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1
Introduction

In several senses, causal relations are, or ought to be, the subjects of

cognitive psychology. Virtually all of the divisions of cognitive psychol-

ogy (and related subjects, psychometrics for example) are about the

causal processes and mechanisms through which intelligent action comes

about. Subdisciplines—human adult judgement and developmental psy-

chology, for examples—are chiefly about the processes and mechanisms

through which human understanding of causal relations comes about,

the causes of our knowledge of the causal structure of the world. Other

than by luck, cognitive science will succeed only if scientific inferences to

causes are made by reliable procedures. And adequate theories of human

understanding require knowing what it is that people have when they

have causal knowledge, and how they come to have it. These tangled

issues are the subjects of this book.

In the last decade, small groups of statisticians, computer scientists,

and philosophers have developed a theory about how to represent causal

relations and how causal claims connect with probabilities. From those

representations there follow accounts of how information about some

features of the world may be used to compute probabilities for other

features, accounts of how partial causal knowledge may be used to com-

pute the effects of actions, and accounts of how causal relations can be

reliably learned, at least by computers. The objects of the theory are

sometimes called causal Bayes nets, sometimes referred to by a more

general category, graphical causal models. The differences are technical.

Briefly, graphical causal models include structures with feedback, but

Bayes nets do not.

Causal Bayes nets, and graphical causal models more generally, are

surely an incomplete representation of the variety and wealth of causal



constructions we use in science and everyday life, but they apply widely

enough, I claim, to be surprisingly useful in psychological theory, in the

interpretation of psychological experiments, and in guiding and evalu-

ating causal inferences in psychology. More than useful, essential. This

book consists of illustrations of this thesis in studies of adult judgement,

in developmental psychology, in cognitive neuropsychology, and in psy-

chometrics and social psychology. The illustrations are both positive and

negative. I suggest that theories—the theory theory—of how cognition

develops in infants and children can be fruitfully elaborated by suppos-

ing that one of the main tasks of children is to learn the causal structure

of the world, and that what is to be learned, and how it could possibly

be learned, is illuminated by causal Bayes nets. I show, or at least claim

to show, that the results of well-known experiments in adult judgement

have been seriously misinterpreted, and that well-known theories of adult

causal judgement entail a range of unrecognized, and so untested (but

testable), predictions. These suggestions lead to proposals for psycho-

logical experiments that have not been done and interesting projects in

the development of heuristic learning procedures, including the forma-

tion of categories. They include a sketch of an approach to the frame prob-

lem, which I understand as the task of specifying feasible algorithmic

procedures by which factors relevant to actions and plans can be iso-

lated from irrelevant factors.

In cognitive neuropsychology, so-called ‘‘box and arrow diagrams’’

are causal hypotheses, in fact graphical causal models with extremal

(that is, 0 or 1) probabilities. Using the graphical representation and

elementary computational learning theory, I investigate two methodo-

logical questions that have been disputed at length in the neuropsycho-

logical literature: What inferences can be reliably made from the study

of the deficits of brain damaged individuals? What inferences can be

reliably made if such data are aggregated in various ways to yield

‘‘group data’’? Bayes nets are a species of neural nets, which are in turn

a species of graphical causal models. Reintroducing probabilities, I use

graphical causal models to begin to address arguments in cognitive neu-

ropsychology based on the behavior of lesioned neural networks repre-

senting brain damage. Can any mathematically possible combination of

normal and brain-damaged behaviors be explained by postulating some
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neural network representing the normal brain (or normal functional

architecture) and lesioning it appropriately?

Many of the statistical models used in psychometrics and in social

psychology are graphical causal models in disguise. That recognition,

combined with what we know about inference to graphical causal

models from data, ought, I argue, to change radically the technology that

social psychologists use to represent causal hypotheses, and the methods

by which they argue for them. There is a dismaying unity between

social statistics and psychological interpretations of adult judgements

of causation. The fallacies of statistical methods popular in social sta-

tistics—regression and factor analysis—become, in the experiments of

some cognitive psychologists, the norms against which the judgements of

experimental subjects are assessed. Subjects make judgements that are

sometimes, perhaps often, normatively correct, and on the basis of those

judgements, psychologists, or some of them, claim to have discovered

features of human irrationality so fundamental that, were these psycho-

logists correct, our capacity to get around in the world would become

quite mysterious. A central fallacy in regression is the very same error

that occurs in many psychological interpretations of experiments on

adult human judgement, the topic of much of part 2 of this book.

All that changes from cognitive psychology to social psychology is the

mathematical clothing of the fallacy. Psychologists are the victims in

this practice, the victims of confusions about causal inference buried

in the statistical methods they have borrowed from other disciplines.

I hope to persuade them that there are better lenders. The points are

illustrated with a discussion of the use of data and causal hypotheses

in The Bell Curve, surely the most notorious work of social science in the

last decade, but they equally apply to many less famous efforts in social

psychology.

Two features of this book require brief apology. First, while many

experiments are proposed, and many are analyzed, this book contains

no details of any original experiments. My scientific training is in chem-

istry and chemical physics, not psychology, and I was never very good

even in the chemistry laboratory. I have the greatest admiration for the

ingenuity and wealth of tacit knowledge that enables good psychologi-

cal experimenters to get clean results. Second, psychological papers on
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causal judgement often begin with reviews of philosophical metaphysics

about causation, generally citing Hume and Kant. There is none of that

here, and in the usual sense of the moderns, but not of the ancients, there

is no philosophy. I do not propose a philosophical analysis of causation,

and except as they present experimental ambiguities, I am not much

concerned with how people express themselves when making causal

judgements or when offering causal explanations. My concern in devel-

opmental psychology, for example, is less with how children come to

generate explicit causal explanations and more with how they come to

be able to predict and control their environment. Even so, a number of

distinctions about kinds of causal knowledge necessarily emerge in the

discussion.

So far as possible, I have suppressed formalism and mathematical

details. Undoubtedly, many readers will think not nearly enough. While

I have provided a brief summary of causal Bayes nets and their prop-

erties in chapter 3, for the most part I have tried to motivate the essential

ideas through examples from the psychological literature. Especially

in parts III and IV, substantive discussion is interrupted by historical

digressions. I believe that historical considerations are an essential tool

for understanding the fundamental problems that motivated the intro-

duction of technical methods and for seeing how contemporary tech-

niques have either solved or evaded those problems. I also think that

historical perspective sometimes diminishes the sense of contemporary

originality, and rightly so.
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2
Android Epistemology for Babies

2.1 Introduction

At its birth in nineteenth century neuropsychology, the most successful

strategy of cognitive psychology was decomposition. Apparently indi-

visible intelligent capacities were shown to consist of a complex of less

intelligent component subcapacities. When parts of our machinery are

broken—when our brains are damaged—we behave irrationally or

incompetently, and our failings reveal something of the brain’s mecha-

nisms. The psychologists of the day allowed that, when whole, we are

still the grand, rational creatures we had taken ourselves to be since

the Enlightenment. Freud, who began his professional career as a neuro-

psychologist, extended the strategy to psychological breakage, but he

and his disciples gave a post-Enlightenment twist to abnormal behavior

and rationality.

By the middle of the twentieth century, a certain pessimistic parallel-

ism emerged in social and cognitive psychology. Through a series of

slightly shocking experiments, social psychologists argued that features

of character we think are stable are really artifacts of context. Change

the context sufficiently and the kind become vile, the brave become ser-

vile, the gentle become cruel. At about the same time, Paul Meehl (per-

haps not accidentally, a psychoanalyst) argued that simple algorithms

make better predictions than do expert clinical psychologists. Meehl and

his contemporaries in social psychology anticipated a genre that is now

standard in cognitive psychology. Cognitive or ethical behavior is com-

pared with some normative standard, and humans are found want-

ing. Well-designed machines would optimize; we are machines that can

only satisfice, on a good day. According to received opinion in cognitive



psychology, we are ill-constructed, incompetent machines, without firm

character, unable to act by moral or rational standards, deluded that our

conscious deliberations cause (at least some of) our actions. The one bit

of intelligence left us, science, is an unstable oddity that we sustain only

through elaborate social mechanisms.

We might have guessed most of this from the newspapers, or any

reading of history. Still, we are smarter than toasters and thermostats.

We are a lot smarter than any machine we have been able to build. Even

children who grow up to be fundamentalists and postmodernists learn

a natural language, everyday physics, spatiotemporal regularities, com-

monsense psychology, and a wealth of causal relations involving people

and things. Whatever our ambitions for artificial intelligence, no machine

as yet comes close. The most intelligent things about us are not what we

do or what we know, but that we have learned to do or to know. The

common complaint that Turing’s famous test for intelligence set too high

a standard for machine intelligence has got it upside down: for intelli-

gence like ours, a computer should not only be able to hold a conver-

sation that imitates a man’s, or imitates a man imitating a woman, it

should be able to learn to hold such a conversation, in any natural lan-

guage, from the data available to any child in the environment of that

language. Turing thought as much himself.1 For machines we can build,

that would be a dream, if only machines we can build could dream. If

we’re so dumb, how come we’re so smart?

2.2 Children

In 1998 my six-year-old daughter, Madelyn Rose, had a frog named

James. James and Madelyn had rather different worlds. Judged by his

behavior, James’s world was pretty well described by a language with

just two predicates: ‘‘brown-spot-in-water’’ and ‘‘fast-large-motion-

nearby.’’ When James was a tadpole, his world may have been simpler,

but it can’t have been a lot simpler. Madelyn’s amazing world was filled

with things with various powers, all of which she knew about and knew

how to use; people, with mental states she matched or contrasted with

her own; complex relationships of indescribably many kinds; and a lan-

guage she could speak and read and sort of write and tell bad jokes in.2

She had explanations for her world, pretty good explanations even when

8 Developmental Psychology and Discovery



off the mark.3 When she was born, to all appearances she knew none of

this. How did she come to be such a know-it-all?

What we seem to know from developmental psychology is this:

Madelyn was born able to discriminate up-close objects, with the ability

to judge whether there were one or several such objects and with a dis-

position to reidentify objects that moved continuously in her field of

view. She also identified the objects of one sense with the objects of

another—the same object was seen and touched. By the age at which she

could control her head a bit, she could reidentify objects that had not

moved when she had turned her head so that they were out of her field

of vision and then turned it back. By six months she could reidentify

objects by predicting a trajectory when they had been out of her sight for

part of that trajectory, as long as the total trajectory was very simple,

e.g., a straight line. She made lots of mistakes—in particular, she thought

things that disappear tend to be where they were last seen, even in

contexts where that was repeatedly falsified. At about nine months she

began to think that people in different positions see different aspects of

an object, the details of which she was still working out at 18 months.

By 12 months, using constancy or near constancy of perceptual features,

she could reidentify objects that had been out of sight for a while, and

she largely overcame the mistake of thinking things remained where last

seen, although she could still be fooled. By 18 months she was reidenti-

fying objects from perception more or less like an adult, but her under-

standing of what others perceive was still not correct. By age 3 she had

got right others’ perceptions of objects—at least what is visible and what

is invisible to whom.

Madelyn was born knowing how to imitate some facial expressions.

Within a couple of months she had learned that certain of her actions, in

certain contexts, produced a result, and that in some cases the result

varied with the intensity of the action (as in kicking). She tended for a

long while to radically overgeneralize and undergeneralize connections

between her actions and their consequences. If pulling a blanket with a

toy on it brought the toy to her, she would pull the blanket even when

the toy was beside, not on, the blanket.

In this same period Madelyn learned to crawl and to walk, and

she began to learn to talk. According to psychologists, the timing of

these skills was not accidental. Crawling improves judgements about
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reidentification (or ‘‘object permanence’’), and judgements about objects

that are out of sight develop at about the time that a general word for

absence (‘‘gone’’) enters speech.

Madelyn’s psychological knowledge went through a similar series of

stages. For a while she did not recognize that others’ beliefs, or her own,

could be false. Her judgements of what was believed were a subset

of her judgements of what was true. Eventually she came round to our

distinctions.

At six, and even before, her knowledge of folk psychology and folk

physics and spoken English were essentially complete. She still had some

odd false beliefs (she thought she spoke Spanish because she spent her

first year in Costa Rica), but then don’t we all?

2.3 The Platonic Theory of Cognitive Development

Developmental psychology has been mostly an account of stages. At

certain ages infants do this, then that, later something else. As with but-

terflies from caterpillars, going through stages, even amazing stages, even

stages that lead to the right answer, may make a thing or person inter-

esting, but not smart. Compare a developmental version of Kevin Kelly’s

Einstein machine:4 the first hundred data points you put in, it responds

with E ¼ mc; the next hundred E ¼ mc3; after that E ¼ mc2. It does

nothing else. In this world, the Einstein machine converges to the right

answer; in any conceivable world in which the energy equation is dif-

ferent in any way, the Einstein machine gets the wrong answer or no

answer at all. By increasing or slowing the rate at which data are input,

you can change how soon the Einstein machine converges to Einstein’s

equation; by stopping the data input before 201 data points are sub-

mitted, you can stunt its growth. But that’s about all you can do. Noth-

ing could be more different than the Einstein machine and Einstein, at

least the popular Einstein: the popular Einstein would have found the

truth whatever it might have been (as long as it was beautiful, simple,

etc.), and he found a lot of other truths besides the energy equation. The

popular Einstein was smart; the Einstein machine is stupid. (But from

another viewpoint, the two, Einstein and the Einstein machine, differ

only in degree, only in the range of different possible circumstances in

which they find differing truths.)
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Some psychologists think kids—and therefore all of us—are Einstein

machines. We will, given normal stimulation, develop the right cognitive

skills and beliefs for this, our actual environment, no matter what else;

speeding up the stimulation may speed up the development timing, and

slowing the stimulation may slow it down. Abnormal stimulation in

place of normal stimulation just stops development. Put in a world

where objects can pass, or appear to pass, through other objects, where

people have visual perception out of their line of sight, where objects

really vanish when out of perception and don’t reappear, where an

unhuman language is spoken, children could not adapt their beliefs and

skills accordingly. What goes on in development is like data decompres-

sion triggered by outside events, just as Plato claimed in The Meno

2,500 years ago. Sometimes this is called the modular view of develop-

ment, which doesn’t seem very descriptive.

The modular view of development can be traced to Plato, but there

are twentieth-century philosophical sources as well. Rudolf Carnap,

Bertrand Russell, and C. I. Lewis had similar philosophical educations,

first in the conventional turn-of-the-century neo-Kantianism, second in

mathematical logic. Russell proposed a combination of the two in Our

Knowledge of the External World. The world delivers to us the matter of

sensation (Kant’s term) or sense data (Russell’s term) or qualia (Lewis’s

term). We (unconsciously, presumably) supply the apparatus of logic

and an elaborate scheme of definitions, which, when applied to the par-

ticulars of sense data, (literally) define objects, processes, space, time, and

relations of all kinds. The world we experience just is logical combina-

tions of sense data. Russell doesn’t work out much of the details. C. I.

Lewis gave a very similar story in Mind and the World Order, again

without the details. Carnap was a detail guy. Der Logische Aufbau der

Welt assumes that what is given in sensation is a gestalt, an entire expe-

rience at a moment, not particulate sense data that have to be assembled

into a gestalt. What is given in reflection, according to Carnap, is the

recollection that two gestalts are in some respect similar. With these

primitives, Carnap offered explicit logical schemes to represent sensory

modalities, objects, space, and time. What’s more, he realized (in 1928!)

that he was writing a program, and in parallel with the definitions, he

offered ‘‘fictional procedures’’ to construct an instantiation of whatever

entity he was defining. Carnap’s logical effort was revived in the 1940s
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by Nelson Goodman in The Structure of Appearance, which explored

various logical methods of definition and various constructions from

different primitive bases. Carnap’s hints about procedures were not fol-

lowed up.

Several things strike me as interesting about this bit of philosophical

history, now regarded by most philosophers who know of it as so much

logical weirdness. First, it was equivocally substantive psychological

theory; Russell and Lewis claimed to be giving an account of how the

mind works. Carnap, who actually did some ingenious mathematical

work, muddled issues by claiming he was giving a ‘‘reconstruction’’ and

a ‘‘logical justification’’ of something, although of just what is unclear.

