +,(2)g(1) +£(3)g(0)

Note that as n increases, convolution recruits increasing numbers of terms from f and g
into the equation. Here’s a visualization: suppose we mark out the two functions on the sides
of two boards (figure 4.3), separated by a roller. The figure illustrates the computation of &
for n = 3. As the boards roll past each other, we form the product of fand g, and then sum the
products.
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Figure 4.3
Convolution step A(3).

But what happens when n = 4 or more? Since this is beyond the range of the functions, we invoke
the convolution range rule and substitute zero for undefined values, which yields

n=4

h(4) = f(0)g(4) +f(1)g(3) +/(2)8(2) +£(3)g(1) +/(4)g(0)

= (f(0)- 0) +/(1)g(3) +/(2)g(2) +£(3)g(1) + (0 - (0))
= f(1)g(3) +£(2)g(2) +f(3)g(1)

S
Il

S h(5) = f0)g(5) +f(1)g(4) +£(2)g(3) +/(3)g(2) +f(4)g(1) +f(5)g(0)

= f(2)g(3) +£(3)g(2)

S
Il

S
Il

+£(7)g(0)

=0

6 h(6) = f(0)g(6) +f(1)g(5) +£(2)g(4) +/(3)g(3) +f(4)g(2) +f(5)g(1) +£(6)g(0)
= f(3)g(3)

7 k(7)) = f0)e(7) +f(1)g(6) +£(2)g(5) +/(3)g(4) +f(4)g(3) +/(5)g(2) +£(6)g(1)
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For all values n > 7, h(n) = 0, so we might as well stop at n = 6.

In general if the length of fis Nyand the length of g is N,,, then the length of the convolved function
his N, = N+ N, — L This rule works even when N,# N,,.

As a shorthand for equation (4.1), mathematicians notate convolution this way:

h(n) = f(-) = g(), Convolution Operator (4.3)

where * is the convolution operator,! and the notation f(-) and g(-) can be translated to mean al/l
required values of functions fand g. The centered dot notation, f(-)and g(-),isused in equation (4.3)
to allow the convolution operation unlimited indexing range. Since f(-) * g(*) is itself a function
of n, sometimes convolution is written (f = g)(n).

4.3 Numerical Examples of Convolution

The following numerical examples will be a lot clearer if the format for representing the steps
of convolution is rotated to show terms that are being summed in columns, as in traditional
arithmetic. Here is the convolution of functions f and g:

S0)g(0) S0)g(1) f0)e(2) f0)e(3)
Sf(1)g(0) fDg(1) fiDg(2) f()g(3) .
f(2)g(0) f2)e(1) f2)g(2) f2)g(3)

J3)5(0) JB3)e(1) fB3)s(2) fB3)s(3)
h(0) (1) h(2) h(3) h(4) h(5) h(6)

In this format, increasing values of n run across the page instead of down the page. One value of
the output function 4 is formed by summing each column. If the product of two functions would
yield zero because of the application of the convolution range rule, the cell is marked with ellipses
(.. .) to indicate that its calculation is skipped.

Here is a concrete example of convolution.

1 2 3
2 4 6
3 6 9
8 12
5 10 15
h(n): 1 4 10 16 22 22 15

Here is the same example with the terms f and g transposed.
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h(n) = g(-) = f(-) = {1,2,3} *{1,2,3,4,5}. 4.5)
1 2 3 4 5
2 4 6 8 10
6 9 12 15
h(n)= 1 4 10 16 22 22 15

Notice that equations (4.4) and (4.5) produce the same result, indicating that
Convolution is commutative.
4.3.1 Impulse Function

The next pair of examples reveals a useful insight into convolution. The unit impulse function 6(n)
is defined as a single 1 located at n = 0, and all other indexed values are 0, written as follows:
1, n=0, . .
o(n) = Unit Impulse Function (4.6)
0, n#z 0,
where 7 is an integer.
In the first example, let f(n) = {1,2, 3,4, 5}, and let g(n) be the unit impulse function &(n).
Then the convolution of f(n) and g(n) is as follows:

h(n) = f(-) = g(-) = {1,2,3,4,5}%{1,0,0,0,07}. 4.7
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
h(n)=1 2 3 4 5 0 0 0 0

As we see, equation (4.7) simply copies f to & unchanged. In the next example, let g(n) =
{0, 1, 0, 0, 0}. We have shifted the location of the 1 in the impulse function one element to the right.

0 1 0 0 0
2 0 0 0
0 0 0 0
4 0 0 0 0
5 0 0 0 0
h(n)=0 1 2 3 4 5 0 0 0 0

Equation (4.8) copies f'to A shifted right by one place. Last, we scale the impulse function g by 1/2.
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h(n) = f(-) = g(-) = {1,2,3,4,5}%{0,05,0,0,0}. 4.9
0 0.5 0 0 0 0
0 0 0 0
L5 0 0 0 0
2 0 0 0 0
25 0 0 0 0
h(n)=0 0.5 1 L5 2 25 0 0 0 0

Convolving a function f with an impulse function just copies f.
Convolving f with a shifted impulse function makes a shifted copy of f.
Convolving f with a scaled impulse function scales f.

Convolving f with a scaled, shifted impulse function scales and shifts f.

Figures 4.4-4.9 illustrate convolutional shifting for some interesting wave types.

J(x) = g(x) = h(x)

Figure 4.4
Convolution of two rectangular windows.

Figure 4.5

Convolution of window with triangular function.

x - ‘ /\
Figure 4.6

Convolution of exponential decay with rectangular window.

Jx) * g(x) = hix)

J(x) * g(x) = h(x)
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Jx) # g(x) = h(x)

AN ]
T

Figure 4.7
Convolution of two sine waves.

J(x) = g(x) = h(x)

Figure 4.8
Convolution of two square waves.

J(x) = g(x) = h(x)

Figure 4.9
Convolution of impulse train with exponential decay.

4.3.2 Impulse Train

Consider the following example. An impulse train function is a periodic impulse function with
period equal to the distance between impulses. Let fbe an impulse train function with a period of
2,f={1,0,1,0, 1}, and convolve it with g = {1, 2, 3,4, 5}:

f()#g() ={1,0,1,0,1}%{1,2,3,4,5}. (4.10)
1 4 5
0 0 0
2 3 4 5
0 0 0 0 0
1 2 3 4 5
1 2 4 6 9 6 8 4 5

The impulse train function adds a shifted copy of the signal for each impulse in the impulse train
function (see figure 4.9). Recalling the rolling shutter camera example, when we added an extra
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slot to the opaque screen in the camera, we changed its function from a single impulse to an impulse
train (with two pulses) and the camera produced the sum of the original and the delayed image,
analogous to equation (4.10).

Let’s modify the impulse train function so that each successive impulse is half its previous value:
f=1{1,0,0.5,0,0.25}. Then

f()#g() ={1,0,05,0,025}%{1,2,3,4,5}. (4.11)
1 2 3 4 5
0 0 0 0 0
0.5 1 15 2 2.5
0 0 0 0 0
025 0.5 0.75 1 125
1 2 3.5 5 6.75 2.5 3.25 1 1.25

The scaled impulse train function sums a scaled and shifted copy of each impulse in the impulse
train function.

Looking at this result, we can see why convolution is sometimes described as a smearing operation:
by summing multiple delayed copies, convolution can render the original pattern less distinct. In fact,
our ears are highly sensitive to this smearing effect: the walls of a room transmit delayed and scaled
reflections to our ears from a sound source, so reverberation is a form of convolution. If we snap our
fingers or create another impulsive sound in a room, the sum of all delayed and scaled reflections is
called the room’s impulse response. Speech is more intelligible in a bedroom than in a cathedral
because the impulse response of a bedroom is shorter and less pronounced than the impulse response
of a cathedral; hence there is less acoustical smearing in a bedroom.

Convolving with an impulse train adds a shifted original to the output for each impulse.
As many copies will be superimposed as there are nonzero impulses.

Copies will be shifted (delayed) by the position of the impulse in the impulse train function.
Shifted copies will be scaled by the amplitude of the impulses.

Shifted, scaled copies of the original are summed, smearing the result.