Carnap never wrote the plain and obvious thing, that his theory aimed

to be an idealized, and therefore approximate, account of how we think.

Although his work was arguably the most ambitious mathematical psy-

chology of the time, psychologists then took (and now take) no notice of

it. Second, none of this work is about how our judgements of the world

come to be reliably correct. The view of Russell, Lewis, Carnap, and

Goodman is not that there is a world out there of things and properties

and processes and minds and relationships, veridical representations of

which we are constituted to construct. The world is what we construct

from primitive inputs. We can be wrong in our expectations of future

inputs, but not about any thing else empirical.

It requires only a turn of perspective to see these philosophical efforts

as attempts to describe a modular mind, a system of Einstein machines,

of the kind many contemporary cognitive psychologists seem to think we

are. And contemporary philosophy still finds the modular view of devel-

opment remarkably congenial. According to Jerry Fodor (1983), for all

but the highest-order processing, modules are the end state of develop-

ment, and these views seem to be shared by a number of philosophers.

Artificial intelligence is equally friendly to the modular viewpoint, at

least partly because it is difficult enough to give a computational account

of relatively developed, distinct skills, let alone a theory of how such

skills could be acquired. Naive physics, the artificial intelligence theory

of how a robot might compute the ordinary behavior of everyday solids

and liquids, is an interesting descendant of the efforts of Russell, Lewis,

Carnap, and Goodman, and it bears on the Einstein-machine view of

development. The idea is to formalize (preferably in a computationally
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tractable way) the principles of everyday commonsense adult knowledge

of the identity and behavior of middle-sized dry and wet goods. That

must include principles about containment, occlusion, disappearance and

reappearance, comovement of parts or regions, identity through time

and through changes of properties, causal interactions that influence

shape and motion, and so on—all topics investigated in developmental

psychology. So far as I know, those working on naive physics have paid

little attention to developmental psychology (with rare exceptions, the

inattention is mutual), but the naive physics project, if brought to frui-

tion, would imply a procedural characterization of adult (and six-year-

old) competencies.

2.4 The Theory Theory

The views Alison Gopnik and Andrew Meltzoff offer in Words,

Thoughts, and Theories are, so far as I know, the principal development

in psychology that offers an Enlightenment picture of human capacities.5

They say that children are more like the popular Einstein than they are

like Einstein machines. What Gopnik and Meltzoff think Madelyn Rose

did as she grew from zero to six was this: she did science. She formed

theories, made observations, conducted experiments, formed empirical

generalizations, revised her theories, altered her ‘‘conceptual scheme,’’

explained things, collected or ignored anomalies. Within limits, had she

lived in a world with a different everyday physics (say, for example, she

grew up without gravity, the Virginia Dare of space stations), she would

have developed a different, but correct, theory of the physics of everyday

things. If she had grown up in ’toon land, where even the concrete can

talk and buckle and have eyes bug out, she would have had a different

theory of kinds, attooned to her environment. Children are scientists, in

fact the ideal scientists imagined in old-fashioned philosophy of science,

with a desire for understanding and control of the environment, unbi-

ased by competition, without need for tenure, with deference to elder

scientists when they can be understood, with an abundance of data avail-

able, with endless leisure. Their inquiry may be unconscious, or only

partly conscious, but so is the thinking of individual adult scientists.

Here is a Rousseauian theory of cognitive development that rides on

philosophy of science, more or less as philosophers in the fifties and
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sixties understood science, a theory that offers a radically rational view

of each of us at our beginning. Man is born brilliant but is almost

everywhere stupid. If ordinary adults have a huge irrational streak (com-

mitted to absurd gods, alien abductions, and creationism), it is because,

unlike children, they deal with issues for which there is a paucity of

evidence, or because social forces corrupt their native rationality.6

2.5 Android Epistemology

If we are not Einstein machines, we may still be machines of a more

adaptive, more ingenious, more intelligent kind. Most philosophers in

the twentieth century believed that, even with social complexities aside,

the process of inquiry could not be algorithmic, or as they put it, there

is no logic of discovery. As machine learning has advanced in the last

decades and automated methods have seeped into many sciences, these

philosophical cavils have become increasingly quaint. Android epis-

temology is the still-nascent study of how computational systems could,

starting with various primitive abilities and sensory inputs, come to

know about their world. Carnap was its unwitting founder.

The theory theory embraces an optimistic reliabilism: within limits,

children will converge to the truth, whatever the truth may be. The proj-

ect of baby android epistemology helps make sense of the theory theo-

rists’ reliabilism. Convergence of belief and behavior is what one would

expect if baby scientific theorizing isn’t a free creation, but is the appli-

cation of algorithms that (as theory theorists suggest) start with an ini-

tial theory and have rules for elaborating, retracting, or revising theory

in the light of data, for acquiring new data, and for attending to some

of the data while neglecting other parts, and that have metarules for

revising rules. If the data are sufficiently overwhelming with respect

to the theoretical options available to the baby, then the algorithms

need not even be deterministic or entirely invariant from individual to

individual.

Reliable convergence is one thing, reliable convergence to the truth

another. According to the philosophers (from Plato to Popper and after),

there cannot be an algorithm that uses only singular data (no quantified

data) and that has the following properties: in all conceivable worlds in

which a universal proposition is true, the algorithm converges to assert-
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ing the proposition, and in all worlds in which it is false, the algorithm

converges to asserting its denial. The claim is in developmental psychol-

ogy’s philosophical source, The Meno; the proof is in the writing of the

fourth-century skeptic, Sextus Empiricus. To the ancient argument, con-

temporary philosophers of science have added only anecdote: even the

best confirmed and accepted scientific theories often turn out to be false;

witness Newton’s. But the proof, and the relevance of the anecdotes,

depend on an unnecessarily stringent criterion of success in inquiry. The

philosophers require that the algorithm be equivalent to a procedure

that, after receiving some finite array of evidence, gives a single conjec-

ture, and in every possible world gives the conjecture that is correct in

that world.

There are two dimensions of alternative success criteria: the kind of

convergence required for success, and the range of circumstances for

which success is required. An algorithm for learning need not give the

truth and only the truth in each possible world; we might require, for

example, only that in each possible world there comes a time after which

the algorithm ceases making erroneous conjectures and ever after con-

jectures the truth,7 or we might require any of a hierarchy of still weaker

criteria. An algorithm for learning need not succeed in all possible

worlds, but only in a large and interesting set of possible worlds (the

theory theorists do not assert that babies would learn the essentials in

every consistent world in which they survived; they claim there is an ill-

characterized range of worlds in which babies would do so). Weakening

the success criteria in either dimension strengthens the logical content of

learnable hypotheses.8 The less that is demanded for success, the more

success there will be.

There is more. Theory theorists claim that babies undergo internal

conceptual revolutions; whole groups of theoretical notions dominant

at one stage of development are abandoned and replaced by others

at later stages of development. At every stage the categorizations that

evolve seem to have an element of artifice; they are conceptual schemes

about the mental and physical into which particular events are fitted and

shoved. In C. I. Lewis’s terminology, the babies evolve different ‘‘prag-

matic a priori’’ conceptions; in Carnap’s, they evolve different languages;

in Thomas Kuhn’s, different ‘‘paradigms.’’ For the philosophical tradi-

tion, ‘‘conceptual revolution’’ carries a burden of which the theory
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theorists take no notice: conceptual changes alter the meanings of words

and sentences and change truth values. (‘‘Up’’ and ‘‘down’’ meant dif-

ferent things to Aristotelians and to Newtonians, for example.) Right or

wrong (I think wrong), the philosophers’ picture of conceptual change,

more or less explicit from early in the twentieth century until now, is

that truth is fixed by the world and the conceptual scheme together.

Surely, there can’t be any notion of an algorithm reliably converging to

the truth if the very output of the algorithm changes what is true.

Yes there can. Actually, several interesting notions. For example,

the learning algorithm can eventually converge to a single conceptual

scheme within which it converges to the truth, or the learning algorithm

can vacillate among conceptual schemes, within each of which it con-

verges to the truth. There is a well-worked-out abstract theory of

relativistic convergence to the truth, and there are characterizations of

algorithms that converge to the (relative) truth. Even radical social rela-

tivism, in which the beliefs of the community determine the truth, admits

a reliability analysis.9

Theory theorists, steeped in the computational conception of mind,

suggest that infants and children embody algorithms for inquiry that in

normal circumstances lead them to converge not just on the truth about

the world but also on the capacity quickly to know the truth over a

range of circumstances. But the theory theorists give no hints about the

content of learning algorithms or how they can reliably succeed. While

the data on stages of development may not determine a unique algo-

rithm of inquiry, perhaps it can sufficiently constrain algorithms to make

a computational theory of development an interesting project. The proj-

ect seems to me right at the logical center of the most ambitious aspect of

artificial intelligence, android epistemology.

2.6 Issues

Part of what a child acquires within four or five years is knowledge of

how to control, prevent, bring about, and predict events and circum-

stances. Most of that knowledge can be described as of causal relations.

How can a child acquire knowledge of causal relations, starting from

the capacity to recognize instances of a number of properties and using

data from observation of her own actions, others’ actions, and sequences
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of events without animate causes? Given an initial set of properties, how

can a child identify and select other properties that may enter into causal

relations? How can the child use acquired causal knowledge for predic-

tion and control in particular circumstances? There is no reason to be-

lieve that the first two questions are entirely separable. Learning causal

relations depends on identifying appropriate variables; finding appro-

priate variables may depend on what causal relations are already known

and on what causal relations can be learned with what variables.

The psychological literature about concept formation is considerable,

but psychologists have not been so kind to questions about learning cau-

sal relations. Piaget gave accounts of children’s causal beliefs, but said

comparatively little about how they are arrived at. Pavlov and Skinner

avoided talk of learning causes in favor of learning associations, al-

though the salient difference between classical and operant conditioning

is that the former teaches associations while the latter teaches a limited

kind of causal connection. The neural-network model, which is hidden

beneath a lot of twentieth-century psychology, from Freud to Thorndike

and after, promoted the study of associations. Many recent psychologi-

cal models of causal inference are derived from a neural-network model

(Rescorla and Wagner’s model) and explicitly confound learning associ-

ations with learning causes. And many psychologists hold that the no-

tion of a mechanism is essential to separating causes from other features

of a situation and deny that there is any algorithmic basis for using

patterns of association to separate causes from other factors.

Artificial intelligence provides no ready answer to these issues. But

there is a computational representation of causal knowledge—causal

Bayes nets—and there is a developed theory of how those networks can

be discovered from observations and experiments and of how they can

be used in prediction and planning. The following chapter develops a

sketchy proposal for how the theory of Bayes-net representations, dis-

covery algorithms, and prediction algorithms might be elaborated and

modified to bear on the issues of human cognitive development.
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3
Another Way for Nerds to Make Babies:

The Frame Problem and Causal Inference in

Developmental Psychology

3.1 The Frame Problem

Artificial intelligence and developmental psychology share areas of

genuine common interest, and most of them have to do with a cluster

of issues called the ‘‘frame problem.’’ The frame problem began as an

interesting technical curiosity. In discussing logical descriptions of world

states (or partial world states, ‘‘situations’’), McCarthy and Hayes

(1969) considered how to formalize changes in the state of the world, for

example, those resulting from actions. The problem, as they viewed it,

was how to specify the entire state consequent from an action in terms of

the prior state, a formal description of the action or event, and axioms

about change. To do so, they found themselves forced to introduce an

enormous list of trivial ‘‘frame axioms’’ specifying not only what changes

but also everything that does not change under an action. The prob-

lem, initially, was to find a formal way to dispense with such axioms.

Their frame problem was naturally transposed into a problem about

planning: how can an automated system, a robot, which has a great deal

of knowledge about the state of the world, feasibly predict the con-

sequences of an action it contemplates? Clearly, not by considering

every feature of the world it knows about, deciding one by one which of

them will be altered by the action and which will not. Drew McDermott

(1987) argued that the problem is solved by a single general rule of

thumb: other things equal, things not directly changed by an action do

not change. Sleeping dogs sleep. Rather than putting the problem to rest,

however, McDermott’s suggestion implicated a host of issues.

The sleeping-dog rule is an example of default reasoning. For a robot

to function successfully in the world using the rule, it must have a means



for recovering—for appropriately altering its beliefs about the world

when the default rule fails, when sleeping dogs wake up. There follows

an enormous and interesting literature on feasible reasoning with de-

faults. I will not try to review the issues, but some examples may illus-

trate the richness. Suppose that the robot learns a new fact, observes a

change. Then to stay calibrated to the world as it is, the robot’s beliefs

must be altered in response, since some of the robot’s beliefs may be

contradicted by the new fact in conjunction with the remainder of its

beliefs. How are the revisions to be made? When, for example, a belief is

abandoned, are other beliefs that were originally adopted only because

of the now abandoned belief also to be abandoned? If not, what is to

be done, and if so, how is the robot to keep track? In artificial intelli-

gence this is called the problem of ‘‘truth maintenance,’’ or ‘‘reason

maintenance.’’

Even if the robot is given norms for revision, how is it feasibly to carry

them out? The robot cannot feasibly consider each of its beliefs, one by

one, including the consequences of everything it believes, and decide

whether the new information is relevant and then make the appropriate

revision, if any. Or consider a more mundane problem: how is the robot

feasibly to determine the changes that do result from the present state

of things, with or without actions? How is it to determine, for example,

the trajectories of solid objects, or the behavior of liquids when their

containers are moved or removed? Surely, the robot cannot feasibly

determine where a ball will land by observing a sequence of positions,

taking them as initial conditions for a differential equation, and inte-

grating. No one has ever built a robot that can play first base. These are

the problems—or some of them—of naive physics.

Fodor (1987) posed another problem for the sleeping-dog rule: whether

it is true depends on the properties the robot ascribes to the world. If I

turn my refrigerator on, this has no bearing on most of the particles in

the universe. But consider this property of particles: being a particle and

my refrigerator is turned on. Turning on my refrigerator alters this fea-

ture of every particle in the universe. So if the robot starts with concepts

of particle and the state of its refrigerator and forms the new concept

of fridgeon, the sleeping-dog rule will fail dramatically. Michael Dunn

(1990) pointed out that in a logical system developed by Anderson and

Belnap, relevance logic, predicates such as Fodor’s ‘‘fridgeon’’ cannot be
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properly defined from ‘‘particle’’ and ‘‘refrigerator on.’’ One could reply

on Fodor’s behalf that many legitimate and important predicates appear

to be conjunctions that violate the predicate-formation restrictions of

relevance logic, or that all concepts are equal: ‘‘fridgeon’’ does not have

to be generated by definition from ‘‘particle’’ and ‘‘refrigerator on’’ even

though it is coextensive with their conjunction. How is the robot to

know which concepts to use?

The robot’s frame problems are also the infant’s, the baby’s, the

toddler’s, the child’s, and developmental psychology might fruitfully be

viewed as the experimental study of how those problems are solved.

Since they, any more than robots, cannot perform computational and

epistemic miracles, how do infants and children come to form the con-

cepts and have the knowledge that enables them to predict and control

their environment? I want to explore the thought that they do part of it

by learning what we adults can describe as acquiring, elaborating, and

revising causal Bayes nets, and by forming concepts that can be repre-

sented as features of those networks. That thought leads to natural

interpretations of a few experiments with infants and young children,

and to suggestions of a variety of experiments that have not been per-

formed. Before considering the few relevant experiments in develop-

mental psychology, consider how causal relations, as represented by

Bayes nets, can be learned and how new concepts within, or about, such

networks can be introduced. (For a more technical discussion, see Bou-

telier and Goldzmidt 1996).

3.2 A Toy Introduction to the Markov Assumption

A child acquires information about what happens when she does noth-

ing but observe events, and about what happens when she takes par-

ticular kinds of actions, and about what happens when others take

particular kinds of actions. She may do one thing and observe a chain of

consequences. She may pull a blanket and find that two toys move with

it; she may pull the engine in a toy train and find that the tender and the

caboose come along; she may pull an electric cord and find that the light

and the television go off; she may clap loudly at Grandmother’s house

and find that the TV and the light come on; she may scream at night and

find that the light goes on and a parent appears.
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Consider some experiments one might do at Grandmother’s house

(see table 3.1). In sufficient ignorance one might wonder whether the

clapping causes the TV and light to come on by independent mecha-

nisms, or the clapping causes the TV to come on which causes the light

to come on, or the clapping causes the light to come on which causes the

TV to come on. The experiments establish the first account: Clapping

and then turning off the light leaves the TV on. Clapping and then turn-

ing off the TV leaves the light on. If the TV is off, turning the light on

without clapping does not turn the TV on, and if the light is off, turn-

ing the TV on without clapping does not turn the light on. In practical

matters, this is the important content of the claim that clapping causes

the TV and light to come on by different mechanisms.

The same inferences could be made without intervening to turn the TV

on or off or to turn the light on or off, separately from clapping. With

some provisos, it suffices to observe that conditional on whether or not

a clapping has occurred, the state of the TV and the state of the light

are independent (in frequency) of one another. That is, for example, if

a clapping occurs, the probability that the TV is on and the light is on

equals the product of the probability that the TV is on and the proba-

bility that the light is on. The provisos are that the TV does not always

respond to the clapping and the light does not always respond to the

clapping (sometimes the TV is unplugged, sometimes the light bulb is

burnt out). Here is the principle:

Principle 1 If A, B, C are associated, and A is prior to B and C, and A,
B, C are not deterministically related, B and C are independent (in
probability) given A, and there are no common causes of A and B or of

Table 3.1
Experiments at Grandmother’s house

Interventions TV Light

None Off Off

Clap On On

Don’t clap, turn light switch on Off On

Don’t clap, turn TV switch on On Off

Clap, turn TV switch off Off On

Clap, turn light switch off On Off
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A and C, then, ceteris paribus, A influences B and C through separate
mechanisms.

I will elaborate on the ceteris paribus conditions later.

Consider a different example, the toy train, that illustrates a further

connection between probabilistic independence and causality. And, for

the purpose of illustration, ignore the causal information that the spatial

arrangement of engine, tender, and caboose may give. In each case, we

start with the engine, tender, and caboose linked together in order. Table

3.2 gives the results of some experiments one might do.

If the engine is pulled (without directly pulling the caboose), the state

of motion of the engine is independent of the state of motion of the

caboose, given the state of motion of the tender. In practical terms, that is

what it means to say that the motion of the engine influences the motion

of the caboose only through the motion of the tender.

Here’s the interesting thing. If the couplings between cars were unsta-

ble (as they always were with my toy trains), so that the cars sometimes

separated of themselves when the engine was pulled, the same inferences

to causal structure could be made without ever intervening to uncouple

the tender. If only the engine is directly pulled, the motion of the caboose

is independent of the motion of the engine given the motion of the tender.

The principle is this:

Principle 2 If states of A, B, C are all associated, and the state of A is
independent (in probability) of the state of C given the state of B, then,
ceteris paribus, the state of A influences the state of C, if at all, only
through the state of B.

Table 3.2
Experiments with a toy train

Intervention State of motion

None Engine at rest Tender at rest Caboose at rest

Pull engine Engine moves Tender moves Caboose moves

Disconnect tender from
engine and pull tender

Engine at rest Tender moves Caboose moves

Disconnect tender from
engine and pull engine

Engine moves Tender at rest Caboose at rest

Disconnect tender from
caboose and pull engine

Engine moves Tender moves Caboose at rest
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Causal structures in everyday life manifest themselves by dependencies

and independencies upon various interventions or actions, but these

causal structures can also manifest themselves by dependencies and inde-

pendencies without interventions, or with a limited set of interventions.

Different structures may result in different patterns of dependence and

independence, and so inferences about causation—about what would

happen if an intervention or action were taken—can sometimes be made

from data in which no such intervention occurs. Without intervening to

keep the tender from moving, it can be determined that if someone were

to keep it from moving, the motion of the engine would not influence the

motion of the caboose.

3.3 The Causal Markov Assumption

The connections between causal structure and independence or condi-

tional independence illustrated in principles 1 and 2 have a more general

formulation, which is almost standard in computer science nowadays

and increasingly common in statistics. The formalism, developed over

the last twenty years, is used as a method for data analysis in the sciences

and engineering, not as a psychological model at all, although its psy-

chological roots are evident in one of its sources: the elicitation from

human experts of probabilities to be used in computerized expert systems.

The formalism is part of a general representation of causal claims; that

representation permits algorithms for inferring aspects of causal structure

from appropriate experimental or observational data. The representations

are often called ‘‘Bayes nets,’’ or sometimes ‘‘directed graphical causal

models.’’ For causal features that are linearly related, the representations

are isomorphic to a subclass of the structures variously called ‘‘path

models’’ or ‘‘structural equation models.’’ The latter are familiar to some

psychologists in the form of ‘‘LISREL models,’’ but their causal signifi-

cance, their isomorphism to Bayes nets, and the existence of sound search

algorithms superior to those in standard statistical packages, seem to be

unfamiliar. (For details on the connections, see Spirtes et al. 1993, 2001

and Pearl 2000.)

Here is the idea. A possible causal structure will be represented by a

directed graph—an object with nodes (hereafter ‘‘vertices’’) and arrows

between some of the them. The vertices will represent features or vari-
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ables, and a directed edge between two variables, X! Y, will mean

that for some values of all of the other variables represented, an action

that varies X will cause variation in Y. So the representation of grand-

mother’s appliances would be this:

And the representation of causal connections of the toy train when only

the engine is pulled would be this:

Factors that do not vary in the data under study are not represented.

So, for example, if the electric power is always on, it has no correspond-

ing vertex in the representation for Grandmother’s appliance system. If the

power supply did vary, the representation would instead be the following:

Suppose that the power supply did vary in the cases at Grandmother’s

house. Then the associations among clapping, TV state, and light state

would not be fully explained by the causal relations of these variables

with one another, because a common cause of TV state and light state

would have been omitted. If no common causes are omitted from a set of

variables, the set is said to be causally sufficient.

The graph must be acyclic—that is, there is no connected sequence

of arrows in the same direction that enters and exits the same vertex.
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Therefore, necessarily, in every graph, some of the vertices have no edges

directed into them. A vertex with no edge directed into it is said to have

zero indegree (in graph-theoretic terms), to be exogenous (in econo-

metric terms), or to be an independent variable (in psychological terms).

(To avoid confusion with probabilistic independence, I’ll say ‘‘exoge-

nous’’ or ‘‘zero indegree.’’)

The structure of the directed graph encodes probabilistic independence

and conditional independence relations among the variables, relations

that are claimed to hold in every probability distribution that can be

generated by varying the exogenous variables independently (in the

probabilistic sense). The connection assumed between the causal struc-

ture represented by the directed graph, on the one hand, and probabi-

listic independence and conditional independence, on the other, is given

by the Causal Markov Assumption, which says (with boldface for sets

of variables or nodes):

Causal Markov Assumption Let X be any variable in a causally suffi-
cient set S of variables or features whose causal relations are represented
by a directed acyclic graph G, and let P be the set of all variables in S
that are direct causes of X (i.e., parents of X in G). Let Y be any subset
of S such that no variable in Y is a direct or indirect effect of X (i.e.,
there is no directed path in G from X to any member of Y ). Then X is
independent (in probability) of Y conditional on P.

The Causal Markov Assumption says that in the toy-train graph, the

motion of the caboose is independent of the motion of the engine con-

ditional on the motion of the tender. It says that in Grandmother’s

house, the state of the TV is independent of the state of the light condi-

tional on whether or not there is a clapping.

The Causal Markov Assumption implies that the joint probability of

any set of values of a causally sufficient set can be ‘‘factored’’ into a

product of conditional probabilities of the value of each variable on its

parents. For example, according to the toy-train graph, the probability

that the engine moves, the tender moves, and the caboose moves is this:

prðcaboose moves j tender movesÞ � prðtender moves j engine movesÞ
� prðengine movesÞ

And in Grandmother’s house, the probability that there is a clapping and

the TV is on and the light is off is this:
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prðlight is off j clappingÞ � prðTV is on j clappingÞ � prðclappingÞ

Here ‘‘prðx j yÞ’’ denotes the probability of x conditional on y.

The Causal Markov Assumption has several justifications, but one is

this: Consider any system whatsoever whose causal relations are described

by a directed acyclic graph in such a way that the probability of any

value of any represented variable is determined (by any function of) the

values of its parents in the graph. If the exogenous variables are indepen-

dently distributed, then the graph and the joint probability distribution

must satisfy the Causal Markov Assumption.1

3.4 Causal Bayes Nets

A directed graph and the Markov Assumption do not themselves deter-

mine a unique probability distribution; they only impose a restriction on

any probability distribution appropriately associated with the graph.

Specialized families of probability distributions can be associated with

a graph by specifying parameters that determine how the probability

of any value of a variable depends on the values of its direct causes, its

parents in the graph. Then a particular probability distribution can be

specified by assigning values to the parameters. Specifying parameters

whose values give a probability distribution that satisfies the Markov

Assumption for the graph is called ‘‘parameterizing’’ the graph.

There are many ways to ‘‘parameterize’’ a graph, and which way

is appropriate depends on the subject matter. Some parameterizations

determine familiar statistical models—linear regression, logistic regres-

sion, factor analytic, ‘‘structural equation,’’ etc.—and others do not. For

Grandmother’s house, for example, where each variable has but two

values, a joint probability distribution can be specified by giving a numeri-

cal value to each of

prðlight is x j clapping is zÞ

prðTV is y j clapping is zÞ

prðclapping is zÞ

for each choice of x ¼ ðon=offÞ, y ¼ ðon=offÞ, z ¼ ðclap=no clapÞ. The

idea is just to use the factorization noted previously that is:
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prðlight is x;TV is y; clapping is zÞ

¼ prðlight is x j clapping is zÞ � prðTV is y j clapping is zÞ

� prðclapping is zÞ

Sometimes variables are thought to have some explicit functional depen-

dence on one another. Here is another way to parameterize the same

graph. Assume that the state of the light is determined by the state of

clapping and some unobserved parameter that is either on or off, and

similarly, that the state of the TV is determined by the state of clapping

and another unobserved parameter that is either on or off. So we have

the following equations:

L ¼ f ðp;ClapÞ

TV ¼ gðq;ClapÞ

Since each variable (or parameter) takes only two values, f and g must

be Boolean functions. For example, f and g might be multiplication,

or Boolean addition, or one might be multiplication and the other addi-

tion, etc. Now specify any probability distribution for which p, q, and

Clap are independent for all possible assignments of their values. The

result is a probability distribution over L, TV, and Clap that satisfies

the Markov Assumption. We will consider parametrizations of this kind

in chapter 7.

For another example of a parameterization with an explicit func-

tional dependence, consider a ‘‘structural-equation model’’ of the rela-

tions among college academic ranking (Rank), average SAT percentiles

of entering students (SAT), and dropout rate (Drop), which might look

like this:

SAT ¼ aþ b Rankþ e

Drop ¼ cþ d SATþ f

Here a, b, c, d are real-valued parameters, and e and f are unobserved

‘‘noises’’ and are assumed to be independent. The model corresponds to

a parameterization of a family of probability distributions corresponding

to a directed graph:

28 Developmental Psychology and Discovery



Or if the noises are explicitly represented, then the following directed

graph:

We will consider parameterizations of this kind in chapter 14.

A Bayes net is a directed acyclic graph and an associated probability

distribution satisfying the Markov Assumption. If the graph is intended

to represent causal relations and the probabilities are intended to repre-

sent those that result from the represented mechanism, the pair form a

causal Bayes net.

A great many of the causal models deployed in psychology and the

social sciences are some kind of Bayes net. Even feed-forward neural

networks are Bayes nets. Many recurrent neural nets are examples of a

generalization of Bayes nets that allows cyclic graphs with a generaliza-

tion of the Markov Assumption (d-separation, discussed in chapters 13

and 14). Unrecognized, Bayes nets and causal Bayes nets are lurking

almost everywhere.

3.5 The Utility of Causal Bayes Nets

The value of a representation lies entirely in what can be done with it.

With causal Bayes nets we can do the following:

Control When there are no unobserved common causes, Bayes nets can
be used to calculate the value (or probability) of any represented vari-
able, given any combination of interventions that fix the values of other
variables but do not otherwise alter the causal structure or conditional
probabilities.

Prediction Bayes nets can be used to efficiently calculate the probability
of any value of any represented variable conditional on any set of values
of any other represented variables.

Discovery In many cases the causal structure of the world represented
in a causal Bayes net, or represented by features of such a net, can be
discovered from observations, experiments, and background knowledge.
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These three functions are among the capacities any agent—a child, for

example—would presumably need to acquire and to exercise for causal

competence in everyday life. It seems unlikely that the best computer

algorithms, designed for maximal reliability and efficiency with minimal

prior information in one-shot learning, are implemented in people, but at

the very least, the computer algorithms show what is possible with Bayes

net representations. The points bear illustration.

Control

If the causal structure and the probability distribution are known, the

probability of any value of any represented variable upon a wide class of

interventions that force specified values on other variables can be calcu-

lated from a corresponding ‘‘factorization’’ of probabilities. Suppose, for

example, that it is known that genotype causes smoking and lung cancer,

and that smoking also directly causes lung cancer:

For any values of S, G, and L, the probability distribution can be written

thus:

prðS;G;LÞ ¼ prðL jG; SÞ � prðGÞ � prðS jGÞ

Suppose that an odd new law is enforced: a random device decides

who will and who will not smoke. Given that you smoke, what is the

probability of lung cancer that results? We assume an intervention on a

variable x removes all edges into x in the causal graph, but does not alter

other causal relations or the conditional probabilities of other variables.

The trick is that the intervention breaks the influence of genotype on

smoking, so that after the intervention the causal structure is this:
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The intervention makes G and S independent, but ideally it should leave

all other conditional probabilities unchanged. So the probability distri-

bution after the intervention is the following:

probafterðS;G;LÞ ¼ prðL jG; SÞ � prðGÞ � probnewðSÞ

The last factor on the right changes. If the policy simply prevented

smoking, probafterðS ¼ yes;G;LÞ would be zero for all values of G,

L, and the probability of any pair of values of G, L would be

probafterðS ¼ no;G;LÞ.
In cases where not all of the probabilities are known, the theory of

interventions on causal Bayes nets shows what interventions are neces-

sary to find them. Suppose some causal structure is thought to have the

following form:

Suppose that the joint probability distribution of T and O is known and

U is unobserved. The aim is to discover the influence T has on O, by

which I mean the dependence in probability of T on O if T is manipu-

lated and does not influence O through K, but the structure and con-

ditional probabilities are otherwise unchanged. The theory says that

probability can be estimated by intervening to fix (or randomize) the

value of T while intervening to fix or randomize the value of K. The

resulting structure is this:
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And the probabilities of interest are estimated from the association of O

and T then observed.

These simple illustrations correspond pretty exactly to our judge-

ments about control in good scientific method. We randomize treatments

because we want to disable any possible common causes of treatment

and the outcome under study.2 We do blind and double-blind studies

because we want to block certain lines of influence so that we can cor-

rectly estimate others.

Not all of the consequences of the theory of interventions on causal

Bayes nets are so banal. Suppose that you know that the following graph

describes the causal relations among the variables:

Suppose that associations involving genotype are not observed. The

association of smoking and shortness of breath is therefore confounded.

Nonetheless, the influence of smoking on shortness of breath can be

estimated from the observed associations of the other variables, where,

once more, by ‘‘influence’’ I mean the conditional probability distribu-

tions of shortness of breath that would result from interventions to fix

(or randomize) values of smoking. (A nice presentation of the theory of

interventions in Bayes nets is given in Pearl 2000.)