4.3.3 Convolution as Echo and Reverberation

Echoes are scaled and delayed copies of a source signal, and reverberation is a set of echoes
generated recursively. So echoes and reverberation can be seen as forms of convolution (see
volume 1, section 7.13).

If we convolve the impulse response of a good-sounding hall with a sound recorded elsewhere,
it will be as if the sound had been recorded in that hall. Mathematically, the process is like
equation (4.11): many scaled time-delayed copies of the sound are summed, based on the impulse
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response of the hall. So, convolving the impulse response of a room with another time domain
signal applies the room’s response to that signal. Thus, if one has the impulse response of a good
concert hall, one can process recordings made in a nonreverberant room to sound as if they had
been recorded in the concert hall.

This procedure works best if the sound being convolved is fairly dry (that is, with a short, mild
impulse response), but it works surprisingly well even if the source signal is reverberant.
Unfortunately, the convolution operation is computationally intensive, so using convolution to
create artificial reverberation is prohibitively expensive on all but the fastest computers.2 For more
cost-effective approaches to creating artificial reverberation, see section 9.6.

4.4 Convolving Spectra

Explaining echoes and reverberation with convolution in the time domain begins to show the
explanatory power of convolution, but there is much more to come. At the beginning of this chapter,
I'suggested that when two signals are multiplied, their spectra are convolved. Proof of this will lead
in another interesting direction.

4.4.1 A Notational Convenience

We can simplify the following equations by defining the Fourier transform as the function % and
the inverse Fourier transform as the function #-!. Then, if we apply the Fourier transform to a time
domain function s(t), we can write

F {s(1)} = S(k),
indicating that the Fourier transform of signal s(¢) is the spectrum S (k). Writing
s() = F{S(k)}

indicates that the inverse Fourier transform of spectrum S (k) is signal S(t).

We can use Fand F-! to stand for either the discrete or continuous Fourier transform, so long
as we agree to apply the appropriate transform to the appropriate kind of data. If the spectrum and
corresponding time domain function are continuous, ¥ and F -! refer to the continuous Fourier
transform; otherwise they refer to the discrete Fourier transform.

4.4.2 Multiplying Signals Convolves Their Spectra

Say we have two discrete signals f(n) and g (n) that have discrete spectra F (k) and G (k), respectively.
We wish to show that

Fif(mgn)} = ¢ (k) * G(k).
In order to prove that multiplying signals convolves their spectra, we can proceed as follows:

1. Compute the convolution of F(k) and G(k), that is, find H,(k) = F(k) * G(k).
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2. Compute the spectrum of the product of signals f(n) and g (n), that is, find H,(k) = F{f (n)g(n)}.
3. Show that H,(k) = Hy(k).

Step 1 Say the spectra of F(k) and G (k) are as follows:

kHz -4 -3 -2 -1 0 1 2 3 4
F(k) 0 0 0 0.5 0 0.5 0 0 0
G(k) 0 0.5 0 0 0 0 0 0.5 0

F(k) and G (k) each contain nine frequency samples: four for negative frequencies, four for
positive frequencies, and one for 0 Hz. Since the table shows that the bandwidth of F (k) and G (k)
is 4 kHz, the bandwidth of each frequency sample must be 1.0 kHz. These spectra are shown in
figure 4.10.

Now we convolve these two spectra to create H,(k):

H,(k) = F(k) * G(k) . 4.12)

The computation is as follows. Refer to section 4.3 for help in following the convolution steps.

0 0 0 0 0 0o 0 0 0
0 0 0 0 0o 0 0 0 0
0 0 0 0o 0 0 0 0 0
0 0.25 0o 0 0 0 0 0.25 0
0 0 0 0 0 0 0 0 0
0 025 0 0 0 0 0 0.25 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

H (k)= 0 0 0 0 0.25 0 025 0 0 0 0.25 0 0.25 0 0 0 0
0.5 0.5
F(k)
-1kHz OHz 1kHz
0.5 0.5
G(k)
-3 kHz 0 Hz 3 kHz

Figure 4.10

Spectra of F(k) and G(k).
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The spectrum H (k) contains 17 frequency samples, although there were but 9 samples each for F'(k)
and G (k). How do we interpret these extra frequency samples in H,(k)? Each frequency sample in
H (k) covers just as much bandwidth as each sample of the input spectrum: 1.0 kHz each. So the spec-
tral bandwidth of the convolution is 2N—1 times the bandwidth of the source spectrum. But there is
nothing in the spectrum outside of the range of +4 kHz, the bandwidth of the input spectrum, and by
the definition of convolution, there cannot be. So we ignore these extra samples. Here are the frequen-
cies of H,(k) from the previous computation with the valid frequency samples shown shaded.

kHz -8 -7 -6 -5 -4 -3 2 -1 0 1 2 3 4 5 6
H1(k) 0 0 0 0 025 0 025 O O O 025 O 025 0O O 0 0

Figure 4.11 shows this result graphically.

We can interpret this result to say that we have ended up with copies of the spectrum of F'(k)
placed with their centers where each component of G (k) used to be. Equally validly we could say
the same thing the other way around: copies of the spectrum of G (k) are placed with their centers
where each component of F (k) used to be (figure 4.12). Both interpretations are correct.

We have conserved the total amount of energy in the two input spectra. Each of the four resulting
spectral components has an amplitude of 0.25, so the total energy is the same.

Step 2 Having computed the convolution of F'(k) and G (k) to find H, (k), we now compute H,(k),
the spectrum of the product of signals f(n) and g(n) as follows:

1. Create the waveform for f(n).

2. Create the waveform for g(n).

3. Compute the Fourier transform of their product: H,(k) = F{f(n)g(n)}.

0.5) (0.5)
0.25 i 0.25 025 i 0.25
o=y
—4 kHz -2 kHz 0 Hz 2 kHz 4 kHz

Figure 4.11
Convolved spectra of F(k) and G(k).

(0.5) (0.5)

o
)
W
o
TR
W
o
N
W
o
)
(9]

H(lp ——
—4 kHz -2 kHz 0 Hz 2 kHz 4 kHz

Figure 4.12
Convolved spectra of G(k) and F(k).
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f(n)=1{0,0.3,0.6,0.9, 1.,0.9,0.8, 0.6, 0.18,-0.18, -0.6, —0.8, -0.9, 1., -0.9, -0.6, —0.3}

g(m)=1{0,0.9,0.8,-0.18,-0.9,-0.6,0.3, 1., 0.6, 0.6, 1., -0.3, 0.6, 0.9, 0.18, 0.8, —0.9}

f(n) g(n) = {0, 0.3, 0.6, -0.16, ~1., 0.7, 0.29, 0.5, 0.1, 0.1, 0.5, 0.29, ~0.7, 1., ~0.16, 0.6, 0.3}

SN NN N

NV

Hy(k)=7{f(n) g(n)} = {0, 0,0,0,0.25,0,0.25, 0, 0, 0, 0.25, 0, 0.25, 0, 0, 0, 0}

(Rotated order)
0.25 0.25 0.25 0.25

—4kHz 2kHz OHz 2kHz 4kHz

Magnitude

Frequency

Figure 4.13
Calculation of DFT {f(n) g(n)}.

Step 3 Compare figure 4.11 with figure 4.13 to verify that H,(k) = H,(k).
We have proved that indeed H,(k) = H,(k), so multiplying signals convolves their spectra.

Multiplying in the time domain convolves in the frequency domain.
4.4.3 Convolving Spectra Multiplies Their Signals

If multiplying two signals convolves their spectra, then it ought to be the case that convolving two
spectra multiplies their signals. We can prove this by the following steps.

1. Starting with F'(k) and G (k), convolve them, as we did to create H, (k), and take the inverse Fourier
transform of the result:

hy(t) = f(Hg(r) = FH{F(k)* G(k)}. (4.13)
2. Get the product of the inverse Fourier transform of F (k) and G (k):
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hy(1) = f(ng(t) = FY{F(k)}F {G(k)}. (4.14)
3. Observe that /(1) = h,(2).

This is left to the reader to check since it follows directly from the example above.
Multiplying in the frequency domain convolves in the time domain.

Some very interesting applications of this important rule are covered in later sections of this
chapter and elsewhere in subsequent chapters.