Prediction

The use of Bayes nets for prediction is almost obvious: the Bayes net

specifies the joint distribution of the variables as a product of conditional

probability distributions. It is not surprising that using the representa-

tion, we can compute, by various techniques, the conditional probability

of any variable from specifications of the values of any other set of vari-

ables. A variety of algorithms have been developed to make such com-

putations efficient.
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Discovery

We have already seen that distinct causal structures may, either by

themselves or with other information, imply distinct-independence and

conditional-independence facts. These differences can be exploited in

discovery procedures. For example, for 3 variables there are 25 distinct

acyclic graphs belonging in 11 distinct equivalence classes; all of the

graphs of the same equivalence class imply the same independencies

and conditional independencies; any two graphs belonging to distinct

classes imply distinct sets of independencies and dependencies. Graphs

of the same equivalence class are said to be Markov equivalent. The

graphs in some equivalence classes are listed in table 3.3, with the set of

independencies and conditional independencies characteristic of the

class at the top of each column. ‘‘A ¼��C jB’’ means, for all values of

A, B, C, A is independent of C conditional on B.

On the assumption that all independencies and conditional indepen-

dencies are due to causal structure alone,3 something can be inferred

about the causal structure. How much can be inferred depends on the

associations or lack of associations that are found, and on what addi-

tional knowledge one has. A great deal can be inferred about causal

structure if time order is known and if it is assumed that all common

causes are observed. The italicized assumption is sometimes called

faithfulness, and is essentially a simplicity postulate, although there are

various justifications for it. For example, for several parameterizations

of a graph, it is almost certain that probability distributions will be

faithful to the graph. (See Spirtes et al. 1993, 2001 for discussion and

references.)

On the faithfulness assumption, if the only independence relation

is B ¼��C jA and there are no unobserved common causes of observed

Table 3.3
Some simple examples of the Markov equivalence classes among three variables
and their corresponding independence or conditional-independence relations

A ¼��C j B B ¼��C j A B ¼��A j C A ¼��B

A! B! C B! A! C B! C! A A! C B

A B! C B A! C B C! A

A B C B A C B C A
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variables, then the causal relations are one of the three in the second

column. If, in addition, one knows (as with clapping at Grandmother’s

house) that neither B nor C cause A, then the structure B A! C is

uniquely determined.

The example assumes that fA;B;Cg is causally sufficient—there is no

unobserved confounding cause that influences two or more observed

variables—but inferences can also be made from independence and con-

ditional independence when a set of variables is not causally sufficient.

Indeed, sometimes it can be discovered from associations that a set of

variables is not causally sufficient, because the set of independencies

and conditional independencies that hold among those variables alone is

incompatible with the Markov Assumption. But we are getting too deeply

into details. Suffice it to say that there are efficient algorithms that will

extract all of the information about causal structure that can be obtained

from independencies, conditional independencies, and background

knowledge about what does or doesn’t cause what, and that the chief dif-

ference in the performance of these algorithms on causally sufficient and

causally insufficient sets of variables (in the large-sample limit) is that less

causal information can be extracted from insufficient variable sets.4

A variety of computational algorithms learn causal relations from

background knowledge and data. These procedures—several of which

are not ‘‘Bayesian’’ although they learn Bayes nets—were developed

specifically for data mining applications, that is, for cases where the

complexity of data and the underlying structure are too great for un-

aided humans to process reliably. For that very reason the algorithms

are unlikely psychological models, but there are a number of much sim-

pler heuristic procedures for learning and modifying networks of causal

relations that may have more psychological relevance.

3.6 Heuristics and Concept Formation

Indeterminacy and animacy

The simplest way to learn whether one feature of the world, say X,

influences another, say Y, is to manipulate X and see whether and how Y

changes. The covariation of X and Y indicates a reliable causal connec-

tion only if other causes of Y do not coincide with interventions that

vary X, and in particular, only if the association of X and Y is not due

to some third common cause of both, Z. We remove (or at least reduce)
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the chance of coincidental causes by varying X on many occasions. In

science we remove (or at least reduce) the chance of a common cause by

randomizing the treatment of X; in everyday life we eliminate the chance

of a common cause of our intervention and of the variation in Y by a

tacit postulate, freedom of the will. Of course, the postulate that our

own actions are uncaused by factors that, by separate mechanisms, also

bring about circumstances we later observe is not always true, but if

we did not tacitly assume as much as an everyday rule of thumb about

ourselves, and if it were not generally true to good approximation, we

could not get started finding our way around the world, and if we did

not tacitly assume as much about others, we could not learn by imitation.

There is more to be learned from manipulating X and observing co-

variation of Y than just whether X causes Y. Suppose that we have

done that and postulate the following:

Two different cases apply: the presence and absence of Y may be

uniquely determined by interventions that do or do not produce X, or it

may not be. The interesting case is when Y is not uniquely determined by

X, and that divides into three interesting subcases.

I will code the occurrence of X with 1, and its absence with 0, and

similarly for Y. In one case, whenever X is produced, the frequency

with which Y occurs increases, but Y does not always occur: 1 >

prðY ¼ 1 jX ¼ 1Þ > prðY ¼ 1Þ. And, further, whenever X is not pro-

duced, Y does not occur: prðY ¼ 1 jX ¼ 0Þ ¼ 0. This feature, which we

can call imperfect causation without spontaneity, is not a node or link in

a Bayes net, but rather a feature of the Bayes net and a concept about

aspects of the world the Bayes net describes. But it does suggest a mod-

ification of the causal picture, the Bayes net itself, specifically that there

is some further unnoticed feature, Z, that either acts to inhibit or prevent

X from producing Y, or whose absence makes X insufficient for Y:

Another case is the reverse: intervention to produce X determines the

value of Y uniquely, prðY ¼ 1 jX ¼ 1Þ ¼ 1, but Y can also occur spon-
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taneously, 0 < prðY ¼ 1 jX ¼ 0Þ. We have perfect causation with spon-

taneity, and again we have a concept about the causal relations in the

Bayes net and a circumstance that suggests the postulation of a further

cause, like Z above, this time a cause that produces Y in the absence of X.

Third, we may have imperfect causation with spontaneity: 0 <

prðY ¼ 1 jX ¼ 0Þ and 1 > prðY ¼ 1 jX ¼ 1Þ > prðY ¼ 1Þ. Imperfect

causation with spontaneity is again a concept about causal relations

rather than a causal relation, but here too it suggests positing additional

unnoticed causes, including the possibility that the unnoticed causes

may be of two different kinds, one sufficient to produce Y in the absence

of X and the other without which (or with which) X is insufficient to

produce Y.

We might guess that these distinctions are important to children and

even to infants, because imperfect causation with spontaneity is a rough

guide to animacy. Inanimate objects tend, on the whole, to be things that

children cannot alter, or that they can alter reliably, or if they cannot be

altered reliably, that do not alter themselves. Animate objects tend to be

unreliably altered and to alter themselves.

Indeterminacy is not the only concept it makes sense to abstract from

a network. One can form the concept of the causes of a feature or col-

lection of features, or the concept of the effects of a feature or collection

of features. As we will see, these possibilities also lead in some contexts

to altering the network.

Learning remote effects

Suppose that manipulating X is imperfectly associated with the occur-

rence of Y and Z. There are several possible causal arrangements,

including (1) to (4):

1. X can cause Y and Z:
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2. X can cause Y, which causes Z, or X can cause Z, which causes Y.

3. X can cause Y and some unobserved factor, say U, can cause Y and
Z, or X can cause Z and some unobserved factor can cause Y and Z:

4. And finally, the two cases (3.1) and (3.2) can be combined with an
influence of Y on Z or of Z on Y, respectively.

If X, Y, Z are all indeterministically related, all of these alternative

explanations are distinguished from one another by independence or

conditional-independence relations. Case 1 and only case 1 implies that

Y and Z are independent conditional on X. Case (2.1) and only that case

implies that X is independent of Z conditional on Y, and case (2.2) and

only that case implies that X is independent of Y conditional on Z. Case

(3.1) and only that case implies that X is independent of Z; case (3.2)

and only that case implies that X is independent of Y; case (4.1) and case

(4.2) imply none of the other independencies or conditional inde-

pendencies and imply that X is not independent of Y conditional on Z.

Cases (4.1) and (4.2) are discussed further in chapter 7 in relation to

Cheng models.

If, on the other hand, the values of Y, Z are uniquely determined by

the value of X, none of these structures can be distinguished by inde-

pendence and conditional independence. Of course, time order and spa-

tial relations may provide information that decides the question.

This at least suggests that the existence and structure of indirect effects

can be more easily learned if different actions are not too narrowly dis-

tinguished by kind but are regarded as a single kind of action (pushing,

which can have many strengths, against objects of many weights and

frictions, and similarly pulling and kicking, etc.).
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Separating causes from covariates

Just as it can be useful for learning not to distinguish kinds of actions

too finely, it can be essential to distinguish between kinds of concomitant

actions one of which has a kind of effect and the other of which does

not. If neither X nor Y causes the other but are both associated with an

effect Z, it may be that X alone causes Z, or Y alone causes Z, or both

do. If X and Y are not perfectly correlated, we can learn which expla-

nation is correct from conditional independencies. If X alone causes Z,

then Y and Z should be independent conditional on X, and symmetri-

cally if Y alone causes Z.

Restructuring causal networks

Since the complexity of learning a network and the complexity of finding

the best explanation of a phenomenon and the complexity of prediction

all depend on the number of values of variables and on the degree of

connectedness of the graph, reducing edges produces computational

economy, and eliminating low probability connections saves effort in

many contexts.

Suppose that we have a network in which X, Y, Z are direct causes

of W. We can simplify the network by collapsing X, Y, Z into a single

feature that is some function of the three variables, and thus reduce the

number of edges. We cannot do so in general without loss, however. For

example, if X, say, is also a cause of another feature R, which is not

influenced by Y or Z. In that case, unless Y and Z are perfectly corre-

lated with X, the new variable (for example, X or Y or Z, or X & Y & Z)

will then be a less reliable predictor of R than is X alone.

Collapsing variables with a common effect

Rather than thinking that spherical things roll when pushed, middle-

sized things roll when pushed, and solid things roll when pushed,
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all of which may often be true, one may think that balls roll when

pushed:

(Here a ball is approximately a spherical middle-sized solid.) We can

make a less firm probabilistic inference to ‘‘rolling if pushed’’ from the

fact alone that an object is middle-sized or the fact alone that the

object is solid, than we can make from the fact that the object is a ball,

a feature that may be identified from various conjunctions of observed

properties.

Collapsing causes of distinct effects

Separate causes of distinct features can be identified. So, for instance,

becomes

where U ¼ X ¼ Z. This sort of thing is especially natural for unobserved

but inferred causes. If, for example, an unobserved feature is posited as

the cause of spontaneous motion of one kind of object and an unob-

served feature is posited as the cause of spontaneous motion of another

kind of object, it may be natural and economical to identify the two

unobserved features.

Dividing causes and effects

Conversely, a single cause (or effect) can be divided into different fea-

tures. If first identified as one and the same, the causes of spontaneous

motion in people and in machines can later be separated.
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Introducing an abstract variable for mutually exclusive features

Suppose that we have a network in which X, Y, Z are mutually exclusive

and jointly exhaustive binary variables, that is, in any circumstance one

and only one of them has the value 1. Since they are associated, in a

graphical representation there must be edges between them (or common

causes). We can reduce the number of edges of the network by forming a

single variable from the three (or however many) variables. The concept

of the color of a surface, and many other concepts, have this feature,

although whether the concepts are formed in anything like this way is

another matter.

If multiple features are all associated with one another and no condi-

tional independence relations hold among them, any Bayes net, confined

to these features alone, is completely connected—there is an edge, in one

direction or the other, between every pair of variables. While there are

statistical, and no doubt substantive, constraints, it is sometimes possible

to simplify such a network by introducing a common cause of all of

the variables and removing any edges between them. A single common

cause of a set of variables produces associations among all of them but

allows no independence or conditional independence relations among

the affected variables alone.

Deleting intermediate variables

If a variable is intermediate between others in a network, it can be

deleted if appropriate additions are made. For example, the graph on

the left becomes the graph on the right:

Here U, X, Y, Z are observed and W is unobserved. If W is omitted,

however, unless the relation between X and Y is deterministic, there is a

loss in such identifications, because Z and U are not independent, con-

ditional on X, according to the graph on the left.
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Refining and coarsening variables

A variable that takes only two values (heavy or light, for example) can

be refined by introducing further values (heavy, medium, light). A causal

feature can be conjoined with another feature, changing a variable with

two values into a variable with four values. Conversely, a continuous

variable can be coarsened by dividing its values into discrete intervals.

Using prior knowledge

Perhaps the most common and most reliable form of prior knowledge is

implicit in inferences from interventions: one knows that the intervention

and some immediate effect of the intervention have no common third

cause. Almost as common is knowledge of time order, which permits

decisions about causal dependence that outweigh strength of association

and other factors. If one observes A occurring before B and B before C,

the fact that C is more strongly associated with B than is A does not lead

one to think that C is the more likely, or stronger, cause of B; instead,

one concludes that C is no cause at all of B.

Other, more substantive kinds of prior knowledge are useful in search-

ing for causes. For example, loose analogy: if O is something with an

abstract feature A and in other things with abstract feature A a certain

causal relation holds, one looks for an analogous causal relation in O,

and so on.

Overthrowing prior knowledge

Any system for which it is important to gain causal knowledge as fast as

possible is apt to overshoot, to fix on hypothetical causal relations that

are entirely wrong, or too general, or too specific, or involve the wrong

variables. When evidence builds up that a postulated causal relation is

wrong, it may be abandoned, but because causal relations presumed to

be known are used in finding others, abandoning any one piece of knowl-

edge may remove the original reasons for adopting other causal rela-

tions. The problem of maintaining reasons bites again. But with less

venom. The removal of a causal connection in a Bayes net leaves a Bayes

net, a system of causal hypotheses that is still self-consistent, can still be

used to predict the outcomes of actions, can still be further elaborated

and revised. A correct network from which an edge is incorrectly deleted
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may yield radically wrong predictions, but it at least yields consistent

predictions, and the error can be discovered and remedied.

Missing algorithms

There are bits of computer science that provide algorithms for some of

these ways of learning and revising causal Bayes nets (Spirtes et al. 1993,

2000; Jordan 1998; Glymour and Cooper 1999). There are certainly no

algorithms that synthesize such strategies into a procedure that could be

put into a robot that would develop like a baby and not run afoul of the

frame problems. But arguably we have some of the pieces for such an

algorithm, and arguably the structure of Bayes networks that are cali-

brated to the actual world helps to solve some aspects of the frame

problem more or less automatically. For example, Bayes networks

provide efficient ways to determine the relevance of features or vari-

ables to new data when the networks are sparse—when most features are

unconnected. They may not localize reasons, but they permit localized

revision, and they allow rapid prediction in sparse networks. Arguably,

the significant causal relations of the actual world are indeed sparse, and

it is at least a plausible hypothesis that developing children find that

the properties, the ‘‘concepts,’’ of their world reveals a sparse structure.

Fodor’s ‘‘fridgeon’’ problem is transformed into an issue of algorithmic

details. (For a very interesting study of causal Bayes nets in adult cate-

gorization, quite different from these suggestions, see Rehder 1999.)

3.7 Experiments

The literature on infants and children is that usefully explores general

learning procedures like those of the previous section is small, but not

completely lacking.

Watson (1979) studied the kicking behavior of infants under a variety

of associations of kicking with the motion of a mobile above the baby.

He found significantly higher kicking rates when two conditions both

obtained: when, after a kick, the probability of the motion of the mobile

was high (.75) but less than perfect (<1.0), and when the probability of

the motion of the mobile in the absence of a kick was greater than 0

(8 ‘‘spontaneous’’ motions per minute rather than 4 or 0). It is well

known in classical and instrumental conditioning that partial reinforce-
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ment gives the highest response rate and is the hardest to extinguish.

But that regularity applies only to one side of Watson’s experiment, and

there may reasonably be a further interpretation. Considerable later work

suggests connections between children’s attributions of mental states to

an object, and ‘‘spontaneous’’ changes in the object’s state, especially its

motion (see Johnson 2000 for a review).

Watson’s experiments predate Bayes-net formalism, but they are a

virtual application of the ideas of causal Bayes nets. The simplest causal

distinction one can make is between features that respond to one’s action

and features that do not. Watson’s infants act on that distinction. Per-

haps the second simplest distinction is between kinds of events that fol-

low invariably from one’s action and those that do not. Watson’s infants

act on that distinction. But the really interesting feature of Watson’s

results is paralleled in a more complicated aspect of causal Bayes nets.

We say a causal system described by a Bayes net is deterministic if each

variable in the network that has an edge directed into it is a deterministic

function of its direct causes, as represented in the network. So if the

mobile moves if and only if the baby kicks, Bayes net (1) is deterministic:

prðmobile moves j kickÞ ¼ 1, prðmobile moves j no kickÞ ¼ 0.

If the mobile moves when and only when either the baby kicks or a

computer sends a signal, then Bayes net (2) is also a deterministic Bayes

net: prðmobile moves j kick and signalÞ ¼ prðmobile moves j kick and no

signalÞ ¼ prðmobile moves j no kick and signalÞ ¼ 1; prðmobile moves j
no kick and no signalÞ ¼ 0.

But if the computer signal, while real, is ignored in the representation of

network (2), and only the associations between kicking and the mobile

motion are recorded, then the causal Bayes net that results looks like

(1) but with an indeterministic probability: prðmobile moves j kickÞ0 1,

prðmobile moves j no kickÞ0 0. I (following Spirtes et al. 1993, 2001)

say that a causal Bayes net is pseudoindeterministic if it has indetermin-
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istic relations that derive from ignoring some of the causes in a larger,

deterministic network.

Watson suggests that the infants in the condition in which the mobile

moves spontaneously and responds indeterministically to kicks are

trying to perfect the efficacy of kicking. I suggest two other interpreta-

tions. They may be positing an unobserved cause or causes of the motion

of the mobile besides their kicking, and exploring the contingencies—

experimenting, in other words. Or they may be confirming the extension

in their world of an innate distinction between deterministic and non-

deterministic systems—a concept that is not a node or link in a causal

Bayes net but rather a feature of some nodes in some causal Bayes nets.

Or they may be doing both. Rather than debating a priori which of these

several interpretations is correct, I think it more important to conduct

further experiments suggested by the causal-Bayes-net representation.

For example, how is kicking behavior altered if, in Watson’s experi-

ments, a light near the mobile, or some other stimulus, is used as an

additional variable? If the spontaneous motion of the mobile is a deter-

ministic function of the light, is the kicking behavior similar to that

obtained in Watson’s experiment, where there was no apparent cause of

the spontaneous motion of the mobile, or is it different? If the motion of

the mobile is entirely determined jointly by the infant’s kicking and

the state of the light, how much does the baby kick? In both of these

ways, indeterministic features of the mobile are made conditionally de-

terministic, and if infants exhibit different kicking behavior than in the

case of imperfect causation with spontaneous motion, that would at least

suggest that they are already sensitive to some conditional frequency

relations.

I know of no experiment that tests whether infants or very young chil-

dren separate causes from covariates according to the Markov Assump-

tion, that is, using conditional independence. But there is evidence that

three- and four-year-olds do.

Gopnik and Sobel (2000) introduced three- and four-year-old children

to a ‘‘blicket detector’’—a small platform that could emit a loud noise

and a bright light. The experimenter separately placed each of two small

objects on the detector, one of which set off the machine. The subject

was told by ostension (not description) that the object which activated

the detector was a ‘‘blicket.’’ Two new objects were then introduced, one

44 Developmental Psychology and Discovery



of them physically similar to one of the previous objects and one of them

physically similar to the other previous object. The detector was acti-

vated only by the new object physically dissimilar to the object that had

previously set off the detector. The subjects were asked which of the new

objects is a ‘‘blicket’’ and reliably picked the new object that set off the

detector rather than the new object that was physically similar to the

object that had been previously named a ‘‘blicket.’’ The experiment

shows—what should be unsurprising—that children can associate sortal

terms with causal powers, overcoming any tendency to sort things by the

phenomenological properties of the things themselves.

In a related experiment, Gopnik et al. (in press) found that three-

and four-year-olds can and do make causal judgements in accord with

instances of the Markov condition, specifically that they can sort cau-

sally relevant variables from causally irrelevant variables in accordance

with conditional-independence relations. Subjects were told that blickets

set off the detector and shown examples of an object setting off the

detector. An object was subsequently put on the detector with no acti-

vation, then removed, a second object was put on the detector with

activation, then removed, and both objects put on the detector simulta-

neously, with activation. The last step was repeated twice more. In a

control experiment, the first object was always put on the detector alone

and activation resulted in 3 of 4 trials, and the second object was put on

the detector alone, with activation in all 4 trials. (See tables 3.4 and 3.5.)

Arguably children were merely judging something to be a blicket if it set

off the detector sufficiently often when placed on the detector alone, with

no other object on the detector. (An easy further control would repeat

the experiment with the same frequencies in both conditions but with a

third object, Z, always on the detector.)

3.8 Conclusion

Bayes nets are (or can be) a representation of causal relations and prob-

ability relations, but they are not themselves algorithms for anything.

Yet they form a representation whose structure (the topology of the

graph and the connection of that topology with conditional indepen-

dence through the Markov Assumption) makes several aspects of the

frame problem easier to manage. A network can be used to determine
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Table 3.4
Experimental condition: children (typically) judge that Y is a blicket but that X
is not

X Y Blicket Detector

On Off Off

Off On On

On On On

On On On

On On On

pr(Blicket Detector ¼ on jX ¼ on) ¼ :75

pr(Blicket Detector ¼ on jY ¼ on) ¼ 1:0

pr(Blicket Detector ¼ on jX ¼ on, Y ¼ on) ¼ 1:0

pr(Blicket Detector ¼ on jX ¼ off, Y ¼ on) ¼ 1:0

pr(Blicket Detector ¼ on jX ¼ on, Y ¼ off) ¼ 0

pr(Blicket Detector ¼ on jX ¼ off, Y ¼ off) ¼ 0
(by background instruction)

Blicket Detector is independent of X conditional on Y.

Table 3.5
Control condition: children (typically) judge that X and Y are both blickets

X Y Blicket Detector

On Off Off

On Off On

On Off On

On Off On

Off On On

Off On On

Off On On

Off On On

pr(Blicket Detector ¼ on jX ¼ on) ¼ :75

pr(Blicket Detector ¼ on jY ¼ on) ¼ 1:0

pr(Blicket Detector ¼ on jX ¼ on, Y ¼ on) ¼ unknown

pr(Blicket Detector ¼ on jX ¼ off, Y ¼ on) ¼ 1:0

pr(Blicket Detector ¼ on jX ¼ on, Y ¼ off) ¼ :75

pr(Blicket Detector ¼ on jX ¼ off, Y ¼ off) ¼ 0
(by background instruction)

Blicket Detector is not independent of Y conditional on X ¼ off.

Blicket Detector is not independent of X conditional on Y ¼ off.
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the conditional probability of one feature or variable from the values of

other features or variables, and it can be used to determine the proba-

bility of one feature or variable after manipulations that force values on

other variables. In both cases, the network structure can be exploited

by algorithms sometimes to enormously simplify such determinations.

These advantages obtain if the network is sparse and the conditional

probabilities can be simply parameterized (for example, if the features

don’t have very many distinct values or if continuous variables are nor-

mally distributed). If we imagine a baby building its causal knowledge

in a fashion we can represent as an expanding network or perhaps

as a collection of loosely linked networks, however organized, we may

suppose that the networks are sparse indeed, and where they are not,

mental changes take place that we can usefully describe as reconfiguring

a network.

Learning a causal network requires two things: variables and data. An

initial set of variables can be transformed in myriad ways, sometimes

with resulting simplifications or complexifications in the topology and

parameterization of networks that agree with the associations in the

data. Variables can be coarsened, refined, combined, omitted, identified

with one another, and introduced. The learnability and the simplicity of

the causal relations extracted from the data will vary with alterations

of the variables, and it seems a reasonable guess that we come into the

world wired for properties that have simple and distinctive causal rela-

tions of value to us, and that, as we develop, we reconfigure our concepts

where necessary to optimize, or at least to satisfice, some combination of

simplicity of causal topology and empirical adequacy.

The literature on artificial intelligence as applied to Bayes networks

is replete with proposals for coarsening variables, introducing new vari-

ables, computing conditional probabilities within a network, computing

the effects of interventions in a network, and, of course, procedures

for learning networks from observations, experiments, and background

knowledge. Many of the procedures have important ideal theoretical

properties—they are guaranteed to converge to the right answer under

certain assumptions (e.g., the Markov and faithfulness assumptions).

The procedures tend to be risk-averse, to demand a lot of data, and to be

computationally demanding (in the worst case, all of the correct proce-

dures are nonpolynomial-hard). Rather than showing how children un-
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cover the causal structure of the world, these procedures instead provide

rules of thumb and an existence proof: it can be done. But the child’s

context is different from the data miner’s: the child wants answers now,

but the child’s data will come in vast chunks only as mobility and motor

skills develop. The child can risk error now with the prospect of revision

later. Developmental psychology should take artificial intelligence back

where it started, to android epistemology, to the ambition of building a

computational baby.
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II
Adult Judgements of Causation





4
A Puzzling Experiment

4.1 The Baker Experiment

A. G. Baker et al. (1993) carried out the following experiment. Adult

subjects sat at a computer with a joystick to manipulate. An image of

a tank—the shooting kind—appeared on one side of the screen, and a

‘‘safe’’ region on the other side. The subjects were told that between the

tank and safety were mines sensitive to color, and that manipulating the

joystick as soon as the tank began to move would camouflage the tank.

Subjects were asked to indicate on a scale from �100 to þ100 their

initial estimate of the ‘‘efficacy’’ of the camouflage in getting the tank

through the minefield. Subjects were also told that sometimes a plane

would appear on the screen, and they were asked to estimate, on the

same scale, the efficacy of the plane in getting the tank through the mine-

field. They were also told that the aim of the exercise was to improve

their estimates with experience.

After these preliminaries, the tank would begin to move slowly across

the screen, and, if the subject pressed the joystick within a short interval

of time, a ray would strike the tank and change its coloring—that is,

would camouflage the tank. Camouflaged or not, the tank would move

on, and a plane would appear or not. The tank either would be blown

up along its passage or would cross the minefield safely. After either

conclusion, the screen would be reset, and a new trial would begin. After

twenty such trials, the subjects were again asked to estimate the efficacy

of the camouflage and the plane. Twenty more trials then followed, after

which the subjects gave final estimates of efficacy.

The experiment was conducted with a variety of different actual de-

pendencies for reaching safety on the camouflaging of the tank and the



appearance of the plane. In the first arrangement, the experimenters

assigned the actual probabilities as follows:

Probability that the tank reaches safety if it is camouflaged ¼ .75

Probability that the tank reaches safety if it is not camouflaged ¼ .25

Probability that the tank reaches safety if the plane appears ¼ 1

Probability that the tank reaches safety if the plane does not appear ¼ 0

For brevity, in the future I will respectively represent these four sentences

thus:

prðS jCÞ ¼ :75

prðS j@CÞ ¼ :25

prðS j PÞ ¼ 1

prðS j@PÞ ¼ 0

The subjects were not told these probabilities, of course, but they

governed the joint frequencies of events in the forty trials.

The subjects camouflaged the tank on about half of the trials. At the

end of the experiment, the subjects’ averaged judgements of ‘‘efficacy’’

and the standard deviations of their estimates on the �100 to þ100

scale were as follows:

Efficacy of appearance of the plane ¼ 92 (standard deviation [s.d.] ¼ 5)

Efficacy of camouflage ¼ �6 (s.d. ¼ 8)

On average, the subjects thought the plane was almost perfectly effi-

cacious, and on average they thought the camouflage had no, or almost

no, influence at all. These judgements were a considerable change from

the subjects’ initial opinions, which for the plane averaged �4 (s.d. ¼ 8)

and for the camouflage averaged 29 (s.d. ¼ 7).

The interest of the experimenters was in the second result, that at the

end of the forty trials the subjects thought the camouflage had no effi-

cacy—indeed, finding that result was the very point of the experiment.

The conclusion of the authors is that the subjects’ judgements that

camouflage had little or no effect were irrational. They claim, without

showing, that the subjects’ judgements were in accord with a famous

model of classical conditioning, the Rescorla-Wagner model, widely used

in studies of animal conditioning, where ‘‘overshadowing’’ of smaller

causes by bigger causes has often been demonstrated.
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Why irrational? In 1980 Lorraine Allan published a discussion of mea-

sures of association for binary variables, that is, variables taking only

two possible values, as in present or absent, 1 or 0. She argued that the

following measure (which has a long prior history) of the association of

a cue or indicator or causal variable A with a subsequent variable E is

superior to several alternatives:

DPEA ¼df prðE jAÞ � prðE j@AÞ

(Here, and elsewhere, I sometimes abbreviate ‘‘E ¼ 1’’ as ‘‘E ’’, and

‘‘A ¼ 0’’ as @A, etc.)

In keeping with many other psychologists, Baker et al. take the mea-

sure as authoritative not only for associations but also as a measure of

the efficacy of A for producing E. Accordingly, in their view, the subjects

ought to have judged that the efficacy of camouflage was not 0, but

.75� .25 ¼ .5. The presence of a more efficacious cause, the plane,

overshadowed the efficacy of the camouflage in the subjects’ judgement,

and the subjects erroneously discounted the effect of the camouflage.

Rescorla and Wagner’s model of classical conditioning derives from a

tradition of mathematical models of Pavlovian learning. Among psy-

chologists it may well be the most influential model of learning in the last

thirty years. The model assumes binary potential causes ðC1;C2; . . . ;CnÞ
and a binary effect ðEÞ, where the two allowed values correspond to

presence and absence. Furthermore, it assumes that there is an always-

present variable ðC0Þ representing the causal influence of the constant

experimental background. Causal knowledge then consists of knowledge

of an associative strength, given by Vi, for each potential cause. The

associative strength of Ci with E after case t þ 1 is defined inductively as

V tþ1
i ¼ V t

i þ DV t
i , where

DV t
i ¼

0 if cause Ci does not

appear in case t;

aib1 l�
X

Vj

Cause Cj appears in case t

0
@

1
A if both Ci and E appear

in case t;

aib2 0�
X

Vj

Cause Cj appears in case t

0
@

1
A if Ci appears and E does

not appear in case t.

8>>>>>>>>>>><
>>>>>>>>>>>:

Here ai is a unitless parameter representing the salience of Ci to the
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reasoner relative to the saliencies of the other potential causes, b1 and b2

represent learning rates respectively for cases in which the effect does or

does not occur, and l is the maximum level of associative strength pos-

sible, and in animal experiments, is usually thought to be proportional

to the intensity of the outcome. The Rescorla-Wagner model simply

states that, after a particular case, we update the strength of each poten-

tial cause, Vi, by DV t
i . If the potential cause i is absent in a case, then

DV t
i is 0. If the potential cause does appear, then DV t

i is proportional

to the difference between (a) the sum of the current causal strengths of

the appearing causes and (b) either 0 or l, depending on whether the

effect occurred.

We can make sense of the notion of an equilibrium set of values

for the RW process if we assume a probability distribution over the

various possible combinations of present and absent cues and a condi-

tional probability for E, given any combination of present and absent

cues. For example, in the Baker experiment, we can infer the following

probabilities:

prðC; P; SÞ ¼ :375

prðC; P;@SÞ ¼ 0

prðC;@P; SÞ ¼ 0

prðC;@P;@SÞ ¼ :125

prð@C; P; SÞ ¼ :125

prð@C; P;@SÞ ¼ 0

prð@C;@P; SÞ ¼ 0

prð@C;@P;@SÞ ¼ :375

An equilibrium is then a set of values Vi for all of the cues for which

the expected value of each DVi is zero. When there is a single possible

cue X besides the constant cue, the RW model has a unique equilibrium

value for the association strength of that cue, and it is equal to Allan’s

DP. But when there are more than one possible variable cue, as in

the Baker experiment, whether there is a unique equilibrium or several

equilibria depends on the probability distribution over the joint occur-

rences and absences of the cues and E—the cue-and-outcome patterns.