4.5 Convolving Signals

The previous sections have established a relation between multiplication and convolution in the
time domain and frequency domain that can be expressed this way:

Time domain :  Frequency domain
Multiply —  Convolve
Multiply < Convolve

In this section we consider the opposite approach:

Time domain : Frequency domain
Convolve —  Multiply
Convolve < Multiply

So now we want to prove that

= When spectra are multiplied, their signals are convolved.

= When signals are convolved, their spectra are multiplied.
4.5.1 Multiplying Spectra Convolves Their Signals

Suppose we wish to reduce the high-frequency energy of a recorded signal. One way to proceed
would be as follows:

1. Take the Fourier transform of the signal.

2. Window (multiply) the resulting spectrum with a function that shapes the spectrum as desired, for
example, by using a decreasing exponential function (figure 4.14) to attenuate the high frequencies.
In this case, we interpret the exponential function as a spectrum ranging from high energy at low
frequencies to low energy at high frequencies.

3. Take the inverse Fourier transform of the product spectrum. On listening to the result, we would
hear a signal with attenuated high-frequency energy compared to the original. From this, we see
that multiplication of spectra is equivalent to filtering.
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Figure 4.14
Decreasing exponential function.

Filtering Function 0 Source Spectrum f;/2 0 Filtered Spectrum f;/2

Windowing
IDFT |—

Lowpass Filtered Signal

Figure 4.15
Windowing a spectrum as a form of filtering.

Figure 4.15 sketches the general process of filtering by multiplying spectra. We take the Fourier
transform of the source signal, then multiply its spectrum with the desired filtering function. The
inverse Fourier transform of the result produces a signal with frequency content shaped by the
filtering function.

4.5.2 Windowing as a Form of Filtering

Figure 4.15 shows filtering performed by multiplication in the frequency domain. Using the
notation F{ } for the Fourier transform, we can express this operation as

FLFRGKR) } = f (1) * g(0). (4.15)

The product of spectra, for instance, those in figure 4.15, produces the convolution of the corre-
sponding time domain signals. This subject is elaborated in chapter 5.
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4.5.3 Generating Fractal Noise by Multiplying Spectra

We can generate noise with an arbitrary spectral tendency by modifying the power spectrum of
uniform noise. In fact, completely arbitrary spectral functions of any kind, fractal and otherwise,
can be obtained this way (see volume 1, section 9.17.2). The method is to compute the Fourier
transform of a signal, scale its power spectrum as desired, and retransform with the inverse Fourier
transform.

Below is a code listing in MUSIMAT that performs filtering using the DFT. It is based on the DFT
described in section 3.3.9. The process can be made more efficient through the use of the fast
Fourier transform (F. R. Moore 1990, 447-448). First we define some needed functions.

// Return the real part of a Complex list
Reallist RealPart( ComplexList x ) {

Integer N = Length( x ); // find its length
Reallist t; // place to store the result
For ( Integer i = 0; 1 < N; 1 =1 + 1)

t[ 1] =Re( x[ 1] ); // Take just the real part
Return( t );

The function Re ( ) takes a list of complex numbers and returns a list of just their real parts.
This function iteratively calls the built-in MUSIMAT function Re ( ) to take the real part of each
complex number on the list.

// Normalize a Real list to lie between L and U

ReallList Normalize( ReallList x, Real L, Real U ) {

Integer N = Length( x ); // f£ind the length of the list
Real max = Max( x ); // f£ind the maximum
Real min = Min( x ); // find the minimum
For ( Integer k = 0; k < N; k =k + 1)
x[ k] = (U-L) *» ( x[ k] - min) / (max - min) + L;
Return( x );
}
The function Normalize ( ) scales a list of real values to lie within a specified range. The

ShapedNoise ( ) function in the following code listing first creates a broadband noise signal of
a length specified by argument N and then takes the Fourier transform of the noise signal. Then it
applies a scaling function by 1/f B, filtering the signal by multiplication in the frequency domain. To
allow the signal to be real after conversion to the time domain, the spectrum is forced to be conjugate-
symmetrical around 0 Hz. Then the function takes the IDFT of the shaped noise spectrum, and
finally it normalizes and returns the resulting time domain noise sequence.

// Shape N samples with spectral tendency B, values lie between L and R
ReallList ShapedNoise( Real B, Integer N, Real L, Real U) {
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Reallist x;
For ( Integer k = 0; k < N; k = k + 1 )// start with broadband noise
x[k] = Random( -1.0, 1.0 );

ComplexList X = DFT( x ); // take the Fourier transform of x
For (k = 1; k <= N/2; k =k + 1) { // scale the noise by 1/f"B
Real r = Re( XI[k] ); // take the real part of a sample
Real i = Im( X[k] ); // take its imaginary part
Real power = r * v + 1 * 1i; // sgquare amplitude to get power
power = power / Pow(Real(k), B); // apply the spectral tendency
Real amplitude = Sqgrt( power ) ; // convert back to amplitude
Real phase = Atan2( i, r ); // calculate the phase

RealSet ( X[k], amplitude * cos(phase) ); // reconstruct
ImagSet ( X[k], amplitude * sin(phase) ); // the spectrum
}
// Force the spectrum to be conjugate-symmetrical around 0 Hz
For (k= 1; k <= N/2; k =k + 1) {
RealSet ( X[N - k], Re(X[k]) );
RealSet ( X[N - k], -Im(X[k]) );

}

ComplexList c¢x = IDFT( X ); // take inverse Fourier transform
Reallist cr = Re( cx ); // discard the imaginary part
Reallist result = Normalize( cr, L, U ); // normalize

Return( result );

We can invoke ShapedNoise ( ), for example, as follows:

Print ("B=0.0", ShapedNoise( 0.0, 512, -1.0, 1.0 ) );
Print ("B=1.0", ShapedNoise( 1.0, 512, -1.0, 1.0 ) );
Print ("B=2.0", ShapedNoise( 2.0, 512, -1.0, 1.0 ) );
Print ("B=3.0", ShapedNoise( 3.0, 512, -1.0, 1.0 ) );

Figure 4.16 shows the results of calling ShapedNoise ( ). To help with comparison, the
same noise sequence was used for all plots (unlike in the preceding, code, which selects a dif-
ferent random sequence each time the function is invoked). Figure 4.16a shows time domain
noise signals that were generated with b= {0, 1, 2, 3}. As b increases, high frequencies are more
and more sharply attenuated. Figure 4.16b shows the log-log power magnitude spectral plots of
the corresponding signals. The upper diagonal line in the spectral plots corresponds to 1/f, and
the lower diagonal line to 1/f > When b = 0, the spectrum is relatively flat, and when b = 1, the
spectrum has a spectral tendency of approximately 1/f. For b =2, the spectral tendency is
closer to l/fz.
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a) b=2 b=3

Signal: %MMWM\W
b)
L fW\Mn N

Figure 4.16
Shaped noise examples.
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Figure 4.17

Noisy signal and its Fourier transform.

4.5.4 Data Smoothing

We can use noise shaping to extract periodic signals from noise. Say we have recorded a signal f(n),
whose samples are shown in figure 4.17a. Just looking at it, it’s hard to know that there’s a periodic
signal embedded within the noise. However, the Fourier transform F(k) shown in figure 4.17b clearly
indicates the presence of a sinusoid. How can we extract the time domain signal from the noise?

Inspecting the Fourier-transformed signal in figure 4.17b, we observe that the noise is broad-
band, whereas the signal itself is at a specific frequency. This suggests that if we filtered out all
but the regions around this frequency, we’d reduce the noise accompanying the signal and get a
clearer picture of the signal.

If we multiplied the Fourier transform of the noisy signal by a spectrum that is nonzero only in the
vicinity of the frequency band of interest, we’d remove much of the noise. This is bandpass filtering.
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We can create the filtering spectrum in any way, but the following is a useful technique. The first
step is to create a function, a kernel, to extract the interesting portion of the spectrum of f (7). The
kernel must be exactly as long as the Fourier transform F (k). Suppose that (k) has length L.
While the kernel can be any function, let’s use of the following exponential function for the kernel:

o L L_
, 2<1<<2 L (4.16)

G(k) =e
The parameter Q, called the quality factor, controls how quickly the skirts of the exponential
function fall toward zero as k departs from the vicinity of the origin (see volume 1, equation (8.26)).
For example, if we set Q = L/4, we get the function in figure 4.18a.