Patricia Cheng (1997) characterized, in other terms, the equilibrium
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association values for specialprobability distributions. DavidDanks (2001)

has since supplied a general algorithm for finding the equilibria and has

provided necessary and sufficient conditions for the existence of a unique

equilibrium. His results agree with Cheng’s when the conditions for her

analysis apply. And when there is a unique equilibrium, it is generally

not given by setting Vi ¼ DPi. In particular, for the probabilities just

given for the Baker experiment, the unique equilibrium is VC ¼ 0 and

VP ¼ 1, agreeing quite well with the subjects’ mean judgements that the

camouflage has no, or almost no, influence on reaching safety, while the

appearance of the plane is almost certain to result in a safe arrival.

What’s missing? The analysis given by Baker et al. seems complete.

They conclude that the RW model and other ‘‘associative models’’ may

not be the whole story, but they explain human performance in the

learning task in their experiment: ‘‘It is certainly possible that these

associative mechanisms are part of a hybrid mechanism involving both

associative mechanisms and more representational, retrospective pro-

cesses.’’ But no representational process is needed for this experiment.

4.2 Of Mice and Men

The Baker experiment and its interpretation leave a puzzle: if people are

not rational in their learned causal judgements, even in this rather easy

problem, how do they manage to learn to get around in the rather

messier real world; how do they learn to predict and influence what will

happen when they, or someone else, takes an action? Even if people were

born with complete causal knowledge of the world, it seems that the

moral of the Baker experiment and its interpretation is that experience

would lead them irrationally to abandon their knowledge in favor of

erroneous judgements of efficacy. Something is wrong.

An obvious thought is that Baker et al. are wrong about what ratio-

nality requires. Allan’s arguments, as they construe them, that DP is the

quantity that measures the strength of a causal influence, seem less than

decisive. In many cases, when there are multiple potential causes, judg-

ing the influence of one potential cause by DP is obviously wrong, and a

fundamental principle of experimental design and statistical analysis is

either to control other potential causes by arranging circumstances so

that they do not vary or to control other potential causes statistically by
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looking only at a set of cases in which, for each potential alternative

cause, there is a fixed value that the potential cause has for all of the

cases in the set. This procedure is often referred to as conditioning on the

alternative potential causes. Perhaps that is how the efficacy of a poten-

tial cause should be judged. Perhaps DP is the wrong measure in the

context of this experiment.

In that rarest of things, a charming psychological essay, Barbara

Spellman (1996b) claims as much. She suggests that when there is more

than one potential cause of an outcome, in judging the efficacy of a

potential cause one should condition on other, perhaps all, potential

causes. Suppose, to use her example, one is to judge the influence on

growth of the application to plants of a red liquid from experimental

trials in which sometimes the red liquid alone is applied, sometimes the

red liquid and another, blue liquid, are both applied, and sometimes

only the blue liquid is applied. In that case, she says, one should calcu-

late DP for the red liquid using only those trials in which the blue liquid

was not applied or, alternatively, only those trials in which the blue

liquid was applied. In two experiments she describes, subjects behaved

as though they were doing exactly that. And in fact, the subjects’ judge-

ments of the efficacy of the red liquid agree with RW equilibria for her

experiments.

Now consider the Baker experiment. In cases in which the plane is

absent, the outcome is the same whether the tank is camouflaged or

not—the tank never reaches safety. DP for camouflage, conditional on

the absence of the plane, hereafter, DPCS;@P, is 0. And in cases in which

the plane is present, the outcome is the same whether the tank is cam-

ouflaged or not—the tank always reaches safety. DPCS;@P is 0, and so is

DPCS;P. By Spellman’s lights, Baker’s subjects were behaving rationally.

Two questions make this response not entirely unsatisfactory. Why

should one conditionalize; why is the conditional DP, rather than the

simple unconditional DP, the right estimate of the efficacy of the red

liquid or the camouflage? Absent an answer to that question, one might

regard Spellman’s experiments as just another demonstration of human

irrationality. And the second question is, What should one condition on?

Spellman doesn’t say. In her experiment the other potential cause, the

blue liquid, had two values: poured on and not poured on. Should DP

for the red liquid be estimated conditioning on the blue liquid being
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poured, or on the blue liquid not being poured? As in the Baker experi-

ment, the probabilities in her experiment were arranged so that it made

no difference, but that is not necessarily, or even usually, the case. If the

house-current circuit breaker is on, the lamp goes on if and only if the

light switch is turned on, but if the house circuit breaker is off, the lamp

is off no matter the position of the light switch. DP for the lamp switch,

conditional on the circuit breaker being on, is 1; DP for the lamp switch,

conditional on the circuit breaker being off, is 0. And, more generally,

should one condition on all of the other potential causes, or just some of

them, and if only some of them, which ones and why? Evidently, that

depends on whether, when reporting the ‘‘efficacy’’ of a potential cause,

subjects are reporting only its direct effect on the outcome through

mechanisms that do not include other potential causes under consider-

ation, or are instead reporting its total effect on the outcome, including

any effects through mechanisms that do include other potential causes

under consideration. Here is another example. Turning the lamp switch

on causes the light to go on, which causes the radiometer to turn. If we

consider only the state of the lamp switch and the state of the light, what

are their respective ‘‘efficacies’’ for turning the radiometer? For the lamp

switch, it depends on what is meant: directly, without the light, it has no

efficacy at all; indirectly, through causing the light to go on, it has an

effect. If the total effect of the lamp switch is wanted, we had better not

condition on the state of the light. But there are deeper difficulties with

Spellman’s proposal.

We can see these further difficulties with Spellman’s analysis by imag-

ining more complicated variations of the Baker experiment. We arrange

things so the joystick influences whether the tank is camouflaged and

also influences whether the plane appears. Suppose that when the joy-

stick is moved to on, camouflaging always occurs but never occurs

otherwise. When the joystick is moved to on and a random variable R

unobserved by the subjects (and whose existence is unknown to them)

is on, the plane appears 90 percent of the time; otherwise it does not

appear. When the random variable R has the value on, the tank reaches

safety 90 percent of the time; otherwise it does not reach safety. The

plane’s appearance or absence actually has no influence on whether the

tank reaches safety. Camouflaging has no influence at all on whether

the tank reaches safety. Suppose that the randomizer is on 90 percent of
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the time, and the subjects move the joystick to the on position 50 percent

of the time. We can diagram the actual arrangements as in figure 4.1.

The relevant quantities can be computed from the probabilities alone,

but the diagram, which together with the probabilities is a Bayes net,

provides an algorithm for the computation (see Pearl 1988). The proba-

bility that the tank reaches safety given that the plane appears is .9. The

probability that the tank reaches safety given that the plane does not

appear is .75. DP for the plane is .15. The probability that the tank

reaches safety given that the tank is camouflaged is .81. The probability

that the tank reaches safety given that the tank is not camouflaged is also

.81. The unconditional DP for the camouflage is 0, which in this case is

the right measure of the influence of the camouflage on whether the tank

reaches safety. And what about the quantities Spellman recommends, the

DP values for camouflage conditional on the plane being present or

conditional on the plane being absent, e.g., prðS jC; PÞ � prðS j@C; PÞ?
The first of these quantities, DP for camouflage conditional on the plane

being present, is not defined in this case. (Because the plane appears

only if the tank is camouflaged, the probability that the tank reaches

safety given that the tank is not camouflaged and the plane appears is

undefined—probabilities conditional on an event of 0 probability are

undefined.) The probability that the tank reaches safety given that the

tank is camouflaged and the plane does not appear is .42. The proba-

bility that the tank reaches safety given that the tank is not camouflaged

and the plane does not appear is .81. So DP for camouflage given that

the plane does not appear is �.39!

Figure 4.1
Actual causal connections in an imaginary experiment
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If subjects follow Spellman’s norm, they would say either that the

efficacy of camouflage cannot be determined, or that it is �.39, or per-

haps they would just be uncertain. If they follow Allan’s norm, which

Baker et al. endorse, they would give the right answer, that the camou-

flage does not influence whether the tank reaches safety.

What if the conditional DP values are both defined but not necessarily

equal? Here is another example. Add a second unobserved randomizer

Q that influences only whether the tank is camouflaged. Let the proba-

bility that the tank is camouflaged be .9 if either Q is on or the joystick

is in the on position, or both, and 0 otherwise, and let the probability

that Q is on be .5. Leave everything else the same as in the thought

experiment just described. DPPS for the plane is unchanged from the

previous imaginary experiment. DPCS for camouflage is also unchanged,

0. The probability that the tank reaches safety given that the plane

appears and the tank is camouflaged is .9. The probability that the

tank reaches safety given that the plane appears and the tank is not

camouflaged is the same, .9. So DPCS;P for camouflage, conditional on the

appearance of the plane, but not conditional on the absence of the plane

is 0. The probability that the tank reaches safety given that the plane

does not appear and the tank is camouflaged is .70. The probability

that the tank reaches safety given that the plane does not appear and the

tank is not camouflaged is .80. DPCS;@P for camouflage, conditional on

the absence of the plane, is not 0 but rather �.10. The other answer, 0,

obtained either by not conditioning at all or by conditioning on the

presence of the plane, is correct.

Allan’s general rule, on which Baker et al. rely in their experiment,

cannot generally be the right normative measure of the efficacy of a

potential cause. In cases in which there are two or more potential causes,

X and Y, say, one of which, say Y, is an actual cause of the outcome

variable and the other of which, X, has no influence on the outcome

variable but is itself an effect of Y, Allan’s measure of efficacy, DP, will

wrongly attribute an efficacy to X. (And this is not the only kind of case

in which Allan’s measure is plainly wrong.) The RW model predicts the

average of the subjects’ performance in the Baker experiment, which

does not obey the Allan norm, DP. Spellman’s normative measure of

efficacy, DP conditional on other potential causes, gives no measure of

A Puzzling Experiment 59



the efficacy of camouflage conditional on the presence of the plane in the

first imaginary variation of the Baker experiment and gives the wrong

answer conditional on the absence of the plane. And Spellman’s norma-

tive measure gives two different results in the second imaginary version

of the Baker experiment, one plainly right (0) and the other plainly

wrong (�.10). (Spellman suggests taking an average in the case of con-

flicting conditional DP values, which would not help in this case.) And

finally, Allan’s measure, the simple unconditional DP, gives the plainly

right measure of the efficacy of camouflage in the two imaginary

experiments. What a mess! We are left without any basis for judging

whether or not the subjects in the Baker experiment correctly learned the

efficacy of camouflage. But it at least seems clear that the psychologists

are in a perplex.

The problems are not confined to the particular authors I have cited:

Allan, Baker, Rescorla and Wagner, and Spellman. Papers testing human

judgements of efficacy and comparing them with such ‘‘normative’’

measures as DP, conditional DP, or related quantities abound in the

psychological literature. For example, Cheng and Novick (1990) pro-

pose DP conditional on the absence of potential causes in an unspecified

‘‘focal set’’ of alternative potential causes, and Melz et al. (1993) elabo-

rate on the proposal this way:

In assessing conditional contingencies, heuristics are required to determine which
tests (of those possible, given the cue combinations that are actually presented)
should in fact be performed. We assume, on the basis of the arguments presented
earlier, that people prefer to conditionalize the contingency for each target factor
on the simultaneous absence of all conditionalizing cues. If this is not possible,
then they will conditionalize on the absence of as many conditionalizing cues as
possible. (1993, 1404)

And lest there be any doubt that they are talking about selecting the

‘‘focal set’’ referred to in Cheng and Novick (1990), they say,

Following Cheng and Novick’s (1990) terminology, we call the set of events
over which a subject computes a particular contingency a focal set. . . . These
may include the universal focal set of all events in the experiment (i.e., the un-
conditional contingencies) and more restricted focal sets (i.e., conditional
contingencies). (1993, 1404)

This suggestion for finding the correct focal set would produce the wrong

answer in both of our thought experiments.
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Most discussions of psychological measurement of causal efficacy,

whether in the Baker experiment or elsewhere, are unclear about what

measures of ‘‘efficacy’’ are to measure. Pearl (2000, chap. 9) provides

several clear senses of causal strength in terms of Bayes nets and inter-

ventions, and Cheng (1997), whose theory will be discussed in chapter 7

of this book, provides another. We will see there that further ambiguities

remain. What should be clear, however, is that a general rule for esti-

mating causal strength by DP cannot correspond to anything normative,

and any normative rule for estimating causal strength by some function

of a conditional DP will require some intricacy in how to specify the

‘‘focal’’ set.
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5
The Puzzle Resolved

We recall the Baker experiment: subjects can manipulate a joystick,

which camouflages a tank moving across a video screen. Sometimes a

plane appears and sometimes not. Sometimes the tank crosses safely and

sometimes not. Subjects also know a time order of events: setting the

joystick position precedes camouflaging the tank, which precedes the

appearance of the plane.

Given the cover story, given the fact that the subjects see a mechanism

by which joystick manipulation camouflages the tank, and given the

order of appearance of events, there are 16 possible causal pictures

the subjects might reasonably have entertained before the experimental

trials. Here are some of them:
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With C standing for camouflage, P for plane, S for reaching safety,

and@ for the absence of these conditions, the probabilities in the experi-

mental set up are these:

prðC; P; SÞ ¼ :375

prðC; P;@SÞ ¼ 0

prðC;@P; SÞ ¼ 0

prðC;@P;@SÞ ¼ :125

prð@C; P; SÞ ¼ :125

prð@C; P;@SÞ ¼ 0

prð@C;@P; SÞ ¼ 0

prð@C;@P;@SÞ ¼ :375

Subjects learn in addition that the tank is camouflaged if and only if

the joystick is put in the on position in the appropriate time interval, and

the position of the joystick is correlated with the appearance of the

plane. Hence they know or can learn several facts from the experimental

trials, including these:

. Camouflage and joystick position are independent of reaching safety
conditional on the appearance of the plane.
. Camouflage is independent of the plane conditional on the joystick
position (in the appropriate time interval—hereafter assumed without
remark).
. The plane’s appearance is not independent of camouflage.
. The plane’s appearance is not independent or conditionally indepen-
dent of safety.

Structures 6 and 7, and only these structures, explain these facts and

the observed associations. Structure 1, for example, implies that the plane

is independent of safety, conditional on camouflage. Structure 2 implies

that camouflage is not independent of safety, conditional on the plane,

and so on.

Structure 6 is consistent with the fact that camouflage is indepen-

dent of the plane, conditional on the joystick position only because in

the experiment the two variables, camouflage and joystick position, are

deterministically related, so that the value of either variable uniquely

determines the value of the other variable. For structure 6, DP measures
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the difference in the probability of reaching safety on an intervention

that brings about camouflage and on an intervention that prevents cam-

ouflage. (In Pearl’s [2000] classification, DP is in this case the prob-

ability that camouflage is a necessary and sufficient cause of safety.)

If, however, subjects’ judgements of the ‘‘efficacy’’ of camouflage report

something about their estimates of the strength of the direct influence

of camouflage on safety, through mechanisms that are not blocked by

holding constant other variables, then in structure 6 DP is surely the

wrong measure, for if the presence (or absence) of the plane were held

constant, according to structure 6 interventions that change the presence

or absence of camouflage would make no difference to reaching safety.

In the latter case, Spellman’s measure would be more appropriate, and

subjects would be entirely rational to judge that the plane has an influ-

ence on safety but that camouflage does not.

In structure 7, which fits the associations and independence and con-

ditional independence relations in the probability distribution used in the

experiment, camouflage has no influence on safety, but the plane has a

direct influence. DPCS is not zero, even though camouflage has no influ-

ence on reaching safety. Conditional DP for camouflage given the plane,

DPCS;P (or DPCS;@P), in this case measures the difference in the proba-

bility of reaching safety given an intervention that camouflages the tank

and given an intervention that does not camouflage the tank, when the

appearance (or absence) of the plane is held constant. That difference is

zero. In contrast, there is no difference between the unconditional DP of

the plane and safety and their DP conditional on the state of camouflage,

that is DPPS;C ¼ DPPS;@C ¼ DPPS, and the quantity is positive.