But before we can use it, we must transform it so that it has two peaks, one each over the positive
frequency and negative frequency bands of F (k) in which we are interested. The transformation
is effected simply by rotating a copy of the kernel to the left and rotating a copy to the right, then
adding them together (figure 4.18b).

Now we form the product of F(k) G(k) (figure 4.19a). We see that though there is still a little
noise in the skirts of the signal, elsewhere the noise is virtually gone.

a) b)

Figure 4.18
Bandpass filter kernels.

a) b)

Frequency Time

Figure 4.19
Product of lowpass spectrum and the signal under test.
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Time Time

Figure 4.20
Comparison of original and reconstructed signals.

Last, we take the inverse Fourier transform of the foregoing, and the time domain signal is
revealed, stripped of a good deal of its noise (figure 4.19b).

Figure 4.20 shows the original signal (figure 4.20a) next to the reconstructed signal
(figure 4.20b). Although the reconstructed signal still contains artifacts of its contamination with
noise, if we didn’t have the original signal by itself, this would be better than the hash we started
with. More sophisticated noise reduction techniques are discussed in chapter 10.

4.5.5 Convolving Signals Multiplies Their Spectra

Suppose you are in an anechoic chamber (so sound reflections in the room can be ignored), and a
sound arrives at your ears. Depending upon the direction of the sound source, some sound energy—the
direct signal—goes straight to your tympanum without bouncing off any other surface. The rest of the
sound energy—the reflected signals—bounce off the folds of your pinnae (the protuberances on either
side of your head that enfold your ear canal) before reaching your tympanum. There are as many
reflected signals as there are indirect paths from the sound source to your tympanum. Every reflected
path is longer than the direct path, so the reflected signals arrive at your tympanum ever so slightly
after the direct signal. The intensity of the reflected signals will be attenuated in comparison to the
direct signal because of their longer path and the consequences of the inverse square law. They are
attenuated even more because the pinnae absorb some amount of sound energy.

The direct signal and the reflected signals interact to change the spectrum of the sound you hear in
subtle ways. Some frequencies of the direct signal will arrive at the tympanum out of phase with respect
to the same frequencies arriving along a longer path and cancel each other at the tympanum; other
frequencies will arrive in phase and reenforce each other. Sound arriving from other directions will
cancel and intensify different frequencies because the pinnae will reflect them into the ear differently.

Thus, the delayed and attenuated reflections introduced by the pinnae modify the spectrum of
the arriving signal in characteristic ways, depending upon the direction of the sound and the
location and shape of the pinnae. We can say that the pinnae filter the spectrum of the arriving
signal and that the spectral shape of the pinnae depends upon the direction of the arriving sound.
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Our auditory system uses this cue (among others) to determine a sound’s direction (see volume 1,
chapter 6). The pinnae effectively convolve the direct signal with multiple time-shifted and
amplitude-scaled copies created by reflections on the pinnae. Since convolving in the time domain is
multiplying in the frequency domain, the spectrum of the source signal is multiplied by the spectrum
of the pinnae; our ears use this spectral modification as a cue to sense the direction of an arriving sound.

For instance, suppose a motorcycle is passing you: your auditory system performs at least the
following minor miracles:

= It notices that the motorcycle sound spectrum is being modified in a way that is characteristic of
spectral changes due to the filtering properties of your pinnae.

= It observes that your head is stationary and determines that this means the sound source must be
moving.

= It converts the spectral changes into distance and direction information, and passes this
information on to your awareness, which synthesizes the percept of the motorcycle passing you.

Figure 4.21 shows an example of the spectrum of the pinnae adapted from a spectral plot of a
test subject’s ear. It was created by placing a small microphone at the outer end of the ear canal,
placing a loudspeaker at some angle to the head (in this case, facing directly into the left ear), and
recording the intensity at each frequency over the range of hearing. It’s quite a complicated curve.
There is a lot of variation in this type of curve from individual to individual. There is a running
controversy over just how the ear uses this (and other) information to determine sound location.
Nonetheless, pinna filtering seems to provide most of the auditory cues we use to determine sound
direction. For example, consider the following experiment. We measure an individual’s pinna
filters for several different directions and use each one in turn to filter an arbitrary recorded sound,
such as from an automobile engine. When we play each filtered automobile sound to the individual
through headphones, the subject will quite reliably indicate the correct direction corresponding to
each filter.

0~
5

Amplitude in dB

2'k 4'k 6'k 8'k 1 6k 1 ék léllk
Frequency in Hz

Figure 4.21
Pinna filter for a particular source angle and individual.
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4.6 Convolution and the Fourier Transform

Take another look at the equation for convolution, equation (4.1):

hn) = 3 fm)g(n—m).

m=0

The Fourier transform can be related to convolution as follows.
If g(n) is the phasor ei®", where @ = 27, then (4.1) becomes

h(n) = i f(m)e "™,
m=0

By the rule x*~? = x%x~b we can rewrite this as
h(n) = zf(m)elwne—m)m'
m=0

Notice that the term ¢’®" does not depend on the index variable m. Since its value doesn’t vary
through each summation, it is a constant in each term of the summation.
Justas ab + ac canbe factored into a(b + ¢) , e!®" canbe factored out of the summation, yielding

]’l(l’l) _ eiwn zf(m)e—ia)m'
m=0

But the resulting summation is just the Fourier transform of f(m), which can be simplified as

h(n) = eion F{f(m)}. 4.17)

where F{f(m)} is the one-sided Fourier transform of f(m), defined as

Flf(@)} = Y fimye " (4.18)
m=0

Equation (4.17) says that convolution of a signal f(m) with a phasor e/®" is the same as the Fourier
transform of f(m) modulated by the phasor ei®.

4.7 Domain Symmetry between Signals and Spectra

By now we have a pretty good arsenal of tools to examine and modify spectra, including addition,
multiplication, convolution, the Fourier transform, and the inverse Fourier transform, so we are in
a good position to summarize the many symmetries between the time domain and the frequency
domain.
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It is important to keep in mind the layout of spectral frequencies in order to make sense of the
figures in this section. I’ve used three common arrangements in this book:

= Positive frequencies only, from 0 Hz to f;/2, the Nyquist frequency, shown left to right
= Positive and negative frequencies, from —f,/2 to f,/2, left to right with 0 Hz in the middle

= Standard DFT order, from left to right, 0 Hz followed by increasing negative frequencies up to
*f,/2, then decreasing positive frequencies until nearly O Hz. This is sometimes called wrap-around
order.

The spectra in this section are all shown using standard DFT order. It may be a little harder to scan
visually, but it will give a clearer picture of the underlying mathematics.

Complex spectra are represented here using overlapping bar charts: empty bars show real
components, solid bars show imaginary components. That way we can see the imaginary and real
components of a spectrum side by side. I sometimes also supply the magnitude spectrum.

4.7.1 Cosine Symmetry

Figure 4.22 shows a cosine signal and its Fourier transform. The complex spectrum shows that
there are two real components at equal positions on either side of 0 Hz. The individual values of
the complex spectrum in figure 4.22 are as follows:

Frequency 0 -1 -2 -3 -4 -5 -6 -7 -8 8 7 6 5 4 3 2 1
Real 0 05 0 0 0 0 0 0 0 o o0 o0 o0 o0 0 0 05
Imaginary 0 0 0 0 0 0 0 0 0 o o0 o0 o0 o0 0 0o 0

What would happen if we interpreted the complex spectrum from figure 4.22 as a time domain
signal and took its DFT? Since its imaginary part is zero, we can ignore that and focus on the real
part, interpreting it as an impulse train consisting of two impulses.

Figure 4.23 shows that we recover exactly the same real cosine we started with. This shows the
symmetry of the Fourier transform:

F{F{cosO}} = cosh, 4.19)

in other words, the Fourier transform of the Fourier transform of a signal is the identical signal.

Time Domain Frequency Domain
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| I

Figure 4.22
Fourier transform of a cosine wave.
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Time Domain Frequency Domain
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Figure 4.23
Fourier transform of a cosine wave spectrum.

Time Domain Frequency Domain
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Figure 4.24
Fourier transform of a sine wave.

Time Domain Frequency Domain
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Figure 4.25
Fourier transform of a sine wave spectrum.

This also works for sine waves. Figure 4.24 shows a real sine wave and its Fourier transform.
The complex spectrum is entirely imaginary. The values of the complex spectrum from figure 4.24
are as follows:

Frequency 0 -1 -2 -3 -4 -5 -6 -7 -8 8 7 6 5 4 3 2 1
Real 0 0 0 0 0 0 0 0 0 o 0 o0 o0 O 0 0 0
Imaginary 0 05 0 0 0 0 0 0 0 0 0 0o 0 O 0 0 —0.5

If we take the Fourier transform of the resulting complex spectrum, we recover the sine wave
(figure 4.25). This shows the symmetry of the Fourier transform for the sine function:

F{F{sinB}} = sinb. (4.20)
This also works for the IDFT, that is,
F-YHF{sinO}} = sin.

I leave the demonstration to the reader.
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Wavelength Symmetry It is a basic premise of physics that periodicity and frequency are
inverse, so the frequency f corresponding to a time interval T can be expressed as

1 1 -1
= —sec .

Tsec T @20

() =

Equation 4.21 suggests that if we were to shorten the time domain features of a signal, we would
expand the corresponding frequency domain features, and vice versa. Figure 4.26 demonstrates
this effect for doubling the frequency of a cosine wave. Shorter distances in the time domain cor-
respond to longer distances, in the frequency domain.

Impulse/Sinusoidal Symmetry It is remarkable that sinusoids (the quintessence of smoothness
and continuity) in the time domain are represented by functions that are spikes (the quintessence
of jaggedness and discontinuity) in the frequency domain (see for example, figure 4.26). Of course,
it works both ways: the inverse Fourier transform of the spiky spectral function produces a
continuous sine function in the time domain.

Impulse and Constant Function Symmetry Figure 4.23 showed that an impulse train consisting of
two impulses positioned as shown is converted into a cosine wave by the DFT. What is a single impulse
transformed into? Let’s create an impulse function that has a single imaginary impulse at position 0,
with zeros at all other positions. The Fourier transform of this single impulse is shown in figure 4.27.

Time Domain Frequency Domain
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frequency domain.
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Figure 4.26
Effect of doubling the frequency of a cosine on its spectrum.

Time Domain Frequency Domain

Figure 4.27
Transforming an impulse.
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The spectrum of a single impulse turns out to be a uniform constant-valued real function. That’s
why impulsive sounds such as clicks have spectra that contain equal energy at all frequencies.
Clicks in a signal splatter energy broadly across the spectrum because they share the spectral
characteristics of an impulse function.

What is the spectrum of a uniform constant-valued signal? In particular, if the constant-valued
imaginary spectrum in figure 4.27 is interpreted as a signal, what would its spectrum be? Figure 4.28
shows that we get the single impulse function back.

The frequency of a constant function of time is 0 Hz.

This gives some substance to the otherwise rather abstract notion of 0 Hz, “the frequency of no
frequency.”

A flow that reverses direction is an alternating current (AC). A flow that does not reverse direction
isadirect current (DC). The flow of ariver at its source is a direct current because the water never flows
uphill. However, where it flows into the sea, the river’s current is alternating because the tides push the
water in and out of the river’s mouth. A flow that varies without reversal is still a direct current: the
flow at a river’s source is just as much a direct current during a drought as it is after a rainstorm.

Impulse Train Signals So far we’ve observed that

* One impulse transforms into a spectrum with equal energy at all frequencies.
= Two impulses symmetrically placed transform into a cosine wave.

= Two impulses, one negative, symmetrically placed transform into a sine wave.

In the time domain, an impulse train signal consists of a multitude of equally spaced pulses
(figure 4.29). Its spectrum is also an impulse train. I’ve chosen values for figure 4.29 so that in

Time Domain Frequency Domain

Figure 4.28
Fourier transform of a constant-valued function.

Time Domain Frequency Domain

Figure 4.29
Impulse train.
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this case the two signals are identical. The time domain signal and its Fourier transform are as
follows:

Time domain 1 0 0 0 1 0 0 0 1 0o 0 o0 1 0o 0 0
Frequency 0 -1 -2 -3 -4 -5 -6 -7 8 7 6 5 4 3 2 1
Real 025 0 0 0 025 0 0 0 025 0 0 O 025 0 O O
Imaginary 0 0 0 0 0 0 0 0 0 0o 0 0 o0 o 0 0

If the impulse train spectrum from figure 4.29 is transformed again, the resulting spectrum is iden-
tical to the original time domain signal. Notice that the spectrum of the impulse train signal in
figure 4.29 does not change in amplitude with varying frequency. Also, the frequency domain
impulses become more densely packed as the time domain pulses become more sparsely packed,
and vice versa.

4.8 Convolution and Sampling Theory

So far, I’ve only provided an intuitive sense of the effects of sampling on the spectrum of a signal
being digitized. We are now in a position to formalize these intuitions.

I’ve described sampling as recording instantaneous, periodic measurements of a continuous
time domain function. But there’s another way to think about digitization that allows us to leverage
our knowledge of convolution.

In this view of sampling, we first construct a sampling function f(t) that is a continuous impulse
train function in the time domain. This means it is not a list of discrete sample values but a
continuous-valued function consisting of positive impulses at some periodic interval, ranging in
time from minus to plus infinity. The impulses are all of unit area and infinitesimal duration.?

Let’s say g(#) is acontinuous signal that we wish to record digitally. If we multiply the sampling func-
tion f(¢) and the signal g(7), the result will be an impulse train function whose heights correspond to the
instantaneous amplitudes of the input signal at each point where the sampling function was nonzero.
Call this /(¢), the sampled signal. This process is shown in figure 4.30. Note that /(¢) is also continuous,
even though it looks like a sampled function, because it is the product of continuous functions.

Let the spectrum of a(¢) be H(k). What will H(k) look like? Since we are multiplying the sam-
pling function f(#) and the input signal g(t) to create h(t), we know H(k) must be the convolution
of the spectra of the sampling function F(k) and input signal G(k).

g o h(?)

L 44

Figure 4.30
Sampling via an impulse train function.
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But what is the spectrum of the sampling function? Since f () is an impulse train, its spectrum
F (k) will be like that shown in figure 4.29: a sequence of impulses. Importantly, the amplitude of
these spectral components does not decrease with increasing frequency. Each spectral component
of an impulse train is of constant height. Furthermore, since the sampling function is of infinite
length, its Fourier transform will have an infinite number of spectral components, all the same
height. If the impulses of the sampling function are spaced T seconds apart, the spectral compo-
nents will be spaced at frequencies that are harmonics (integer multiples) of the sampling
frequency f, = 1/T.

As discussed in section 4.4.2, we end up with copies of the whole spectrum of G(k) placed with
their centers on each component of F(k).

The spectrum of the sampled signal H (k) contains an infinite number of copies of the input
spectrum G(k) spaced at intervals of the sampling spectrum F (k).

Said another way, copies of the sampled spectrum are centered on each harmonic of the sampling
rate. But since there are an infinite number of these harmonics, the spectrum of a digitized signal
is infinitely periodic. Figure 4.31 shows the periodic spectrum of a digitized signal. Though these
spectral copies have an identical shape, they are not the same because each copy is centered on a
different component of the spectrum F'(k).

If G(k) has no spectral components outside the interval %f,/2, the Nyquist frequency range, all
is well. But if the spectrum of G (k) is wider than %f,/2, the components that lie outside of the
Nyquist frequency range spill over into the adjacent spectral periods. Figure 4.32 shows an
example of this, highlighting the areas of overlap.

The components that overlap each other are aliased components. These components typically
bear no harmonic relationship to the underlying spectrum of G (k), so they tend to introduce a very
objectionable form of distortion into the digitized signal. To avoid aliasing, we must apply an
anti-aliasing filter to g(f) to eliminate any components in its spectrum that may lie outside of the
Nyquist limit prior to digitization (see section 1.3).

2fs 37 ~fs s 0 ks Js 3 2f
2. S 2 2 2 S

Figure 4.31
Periodic spectrum of a digitized signal.