When we represent the alternative causal explanations as Bayes

nets and apply the Causal Markov Assumption, the Baker experiment

resolves into a variety of possibilities, and which of them conforms to

the subjects’ understanding is underspecified by the experimental design.

The ambiguities concern what causal structures are reasonably inferred

from the background stories and data that subjects are given, and to

what feature of causal relations subjects respond when they report a

judgement of ‘‘efficacy.’’

Consider again the first imaginary experiment from chapter 4. When

and only when the joystick is moved to on, camouflaging occurs. When
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the joystick is moved to on and a random variable R unobserved by the

subjects (and whose existence is unknown to them) is on, the plane

appears 90 percent of the time; otherwise it does not appear. When the

random variable R has the value on, the tank reaches safety 90 percent

of the time; otherwise it does not reach safety. The appearance or

absence of the plane actually has no influence on whether the tank

reaches safety. Camouflaging has no influence at all on whether the tank

reaches safety. Suppose that the randomizer is on 90 percent of the time

and the subjects move the joystick to the on position 50 percent of the

time. Joystick is independent of safety; joystick is not independent of

safety conditional on the plane; camouflage is independent of safety;

camouflage is dependent on safety conditional on the plane; camouflage

is independent of safety conditional on the plane and the joystick. Time

order is as in the Baker experiment.

Consider versions of Spellman’s normative recommendations, accord-

ing to what one conditions on:

DPCS ¼ 0

DPJS ¼ 0

DPCS; J ¼ undefined

DPCS;@J ¼ undefined

DPCS;P ¼ 0

DPCS;@P ¼ 0

DPCS;PJ ¼ undefined

DPCS;@P@J ¼ undefined

DPCS;@PJ ¼ undefined

DPCS;P@J ¼ undefined

Which of these is the correct estimate of the ‘‘efficacy’’ of camouflage?

Should subjects say that camouflage has no influence, or a negative influ-

ence, or that they cannot tell? There is an explanation that implies all the

independencies specified, and that is consistent with the associations and

the time order of events and the Causal Markov Assumption:

The Puzzle Resolved 67



Here R is unobserved. Camouflage has no influence on whether the tank

reaches safety. The second imaginary experiment has essentially the same

features, except that all of the DP quantities are defined and there is a

unique Rescorla-Wagner equilibrium, which is not 0 if the state of the

joystick is not among the cues but is 0 if the joystick is included among

the cues. Causal Bayes net representations disentangle the various con-

tending normative analyses.

There are three further points. First, in these real and imaginary

examples all that is essential for determining the correct answer—that

the camouflage has no influence or no direct influence—is knowledge of

the time order and which variables are independent conditional on

which sets of other variables. Measures of the strength of association

other than DP or conditional DP would do quite as well for that judge-

ment so long as they conformed to the appropriate independencies and

conditional independencies. (In a later chapter we will consider a different

measure, Cheng’s, and the implications of the Causal Markov Assump-

tion for her theory.) Second, while the Rescorla-Wagner model agrees

with one normative answer and with the judgements of experimental

subjects in the Baker experiment, normative answers sometimes dis-

agree with the Rescorla-Wagner model. The second imaginary experiment

provides an example, but there are much simpler examples. The next

chapter discusses how Bayes nets may yield a simple test of the RW

model. And third, the imaginary experiments in this chapter illustrate

cases in which the application of the Causal Markov Assumption can

yield conclusions that there are unobserved causes at work: from the

data and initial knowledge provided to subjects in our imaginary experi-

ments, various computer programs could discover that there is an un-

measured cause—R in this discussion—of the appearance of the plane

and the tank’s reaching safety.
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6
Marilyn vos Savant Meets Rescorla and

Wagner

6.1 Introduction

The Rescorla-Wagner model has dominated psychological theories of

human and animal learning for many years, with vast influence. A

variety of empirical objections have been made to it, for example, that it

neglects learning about a ‘‘cue’’ that happens when the subject observes

the effect in the absence of the cue, and that to save the phenomena it

requires different parameter settings for similar experimental situations. I

will add another, at least hypothetically. There is a very simple case in

which the Rescorla-Wagner model predicts that a learner will converge

toward associating a ‘‘cue’’ with an outcome when in fact the cue has no

influence on the outcome and, further, when the data provided to the

learner contain that very information—if the Causal Markov Assump-

tion is made.

6.2 Conditional Dependence and the Monte Hall Game

When two independently distributed variables, say X and Z, both influ-

ence a third variable, say Y, then conditional on some value of Y, X and

Z are not independent. Judea Pearl gives the following illustration. Sup-

pose that the variables are the state of the battery in your car (charged/

dead), the state of the fuel tank (not empty/empty), and whether your

car starts (starts/does not). Suppose that you regard the states of the

battery and of the fuel tank as independent: knowing the state of the

battery gives no information about the state of the fuel tank, and vice

versa. Now, condition on a value of the effect—whether the car starts—

by supposing that you are given the information that your car does not



start. Now the information that your battery is charged does provide

information about the state of the fuel tank.

The general principle is that in a causal graph, if edges from two

independent variables (or variables conditionally independent on other

variables) are both into, collide with, a third variable, then the two causes

are dependent, conditional on their effect (and on whatever other vari-

ables had to be conditioned on to make the causes independent). The

principle is necessary in all linear models, and in all other models satis-

fying the Causal Markov Assumption and the faithfulness assumption.

The latter assumes that all independencies and conditional indepen-

dencies among a set of variables are implied by the Causal Markov

Assumption for the graph describing the causal relations among the

variables.

The collider principle is elementary to auto mechanics, but there is

anecdotal evidence that people do not recognize it in some contexts, and

that many professional statisticians do not recognize it at all. The prin-

ciple is violated in all regression algorithms, sometimes with strikingly

unfortunate results. For example, in a procedure that appears to violate

this principle, the estimates of low-level lead exposure on the intelligence

of children were obtained by step-wise regression, with the result that the

published estimates of the malign effect are probably at least 50 percent

too low (Scheines and Boomsma 1999). Other anecdotal evidence comes

from Marilyn vos Savant, who for many years ran one of the few intel-

ligent newspaper features, a puzzle and advice column in a Sunday

supplement. Vos Savant described, and gave the correct answer to, the

Monte Hall problem.

The Monte Hall game goes like this: Before the contestant arrives, the

host, Monte Hall, places a thousand dollars behind one door and a

(quiet) goat behind each of two other doors. The contestant enters and is

told that if she chooses the correct door, she will win the money. The

contestant then chooses. Monte Hall then opens one of the doors that

the contestant did not choose and that does not contain the money.

(If the contestant chose a door that does not contain the money, then

Monte Hall has no choice as to which door to open; if the contestant

choose the door that does contain the money, then Monte Hall opens

one of the other doors at random.) Now, after a door without the

money has been opened, the contestant is given the option of changing
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the choice of doors. What should the contestant do, stick with the first

choice, change, or does it not matter? The answer is that the contestant

should change doors, and by doing so increases the chance of winning

from 1/3 to 2/3. The majority of people presented with the game think

it does not matter whether the choice is changed or not, and when vos

Savant published her correct answer, she received scores of denuncia-

tions, many from professors of statistics.

The Monte Hall problem is an instance of the collider phenomenon—

of independent variables conditional on a common effect. Monte Hall’s

original choice of where to put the money (a variable with three values)

and the contestant’s original choice of which door has the money (another

variable with three values) influence which door Monte Hall opens (still

another variable with three values). The contestant’s original choice is

independent of where Monte Hall put the money. But conditional on

the information about which door Monte Hall opened, the contestant’s

original choice provides information about which door Monte Hall put

the money behind.

The anecdotal evidence does not decide the question of whether people

can and do make causal judgements in accord with conditional associa-

tion. In the Monte Hall game, it is not obvious how to identify the vari-

ables, and contestants have no data from which to learn, so an explicit

analysis was required.

6.3 Testing Rescorla and Wagner’s Model

Consider the following structure:

A has no influence at all on E, and by the Causal Markov Assump-

tion, A and E are independent. But A and E are dependent, conditional

on some value of B. Now suppose that U is not observed. A, B, and E

are observed, A and B precede E, and the following associations hold:
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. A and B are dependent.

. B and E are dependent.

. A and E are independent.

. A and E are dependent, conditional on some value of B.

If we assume faithfulness and the Causal Markov Assumption, these

facts and the time order are inconsistent with any causal pathway from

A to E. If we made inferences in accord with these principles, we would

conclude that A has no influence on E. Indeed, in principle, we could

further infer that there is some unobserved factor influencing both B

and E.

If subjects follow the RW model, they will ignore the fact that A and E

have no association and will focus on the fact that A and E are asso-

ciated, conditional on a value of B. If subjects make judgements in

accord with the Causal Markov Assumption and faithfulness, the fact

that A and E are not associated will lead them to judge there is no causal

connection between those variables.

Consider the following parameterization:

Experimental setup 1: A! B U ! E

prðU ¼ EÞ ¼ 1

prðA ¼ 1Þ ¼ :1

prðE ¼ 1Þ ¼ :45

prðB ¼ 1 jA ¼ 1;E ¼ 1Þ ¼ :8

prðB ¼ 1 jA ¼ 1;E ¼ 0Þ ¼ :98

prðB ¼ 1 jA ¼ 0;E ¼ 1Þ ¼ :02

prðB ¼ 1 jA ¼ 0;E ¼ 0Þ ¼ :35

One could, as in the Baker experiment, give subjects a substantial

number of trials according to this probability distribution and ask for

their judgement of ‘‘efficacy’’ or some such thing. A better design, it

would seem, would be to also give subjects a second set of trials in which

a distinct cue C is paired with the same cue B as before and the same

effect E, but C actually causes E, and at equilibrium VC < VA. Then

subjects may be given a forced choice between A and C to bring about

E, with a reward if they succeed in producing E. On the assumption that

subjects are near equilibrium at the end of each of the two sets of trials,
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the causal interpretation of the Rescorla-Wagner model requires that

subjects prefer to try to bring about E by bringing about A. If they use

the Causal Markov Assumption and faithfulness, they should prefer to

try to bring about E by bringing about C.

The graph for the second set of trials is simply this:

For this set of trials, consider the following parameterization:

Experimental setup 2: B C! E

prðC ¼ 1Þ ¼ :1

prðB ¼ 1 jC ¼ 1Þ ¼ :9

prðB ¼ 1 jC ¼ 0Þ ¼ :2

prðE ¼ 1 jC ¼ 1Þ ¼ :7

prðE ¼ 1 jC ¼ 0Þ ¼ :42

Using Dank’s algorithm for computing Rescorla-Wagner equilibria

(which can be found at http://srdcc3.ucsd.edu/@ddanks), we obtain the

equilibrium values for VA from the first experiment, which we can com-

pare with the equilibrium values for VC from the second experiment for

various values of the learning parameters b1 and b2 (setting l ¼ 1 in all

cases). These values are given in table 6.1. Whenever b1 is greater than

or equal to b2, VA is greater than VC. Thus, in such circumstances, the

Table 6.1
Equilibrium values for VA from the first experiment and VC from the second
experiment for various values of the learning parameters b1 and b2

b1 b2 VA VC

1.0 1.0 0.32 0.29

1.0 0.5 0.433 0.246

0.5 0.5 0.35 0.29

0.1 0.1 0.35 0.29

0.5 1.0 0.245 0.28

1.0 0.1 0.373 0.088

0.1 1.0 0.07 0.12
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causal interpretation of the Rescorla-Wagner model predicts that given

sufficient evidence, subjects will judge that bringing about A is more

likely to cause E than is bringing about C, even though, in fact, A has no

influence on E.

Ahmad Hashem and Gregory Cooper (1996) at the University of

Pittsburgh tested whether medical residents made causal judgements in

accordance with causal Bayes nets, giving them numbers for conditional

probabilities rather than data and including a case structurally like those

considered here. The medical residents did not do very well with three

variables, but because of a data artifact, neither did a Bayes-net learning

algorithm. For a comparison with Rescorla-Wagner, it is essential to give

subjects data rather than numerical probabilities. A principal difficulty

in such an experiment is that a large number of trials is required to

approximate the relevant statistics. In two experiments related to those

proposed here, David Danks and Craig Mckenzie (Danks 2001) found

that among subjects willing to make any causal attributions at all, the

modal response is in agreement with the causal Bayes net, although there

is a great deal of individual variation, which can in some measure be

modeled by varying parameters in the search algorithms to be described

in chapter 8. Almost none of the subjects made judgements in accord

with the Rescorla-Wagner model.
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7
Cheng Models

7.1 Introduction

The most interesting and novel recent psychological account of adult

judgements of causation has been developed by Patricia Cheng (1997)

and her collaborators (Cheng and Novick 1999). Cheng argues that the

account uniquely captures many of the phenomena of adult judgement,

but even if it does not, it is a brilliant piece of mathematical metaphysics.

Nancy Cartwright (1989) proposed that there are in the world various

fundamental capacities of kinds of events or circumstances. The capacity

of a kind of circumstance C to bring about another kind of circumstance

E is the probability of E conditional on C and on the absence of all

other potential causes of E. Ordinary objects in our everyday world

are amalgams of components with fundamental capacities. Cheng’s

psychological theory of our tacit causal theories is a generalization of

that idea: we judge instances of kinds to have causal powers to produce

or to prevent kinds of effects; the powers can act separately or, in some

cases, they may interact. We make minimal assumptions about our

world that enable us often to form judgements of causal powers, which

in turn we can use in prediction. That is the psychological theory for

which Cheng has provided evidence. I am concerned here with using

Bayes-net methods to unravel implications of the theory that have not

yet been tested. Cheng’s models of our models of causation turn out to

be Bayes nets under a particular parameterization, which means that we

can use what is known about search and estimation for Bayes nets to

extend Cheng’s theoretical results.



7.2 Cheng’s Model of Human Judgement of Generative Causal Power

The metaphysics of Cheng’s theory can be viewed as an anatomy of

kinds of causal relationships. Cheng considers only causal factors that

have two values, present or absent, and only the presence of a factor can

have a causal role. She divides causal relations into two sorts: generative

and preventive. Generative causal factors increase the probability of an

effect, and preventive causal factors decrease it, both subject to appro-

priate conditions. Causal powers are further divided into the simple and

the compound, or interactive. Instances of two or more simple causal

powers for the same kind of effect produce an instance of that effect

independently of one another. That is, if A and B have simple, non-

interactive, generative causal powers to produce E, then when A and B

are both present, A may cause E, or B may cause E, or both may sepa-

rately cause E. The probability that A, if A occurs, causes E (which is

not the probability of E given A) is independent (in probability) of the

probability that B, if B occurs, causes E. When A and B generatively

interact, the effect may be produced by A alone, by B alone, by both

acting separately, or by A and B acting conjointly. Similar relationships

apply when one or both causes are preventive or when their interaction

tends to prevent E.

That is the metaphysics, and it may seem to many philosophers and

statisticians an unpromising basis for a normative, let alone descriptive,

theory of causal judgement that is both a real guide in life and has real

empirical content. As we will see, there is a good case to be made for it.

Given data on the joint frequency of candidate causes (of effect E) and

of E, when unobserved causes of E may also be acting, how do people

judge the efficacy or causal power of any particular observed candidate

cause? Suppose that they know, or believe, that all unobserved causes of

E are generative, and that one or more generative candidate causes of E

are observed along with E. Consider the simplest case in which there is

one observed generative causal factor, C, and one unobserved generative

causal factor, U. In that case, E occurs if and only if either C occurs and

C causes E or if U occurs and U causes E.