Figure 4.32
Spectrum of a digitized signal with overlapping components.
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Ideally, we’d eliminate the undesirable aliases by constructing a “brick wall” filter that passes
all frequency components within the Nyquist frequency range equally and utterly rejects all others.
But in reality there are compromises, and a less-than-ideal filter must be used. Depending upon
what compromises are made, the filter may not entirely reject all aliased components (bad), or it
may cut out a bit of the desired spectrum (better). It may also distort the spectrum by amplifying
some regions of the selected frequency band more than others. Proper design of optimal
anti-aliasing systems go beyond the scope of this book.4

All digitized signals contain an infinite periodic spectrum with a period equal to the sampling
Jfrequency.

What happens when we try to play back the sampled signal /(f)? We must apply another anti-aliasing
filter, called a reconstruction filter, to eliminate the multiple spectral copies, leaving only spectral com-
ponents within the Nyquist frequency range. This subject is discussed in section 1.3 and chapter 5.

4.9 Convolution and Windowing

In the discussion of windowing (section 3.6), I used an intuitive approach to explain its impact on
the resulting spectrum. Now, with convolution, this can be made more formal.

4.9.1 Rectangular Functions and the Sinc Function

Figure 4.33a shows a continuous rectangular function. The duty cycle of a rectangular function is
the ratio of the time it is nonzero to the duration of its period. By inspection, the duty cycle of this
rectangular function is 1/2. The real part of the spectrum of the rectangular function is shown in
figure 4.33b. This is the sinc function, defined as

sincx = %C . Sinc Function (Cardinal Sine) (4.22)

a) Continuous Rectangular Function

b) Frequency Domain, Real Part Only, Close-up

—671 —47 21 0 27 41 6T
Figure 4.33

Rectangle function, sinc function.
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Since sin0 = 0, sinc(0) = 0/0 = 1 by the rule that the ratio of two equal quantities is 1. Note,
however, that computers and calculators typically can’t divide by 0, so for these applications the
sinc function can be defined as

sincx = (sinx)/x, x#0,
1, x=0.

The zero-crossing points on the sinc function (where sinx = 0) correspond to values of x = nr,
where 7 is an integer and n # 0. Notice that when n =0, sinc(0) = (sin 0)/0=1.

4.9.2 Windowing with a Rectangular Function

If we select a portion of a signal by windowing it with a rectangular function, we multiply the signal
point for point with a rectangular function set to 1.0 for the portion we wish to extract and 0.0
elsewhere (see section 3.6). Since this constitutes multiplying two time functions together, we
know this means the spectra of the two functions are convolved.

To see this at work, start with the following definitions:

= A real rectangular windowing function f(¢) has the spectrum F(k).
= A real signal to be windowed g (#) = sin (2 7ff), has the spectrum G (k).
* The windowed signal—the product of f(¢) and g(¢#)—is h(t), and its spectrum is H (k).

We know from figure 4.33 that the real part of the spectrum F (k) is a sinc function.

Since we are multiplying f(#) and g () in the time domain, we are convolving F (k) and G (k) in
the spectral domain. We end up with copies of the whole spectrum of F (k) placed with its center
on each component of G (k). In this example, G (k) is the spectrum of a sine wave, shown in
figure 4.34a. The convolution of G (k) with F (k) is shown in figure 4.34b. The central lobe of the
copies of the sinc function end up centered on the components of G (k).

a) ‘
G(k)
|
‘ 0
G *
SN PwA
\/ T
Figure 4.34

Sine spectrum and its convolution with a sinc function.
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4.9.3 Spectral Interpretation of the Fourier Transform

We can use figure 4.34 to gain a valuable insight into the workings of the Fourier transform. With the
discrete Fourier transform, as in the preceding example, we are windowing a phasor with a
rectangular function. Thus figure 4.34b is essentially the same as the sine portion of the probe
phasor’s spectrum because both were created by multiplying a sine wave and a rectangular function.

This suggests that from a spectral perspective, the Fourier transform generates a probe phasor
with a spectrum like figure 4.34b for each harmonic under test. For each such spectrum in turn, the
Fourier transform then multiplies the spectrum of the whole input signal by the spectrum of the
probe phasor. Nonzero values in the result indicate the presence of energy at those frequencies.

This in turn provides insight into why the Fourier transform works perfectly for harmonic spec-
tra but imperfectly for inharmonic spectra. Notice that the spectrum in figure 4.34b is mostly non-
zero. But it is exactly zero at all integer multiples of the frequency of the main lobe. The amplitude
at the center of the main lobe is 1.0, and the amplitude at all other harmonics is 0.0. Thus, when
multiplied against the input spectrum, the spectrum of the probe phasor does not change energy
at the center of its main lobe, and it zeros out energy that is exactly harmonic. But inharmonic
energy is imperfectly suppressed. This is the source of leakage when we try to analyze real-world
signals that are not aligned with the fundamental analysis frequency of the Fourier transform. Con-
cisely, the side lobes of the sinc function will only zero energy in the input spectrum if that energy
is strictly harmonic. Otherwise the other components of the input signal contribute energy to the
spectrum at each harmonic, skewing the resulting measurement.

Figure 4.34b has been structured so that the period of the windowing function f(#) is an integer
multiple of the period of g(¢), which causes the zero crossings of the window function’s spectrum
F (k) to coincide with any other harmonics G (k) might have. This fact doesn’t matter much in this
example because a pure sine wave has no harmonics, but if the input spectrum contained only
harmonics of this frequency, this would zero out all harmonics except the one under the main lobe
of F(k), allowing us to isolate it and measure its energy.

4.9.4 Frequency-Based Interpretation of the Fourier Transform

The previous section provides a stepping-stone to a frequency-based interpretation of the Fourier
transform. Remember that the DFT examines the entire input signal one harmonic at a time, and
reports the amount of energy present at each harmonic. Unless we supply a different window, the
probe phasor is windowed by a rectangular function with a duty cycle of N samples, the length of
the Fourier transform. The spectrum of the probe phasor is therefore a complex version of
figure 4.34b: a sinc function convolved with the complex spectrum of the phasor.

Because the Fourier transform multiplies the input signal by a probe phasor at the frequency of
the harmonic currently being measured, it effectively constructs a temporary spectrum that is the
convolution of the input spectrum with the spectrum of the probe phasor at that frequency.

= If a component in the input spectrum has the same frequency as the current harmonic being
measured, its amplitude is not changed by the analysis (figure 4.35a) and it contributes fully to the
measurement.
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Figure 4.35
Components under test.

= Any nonharmonic components in the input spectrum are attenuated, because they fall on the
skirts of the sinc function, but they are not eliminated entirely (figure 4.35b).

= All other harmonics fall on zero crossings of the sinc function (figure 4.35c¢); they will not
contribute to the measurement.

The Fourier transform is only good at testing harmonic components, and any component in the
analysis spectrum that does not fall on a zero crossing will add its energy into the measurement
of this harmonic, thereby distorting that harmonic’s true amplitude.

4.9.5 Filter Bank Interpretation of the Fourier Transform

The preceding discussion suggests that it is possible to think of the Fourier transform as constructed
out of a tunable filter. In this view, the Fourier transform filters the spectrum of the analysis signal
at each harmonic of the fundamental analysis frequency to measure its energy. The main lobe of the
sinc function resonates with energy in the analysis signal at the frequency under test.

However, if there is energy in the analysis spectrum at any frequency under a nonzero section
of the sinc function, that component contributes to the current measurement in proportion to its
magnitude. The amplitude of the side lobes of the sinc function falls off very slowly, meaning that
there’s lots of opportunity for measurement contamination from regions covered by these side
lobes. For instance, consider the amplitude of the first upper and lower side lobes. Since the sinc
function is sinusoidal (see equation (4.22)), the zero crossings occur when x has moved through
a semicircle. Thinking along these lines, the first side lobe must have a peak where x =37/2.
Converting that to dB of amplitude, we have

201log;, sinc:%r =-13.5dB

with reference to the height of the central lobe (0 dB). The significance of this is that any components
that are located in the vicinity of these lobes will only be suppressed by about —13.5 dB. Looking at
the rest of the lobes, we see that they decline in amplitude relatively slowly, so any energy that lies
under their “umbrella” will also contribute—erroneously—to the spectral measurement.
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Frequency Domain Time Domain

Figure 4.36

Sinc squared function and its triangular spectrum.

4.9.6 Sinc Squared Function

If we could make the amplitude of the side lobes fall off more quickly, there would be less
opportunity for distant components in the analysis spectrum to contaminate the measurement. We
could accomplish this if we squared the sinc function. The central lobe of the sinc squared function
is slightly narrower (though it is still just as tall), and the amplitude of the side lobes falls toward
zero much more quickly. The time domain function corresponding to the frequency domain sinc
squared function is the triangle function (figure 4.36). This explains from a frequency domain
perspective why a triangular window is better at rejecting spurious frequency content than a
rectangular window.

4.10 Correlation Functions

If two functions are similarly shaped, we say they are correlated. If they are dissimilar, we say
they are uncorrelated. If f(t) and g(t) are sampled functions, their discrete correlation 2 (n) is
denoted

h(n) = fxg = i fim)g(n+m). Correlation (4.23)

m=(~e0)

Correlation and convolution are close mathematical relatives because this formula is almost
identical to convolution (see equation 4.1) except that the function g is not reversed in time; that
is, we have g (n + m) for correlation and g (n — m) for convolution. To memorialize this distinction,
we use star (%) for correlation and asterisk () for convolution.

Correlation is also sometimes denoted as corr(f, g). If two functions can be made to show a high
degree of correlation by shifting one of them in time ¢, we say they are correlated with lag .

We can create a correlation function that compares the amount of correlation as one function
is shifted to the left or right of the other by varying the time lag ¢. Occasionally lag time is indicated
with the notation corr(f, g)(¢). If high correlation is achieved with positive ¢, then the first function
f(n) lags (appears to the right of) the second function g (n). Otherwise, if high correlation is achieved
with negative ¢, then the first function leads (appears to the left of) the second function. This can
be summarized by writing

corr(f, g)(1) = corr(g, f)(-1).
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4.10.1 Correlation and Spectra

Spectrally, correlation is also similar to convolution. The Fourier transform F{ }of the discrete cor-
relation of two real functions f(n) and g(n) can be written

F{corr(f,g)} = F(0)G(w), (4.24)

where the bar over G (®) indicates the complex conjugate.5 This says that the Fourier transform
of the correlation of two real signals equals the product of the spectrum of the one by the complex
conjugate spectrum of the other.

4.10.2 Fast Correlation

The fact that the two sides of equation (4.24) are related by the Fourier transform suggests that cor-
relation can be computed efficiently with the fast Fourier transform (see section 3.7). First, take
the FFT of both functions, then take the complex conjugate of one of them. The inverse FFT of the
product of these signals is their correlation. Though the result is complex, the imaginary parts will
be zero if both input functions are real. The elements of the inverse FFT correspond to the corre-
lation at various lags, with the value of FFT(0) corresponding to zero lag, and so on.

4.10.3 Autocorrelation

The correlation of a function with itself, corr(f, f), is its autocorrelation

N-n
¢, = corr(f,f)(n) = fxf = mz femftn+m). - n =01 N= L
m=0 Autocorrelation (4.25)

The term 1/(N + 1 — n) normalizes the sum for the number of elements in the function that are
being autocorrelated for a particular n.
By equation (4.24), the autocorrelation of a function fis equal to the power spectrum of that function:

F{corr(f,f)} = F(w)F(w) = |F(w)] o Wiener-Khinchin Theorem (4.26)
where the power spectrum is the square of the magnitude spectrum (see equation (3.24)).
4.10.4 Uses of Correlation

Correlation can be used, for example, to determine the time delay between when a sound is
transmitted and when it is received. If the propagation delay is known, correlation can be used
to determine the distance to a reflecting surface, or even the geometry of a room. If g(¢) is a
signal reflected from a wall and f(¢) is the original signal, then their correlation function /(n)
will show a spike for the value of n corresponding to the time delay in samples between the two
signals.
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Autocorrelation can help detect deterministic signals that are masked by a random background
signal. The autocorrelation of a deterministic signal, such as a sine wave, persists over all time
displacements, whereas the autocorrelation of random processes tends towards zero for large
displacements.

More generally, correlation can be used to determine the similarity between any two functions.
For instance, it can be used to help identify sounds, such as phonemes of speech: a phoneme from
a speaker is correlated against a codebook of sample phonemes; the highest degree of correlation
is taken to indicate the phoneme being uttered.

Summary
In section 3.8.1, we saw demonstrated the following principles of symmetry between signals and
spectra.t

= When signals are added together, so are their spectra.
= When spectra are added together, so are their signals.
* When a signal is multiplied by a constant, its spectrum is multiplied by the same constant.

* When a spectrum is multiplied by a constant, its signal is multiplied by the same constant.
We can now add two new rules:

1. When two signals are multiplied, their spectra are convolved.

2. When two spectra are multiplied, their signals are convolved.
And two new corollaries:

3. When two spectra are convolved, their signals are multiplied.

4. When two signals are convolved, their spectra are multiplied.

Corollary (3) is just rule (1) starting in the frequency domain. Corollary (4) is just rule (2) starting
in the time domain. We can combine all these observations as follows:

Rule Time Domain Direction Frequency Domain
1 multiply — convolve
2 convolve “— multiply
3 convolve - multiply
4 multiply — convolve

Multiplying or convolving in one domain convolves or multiplies in the other domain, respectively.
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Convolution certainly travels in good company, appearing in the same ranks as addition and
multiplication in importance. It is fundamental to the symmetry between signals and spectra. It
explains the spectral consequences of digital sampling theory. It unlocks such subjects as filtering
and reverberation, among many other things.
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5 Filtering

The science of pure mathematics, in its modern development, may claim to be the most original creation of
the human spirit. Another claimant for this position is music.
—Alfred North Whitehead

Just as an antique camera technology provided an intuitive introduction for convolution (chapter 4),
analog tape recorders provide a very effective model for understanding filtering.

5.1 Tape Recorder as a Model of Filtering

Analog tape recorders operate by dragging a magnetic tape past erase, record, and playback heads
at a constant rate (figure 5.1). The tape is pinched between the motor-driven capstan and the pinch
roller to pull it along. The reel on the left supplies tape at the rate determined by the angular velocity
of the capstan; the motor-driven reel on the right takes up the tape after it passes the capstan.

When recording, the tape first passes under the erase head, which removes any previous recording.
A moment later, the erased tape passes under the record head, which converts the incoming electrical
audio signal into magnetic fluctuations on the tape. Then the newly recorded tape passes under the
playback head, which picks up the magnetic fluctuations, converts them back to electrical signals,
and sends them to an amplifier and loudspeaker for reproduction. This arrangement allows the
recordist to monitor the recording in progress. (If the erase and record heads are switched off, a pre-
viously recorded tape can be played.)

Because of the delay introduced by the passage of the tape from record to playback head during
recording, a performer playing into this setup will hear a delayed version of the performance in the
loudspeaker. The delay introduced by the tape recorder is what makes it a kind of filter. The study
of filtering can be likened to the ways that a tape recorder can be configured.

5.1.1 A Simplified Echoplex Machine

A variant of the analog tape recorder called the Echoplex was manufactured in the mid-twentieth
century. Like the standard tape recorder, it had an erase head and a record head, but it had multiple
playback heads spaced at adjustable intervals. Figure 5.2 shows its essential elements.
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Transport of an analog tape recorder.
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Figure 5.2
Simplified Echoplex machine.

This simplified Echoplex machine has just two playback heads, marked [ in the figure. The
first one is fixed in place, but the distance of the second one is adjustable. The machine provides
separate volume knobs for the two playback heads, then sums their outputs. (A real Echoplex has
many more playback heads.)

Suppose I connect a microphone to the record head (through an amplifier, not shown) and attach
headphones to the output (again, through an amplifier, not shown). Speaking into the microphone,
I’d hear my voice after a moment’s delay while the sound travels from the record head to the first
playback head, then I’d hear the sound again when it reaches the second playback head some time
later, depending upon how far away the second playback head is and how fast the tape is running.
If I snapped my fingers into the microphone, I'd hear two snaps separated by some time distance—in
other words, I’d hear two echoes.
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Playback heads sum different frequencies differently.

If I sped up the tape or put the playback heads closer together (or did both), the echoes would
come closer together until at some point, as I continued to increase the tape speed (or decrease the
distance, or both), the two echoes would seem to fuse together, but I'd hear a kind of hollowness
in the sound that wasn’t there before. As I continued to speed up the tape, the pitch of the hollow-
ness would appear to change.

Without getting too analytical (yet), what is happening is that the microphone signal is being fil-
tered by the tape recorder. The hollow sound is created by the way the two playback heads combine
the waveforms on the tape. They sample the sound recorded on the tape at different points.

Consider the sinusoidal waveforms recorded on the magnetic tape shown in figure 5.3. The play-
back heads are summed together, as they are in figure 5.2. First, let’s fix a constant distance
between the playback heads. Then let’s connect a sine wave oscillator to the record head and record
different frequencies onto the tape while we measure the strength of the output signal. We’ll
observe that some frequencies are loud but others virtually disappear, even though the output
strength of the oscillator does not change. Why?

The answer is that some frequencies picked up by the two playback heads are in phase and there-
fore sum together, while other frequencies are out of phase and therefore cancel.

In figure 5.3a, the distance between the playback heads is exactly one period of the sinusoid
recorded on the tape. When the output of the playback heads is summed for this frequency, the two
signals reinforce each other.

In figure 5.3b, the distance between the playback heads is 1.5 periods of the sinusoid recorded
on the tape. When the output of the playback heads is summed for this frequency, the two signals
cancel each other.

Thus, the distance between the playback heads strengthens some frequencies and weakens or
even cancels others. That’s what filtering is: frequency-selective amplification.
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5.1.2 Tape Recorder with Feedback

For this example, let’s go back to just three heads, erase, record and play, but this time let’s feed
some of the output signal from the playback head back into the input of the record head mixing
it together with the input signal (figure 5.4).

The feedback volume control determines how much of the signal received by the playback head
is fed back to the record head again. If this volume control is all the way off, no signal is fed back,
and we hear a brief delay between the signal presented at the microphone and the signal presented
at the output. But as the feedback volume control is turned up, at some point we hear the familiar
echo...echo...echo...echo of arecirculating delay line in operation that reminds us of the
sound dying away as it reflects between the walls of a room.

If I vary the tape speed (or the distance between record and playback head, or both) the echo rate
varies. If I turn up the amount of playback signal fed back to the record head, at first the echoes
become more persistent, then they seem to fuse into a continuous wash of sound. Beyond a certain
critical feedback volume setting, sounds become louder and louder all by themselves even if Idon’t
touch the feedback volume control, and the sound quickly becomes highly distorted.

This is akind of filter too, called an infinite impulse response filter. If 1 record an impulsive sound
such as a hand clap or finger snap, the sound could keep recirculating in a loop forever, depending
upon the setting of the feedback volume control. Its critical feature is that it recirculates its output
back to its input, yielding potentially infinite repeats.

The type of filter shown in figure 5.2 is called a finite impulse response filter. It is finite because
no matter what we do, we’ll only get back as many impulses as we have playback heads. Hence
its response to impulses is finite.

Tape recorder analogies are very useful in a variety of settings. We’ve already seen their use-
fulness to describe echoes and two kinds of filters. They can also be used to describe Doppler shift.
For example, suppose we modify an Echoplex so that we can dynamically vary the displacement
of the playback head. As we slide the playback head closer and farther away from the record head
during recording, we hear changes in pitch and tempo of the recorded sound that are exactly the
same as those discussed for the Doppler effectin volume 1, section 7.12 (for the case of a stationary
sound source and varying listener position).
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Tape recorders also serve as models for a discussion of the technology of time dilation and pitch
shifting in chapter 9.

5.2 Introduction to Filtering

In chemistry, a filter is something that removes foreign matter from a fluid. In optics, a colored gel
selects a band of frequencies from a spectrum of light corresponding to the color of the gel. As 1
use the term in this chapter, a filter can remove, reduce, or even strengthen certain bands of fre-
quencies in a signal.

5.2.1 Frequency Response

The frequency response of a filter shows which frequencies a filter passes and which it rejects.
Filters are classified by the kind of frequencies they pass. Simple categories of filters include

= Lowpass Low frequencies are allowed to pass through.
= Highpass High frequencies are allowed to pass through.
* Bandpass A band of frequencies between a lower and an upper limit are allowed to pass through.

= Bandreject A band of frequencies between a lower and upper limit are blocked.

For frequencies where the curves in figure 5.5 are above the horizontal line, the filter makes the
signal stronger in that frequency range. Where the curve is below the line, the filter weakens the
signal by a corresponding amount in that frequency range.

For completeness, we must include one more kind of filter:

= Allpass All frequencies are allowed to pass equally.

What good is the allpass filter? This filter changes only the phase of the signal. Whereas all filters
have some effect on phase, the allpass filter only has an effect on phase.

More complex filters can be built up out of combinations of these simpler filters. Any complex
filter can be broken down into some combination of these simple filters.

In addition to modifying the amplitude of signals based on their frequency, filters typically also mod-
ify the phase of the signals, delaying the phases of some frequencies more than others. Even though an
allpass filter may not change the amplitudes of any frequencies, it may have an effect on their relative
phases. We call the effect of a filter on the phase of a signal its phase response. Though the influence
on phase is important to the theory of filters, the amplitude response is generally a more salient measure
of a filter’s operation because our ears are generally more sensitive to amplitude than phase.

The frequency response of a filter is defined as the ratio of the filter’s output amplitude to its
input amplitude. This ratio is called the gain of the filter. Say the frequency response of a filter is
H(k), where k is frequency; then its gain is

k)

Hk) = 705,

Gain (5.1)
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Figure 5.5
Frequency responses of various filters.

where O (k) and I (k) are the amplitudes at frequency k of the output and input signals, respectively.
A gain ratio greater than 1 is amplification, and a ratio less than 1 is attenuation.

The passband is the frequency region which the filter lets pass, and the stopband is the region
the filter blocks. In real-world filters, the amount of amplification or attenuation changes gradually
with frequency, and so the basic filters in figure 5.5 show the transition from passband to stopband
as gentle curves. However, ideally, we might like to have a filter that passes all frequencies within
its passband with equal amplification and perfectly rejects all frequencies in its stopband.
Figure 5.6 shows the frequency response of an ideal lowpass filter.

The end of the passband is indicated by f, the cutoff frequency. In figure 5.6, the gain is unity
in the passband and minus infinity in the stopband. Filters that approximate the frequency response
shown in figure 5.6 are sometimes called “brick wall” filters because of the sudden change in gain
between passband and stopband.

5.2.2 Filter as Spectral Multiplication
In section 4.5.4, I characterized the operation of a filter as spectral multiplication:

Y(k) = H(k)X(k), (5.2)
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where X (k) is the spectrum of an input to the filter, Y ( k) is the spectrum of the output of the filter,
and H (k) is the filter response. Since filtering can be seen as spectral multiplication, that means
there are two ways to implement any filter: as multiplication in the frequency domain, and as con-
volution in the time domain. Theoretically, both perspectives are equivalent. However, in real-world
filters, the implementation choice really depends on some combination of the design aims and such
practicalities as the kinds and amount of processing we can afford. In the following discussion I
consider filtering from both the time domain and frequency domain perspectives.

5.2.3 Discrete-Time and Sampled Signals

Filtering requires operating on multiple points of a signal simultaneously. In order to study filters
mathematically, we must have a flexible way to represent multiple discrete moments of a signal.
If we have a sampled signal x(#n), and say that sample number 7 corresponds to now, then n — 1
indexes the immediately previous sample, and n+ 1 indexes the immediately subsequent sample.
If time is graphed on the x-axis with now at n, the past (mn—1,n—2,n-3, .. .) is generally shown
stretching to the left, and the future (n+ 1, n+2, n+3, . . .) to the right.

5.3 A Simple Filter

The simple lowpass filter is the best place to begin. It can be expressed as the following difference
equation:

y(n) = x(n) +x(n-1), n=201273.... 5.3)

A difference equation references multiple points at di