We let the parameter qce represent the proposition that C causes E,

given that C occurs. And analogously for que. The q parameters have
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two possible values; 1 represents that the causal factor, if it occurs, acts

to bring E about; 0 represents that the causal factor, even if it occurs,

does not bring E about. We let C, U, and E be binary variables; C ¼ 1 if

C occurs, and C ¼ 0 otherwise, and analogously with U and E. So E ¼ 1

if and only if qceC ¼ 1 or queU ¼ 1. Taking the probability of both sides,

we get (1):1

(1) prðE ¼ 1Þ ¼ prðqceC ¼ 1 or queU ¼ 1Þ

For any propositions A, B, the probability of the proposition that A or

B is the probability of A plus the probability of B minus the probability

of the proposition that A and B. Hence:

(2) prðE ¼ 1Þ ¼ prðqceC ¼ 1Þ þ prðqueU ¼ 1Þ � prðqcequeCU ¼ 1Þ

Now assume that qce, que are jointly independent and also independent

of C and of U. Then (2) becomes (3):

(3) prðE ¼ 1Þ ¼
prðqce ¼ 1Þ � prðC ¼ 1Þ
þ prðque ¼ 1Þ � prðU ¼ 1Þ
� prðqce ¼ 1Þ � prðque ¼ 1Þ � prðC ¼ 1;U ¼ 1Þ

Hence the probability that E ¼ 1, conditional on C ¼ 1 and U ¼ 0, is as

follows:

(4) prðE ¼ 1 jC ¼ 1;U ¼ 0Þ ¼ prðqce ¼ 1Þ

This justifies describing prðqce ¼ 1Þ as the ‘‘causal power’’ (in Cart-

wright’s sense) of C to produce E.

It still remains mysterious how anyone could know—or reasonably

estimate—the causal power of C to produce E. But assume that it is

known, or believed, that C and U are independent. From (3) and the

independence of C and U:

(5) prðE ¼ 1 jC ¼ 1Þ ¼
prðqce ¼ 1Þ
þ prðque ¼ 1Þ � prðU ¼ 1Þ
� prðqce ¼ 1Þ � prðque ¼ 1Þ � prðU ¼ 1Þ

(6) prðE ¼ 1 jC ¼ 0Þ ¼ prðque ¼ 1Þ � prðU ¼ 1Þ

Noting that the difference of (5) and (6) is DPCE ¼ prðE ¼ 1 jC ¼ 1Þ �
prðE ¼ 1 jC ¼ 0Þ, we have (7):
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(7) DPCE ¼ prðqce ¼ 1Þ
þ prðque ¼ 1Þ � prðU ¼ 1Þ
� prðqce ¼ 1Þ � prðque ¼ 1Þ � prðU ¼ 1Þ
� prðque ¼ 1Þ � prðU ¼ 1Þ

¼ prðqce ¼ 1Þ½1� prðque ¼ 1Þ � prðU ¼ 1Þ�

Hence,

(8)
DPCE

½1� prðque ¼ 1Þ � prðU ¼ 1Þ� ¼ prðqce ¼ 1Þ

Finally, we note that prðque ¼ 1Þ � prðU ¼ 1Þ is just the probability that

E ¼ 1, given that C ¼ 0. And so, finally,

(9)
DPCE

½1� prðE ¼ 1 jC ¼ 0Þ� ¼ prðqce ¼ 1Þ

Equation (9) implies that under the specified assumptions, the causal

power of C to generate E can be estimated from DP and from the prob-

ability that E occurs given that C does not occur, which can all be esti-

mated from observations of C and E alone. Moreover, under otherwise

similar assumptions, we obtain the same result no matter how many

unobserved causes there are, so long as they are all generative and inde-

pendent of C. We note for later use that a derivation resulting in an

equivalent equation for the causal power of C similar to (9) is possible if

there is another (or several) observed causal factor D, independent of C,

and we condition on the absence of D.

This transformation of metaphysics into testable mathematics predicts

the following for appropriate contexts:

. There should be pairs of cases in which people judge causal powers to
be unequal but judge the DPs to be equal.
. When an effect always occurs in the absence of a causal factor, rather
than judging the factor to have no influence, people should be unwilling
to judge the power of the factor to produce the effect.
. When the effect never occurs in the absence of a causal factor, people
should judge the efficacy of the factor by DP.

Cheng provides experimental evidence that all three are true for con-

texts to which her theory applies: causal factors that have but two values,

present or absent, are all generative and independent.
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7.3 Preventive Causes

Now suppose that all unobserved causes U of E are generating, and

there is an observed candidate preventing cause F of E. In this case, E

will occur if U occurs, U acts to bring E about, and F does not prevent E

from occurring:

E ¼ queU � ð1� qfeFÞ

Cheng’s equation is (10):

(10) prðE ¼ 1Þ ¼ prðqueU � ð1� qfeFÞ ¼ 1Þ

By using (10), we compute that prðqueU ¼ 1Þ ¼ prðE ¼ 1 j F ¼ 0Þ, and

prðE¼1 jF¼1Þ¼prðqueU¼1Þ�prðqfe¼0Þ¼prðqueU¼1Þ�ð1�prðqfe¼1ÞÞ.
We can therefore substitute prðE ¼ 1 j F ¼ 0Þ for prðqueU ¼ 1Þ in the

equation for prðE ¼ 1 j F ¼ 1Þ and solve for prðqfe ¼ 1Þ. The result

is (11):

(11) prðqfe ¼ 1Þ ¼ �DPf =prðE ¼ 1 jF ¼ 0Þ

Cheng’s account of preventive power predicts that in appropriate

contexts, if an effect never occurs even when a potential preventive cause

is absent, people will be uncertain as to the preventive power, because it

is undefined. She reports experiments confirming that prediction.

As Cheng notes, the ceiling effects that follow from her model are

standard pieces of experimental practice. If you set out to test a new

antibiotic and you apply it to a culture and do not apply it to a control

culture and all of the cells in both cultures die, you don’t—or shouldn’t

—conclude that your antibiotic has no effect. Instead, you conclude that

the experiment is no good, because, in all probability, some unknown

factor independently killed the cultures.

7.4 Generative Interaction

Many, perhaps most, everyday causal relations provide apparent

counterexamples to Cheng’s theory. Consider the house-current circuit

breaker, a lamp switch, and the light on a lamp. The light is on if and

only if both the circuit breaker and the lamp switch are on. Suppose that

the state of the circuit breaker and the state of the lamp switch are

Cheng Models 79



independent, and each is on half the time. If we apply Cheng’s formula

(9), the causal power of the circuit breaker is

prðL ¼ on jC ¼ onÞ � prðL ¼ on jC ¼ Þ
1� prðL ¼ on jC ¼ Þ ¼ 1=2

off

off

and the causal power of the lamp switch is also 1=2. Allan’s measure,

DP, gives the same values. The Rescorla-Wagner equilibrium associative

strengths are both 1=2 when b1 ¼ b2. Spellman’s measures, DP condi-

tional on values of other potential causes, make both causal powers 1 if

we condition on the presence of the other variable, and 0 if we condition

on the absence of the other variable. And that presents a difficulty for

Cheng’s theory as well as for Spellman’s.

On Cartwright’s view, and Cheng’s, causal power is supposed to a

fundamental feature of the relation between a potential cause and an

effect, insensitive to background conditions. But if the circuit breaker is

always on, then Cheng’s measure of the causal power of the lamp switch

is no longer 1=2, but 1.

Some account of interaction is required, and in collaboration with

Laura Novick, Cheng (1999) has provided one. It is based on a simple

and compelling intuition: If causes A and B of effect E do not interact,

then the set of cases that would exhibit E if exposed to both A and B is

the union of the set of cases that would exhibit E if exposed to A alone

and the set of cases that would exhibit E if exposed to B alone. If we find

otherwise, as in the light and the circuit breaker, then there is an inter-

action. When A and B are generative and they interact generatively, the

explicit mathematical model is (12):

(12) E ¼ queU l qaeAl qbeBl qabAB

Here l is Boolean addition and qab ¼ 1 represents the proposition that

A and B, if both occur, interact to cause E. The probability that E ¼ 1 is

found by taking the probability that the right hand side of (12) equals 1.

As before, we assume that A, B, U, and all of the parameters are

independent in probability. The problem is how to use (12) and the inde-

pendence assumptions to compute the causal power of the interaction,

that is, prðqab ¼ 1Þ. (Results equivalent to all of those in this section are

in Cheng and Novick (1999).)

When B is absent, the interaction term vanishes, and (12) reduces

to (13):
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(13) E ¼ queU l qaeA

Analogously for B when A is absent:

(14) E ¼ queU l qbeB

So the simple causal powers of A and of B, that is, prðqae ¼ 1Þ and

prðqbe ¼ 1Þ, can be estimated as described in section 7.2, but here we

condition on the absence of B to estimate the causal power of A, and con-

dition on the absence of A to estimate the causal power of B. Further,

when A or B are both absent:

(15) E ¼ queU

So the probability that E is produced by unobserved causes,

prðqueU ¼ 1Þ, can be estimated.

Because of the independence assumptions, equations (13), (14), and

(15) give us all of the terms that occur when the probability of the right-

hand side of (12) is taken, except for the causal power of the interaction,

prðqab ¼ 1Þ. Substituting in the results of (13), (14), and (15) in the

expression for the probability of right-hand side of equation (12), we

can then solve for prðqab ¼ 1Þ from the probability of E when A and B

are both present. The result has a simple form if we first define the

(counterfactual) probability that E would have, given A and B, if there

were no interaction, that is:

(16) prNIðE ¼ 1 jA ¼ 1;B ¼ 1Þ ¼
prðqueU ¼ 1Þ
þ prðqae ¼ 1Þ
þ prðqbe ¼ 1Þ
� prðqueU ¼ 1Þ � prðqae ¼ 1Þ
� prðqueU ¼ 1Þ � prðqbe ¼ 1Þ
� prðqae ¼ 1Þ � prðA ¼ 1Þ � prðqbe ¼ 1Þ
þ prðqueU ¼ 1Þ � prðqae ¼ 1Þ � prðqbe ¼ 1Þ

We have already shown in equations (13), (14), and (15) how to esti-

mate all quantities on the right-hand side of equation (16). The causal

power of the interaction then takes the form of (17):

(17) prðqab ¼ 1Þ ¼ prðE¼ 1 jA¼ 1;B¼ 1Þ�prNIðE¼ 1 jA¼ 1;B¼ 1Þ
1�prNIðE¼ 1 jA¼ 1;B¼ 1Þ

This is analogous to Cheng’s formula (9) for estimating simple genera-

tive causal power.
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The Cheng and Novick interaction formula gives a principled account

of generative interaction and how to estimate it in the simple case we

have considered of two direct, independent, generative causes. The theory

gives an intuitive result for the example with which I began, the light,

lamp switch, and circuit breaker. In that case the effect is the product

of the causes, understood as ð0;1Þ valued variables, and while the sim-

ple causal powers are zero, the interactive causal power of the lamp

switch and circuit breaker to turn the light on has the value 1. Further,

the theory gives different results from those of a variety of measures of

interaction proposed in epidemiology and from the measures of inter-

action used in standard statistical categorical data analysis. Cheng and

Novick consider five other combinations of generative and preventing

simple and interactive causes. I will not review them here.

7.5 Cheng Models as Bayes Nets

Cheng and Cheng and Novick are concerned both about how people

conceive causal relations and about how they do, or could, discover

and use causal relations according to that conception. They give us an

answer for a family of cases, those for which we partially know the

causal graph (we know which variables are potential causes of others,

and we know that some causal connections do not obtain, that there is

no confounding, and that there is no association between the effect and

potential causes due to unobserved causes) but we do not know the

values of the parameters—the causal powers. The aim in these cases is

to estimate the causal power of a direct (adjacent) cause of an effect.

For noninteracting causes, we can summarize the estimation theory for

these circumstances as follows. I assume that the probabilities of any

unobserved causes and the probabilities of their causal powers are not

zero.

1. Assume that E has a single observed, generating cause A, and a
probability-wise independent unobserved preventing cause U. Then the
causal power of A to generate E cannot be estimated.

2. Assume that E has one or more observed, generating causes A, B,
etc.; zero or more observed preventing causes; and an independent un-
observed preventing cause U. Then the ratios of the causal powers of
each of the generating causes to one another can be estimated.
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3. Assume that E has one or more observed, generating causes A, B,
etc.; zero or more observed, preventing causes C; and an independent
unobserved preventing cause. Then the causal power of each observed
preventing cause can be estimated.

4. Assume that E has zero or more observed, generating causes A, B,
etc.; zero or more observed preventing causes C; and an independent,
unobserved generating cause. Then the causal powers of each of the
observed causes can be estimated.

5. Assume that E has zero or more observed, generating causes A, B,
etc.; any number of observed preventing causes C; and an unobserved
generating cause U. If U is not a cause of A and no other observed cause
D of E is both an effect of U and either an effect of A or an effect of
another common unobserved cause of A and D, then the causal power
of A can be estimated.

From a Bayes net perspective, Cheng’s analyses have so far been con-

fined to a comparatively simple family of graphs in which each candidate

cause has either a direct influence or no influence on the effect variable.

But these are special cases, with special graphs. Causes of an effect

can also influence other causes of the same effect, and a cause can be

indirect rather than direct. Unobserved common causes too may act in

these circumstances. Cheng’s theory naturally extends to causal structures

represented by more complex directed acyclic graphs, but the extension

raises issues, specifically, what does the ‘‘causal power’’ of one variable

to generate or prevent another correspond to in parameterizations of

such graphs, and when can such causal powers be estimated from obser-

vations? Those are the issues of the remainder of this chapter.

Estimating the simple total causal power given the true causal graph

Consider the structure in figure 7.1, where W, U are unobserved and

independent. Consider the case where there is no interaction and all

causes are generative. The graph in figure 7.1 then corresponds to the

following equations:

Figure 7.1
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E ¼ queU l qbeBl qaeA

B ¼ qwbW l qabA

Cheng’s methods (1997)—essentially those of sections 7.2, 7.3—apply

to this case. In this case, to estimate qbe it is essential, not optional, to

condition on the absence of A, and similarly on the absence of B to

estimate qae. But the ‘‘simple causal power’’ of A is now ambiguous: it

can mean the causal power of A associated with the A! E edge alone,

which is the probability of E given A and the absence of all other causes

of E (B and W and U in this case), or it can mean the causal power of A

associated with the A! E edge and the A! B! E path, which is the

probability of E given A and the absence of all other causes of E that are

not effects of A (W and U in this case). I will call the former quantity the

direct causal power of A, and when the probability is greater than 0 that

E occurs given that A occurs and that no other causes of E, other than

effects of A, occur, I will call the latter quantity the total causal power

of A. Given a directed graph, the set of all the direct causal powers some-

how determines the total causal powers. How?

Consider a more complicated example (figure 7.2). Suppose that D is

a preventive cause of E, that A is a preventive cause of G, and that all

other causes are generative, and suppose that all of the q parameters are

known, except for those associated with R, S, T, W, V, and U, which are

unobserved variables. In symbols:

E ¼ ðqueU l qceCl qfeFl qgeGÞð1� qdeDÞ

C ¼ qbcBl qwcW

Figure 7.2
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D ¼ qbdBl qvcV

F ¼ qbf Bl qsf S

G ¼ qtgTð1� qagAÞ

B ¼ qabAl qrbR

Substituting, we get (21):

(21) E ¼ ðqueU l qgeqtgTð1� qagAÞl qceðqbcðqabAl qrbRÞl qwcWÞ
l qfeðqbf ðqabAl qrbRÞl qsf ÞÞ
� ð1� qdeðqbdðqabAl qrbRÞl qvcVÞÞ

Hence the total causal power of A to generate E is given by (22):

(22) prðE ¼ 1 jA ¼ 1;U ¼ 0;R ¼ 0;W ¼ 0;V ¼ 0; S ¼ 0Þ ¼
prðqab ¼ 1Þ
� ½prðqbc ¼ 1Þ � prðqce ¼ 1Þ þ prðqbf ¼ 1Þ � prðqfe ¼ 1Þ�
� ½1� prðqab ¼ 1Þ � prðqbd ¼ 1Þ � prðqde ¼ 1Þ�

Estimating causal powers when there are unobserved confounders

All of the procedures so far assume that there is no unobserved common

cause influencing the cause of an effect and the effect itself. But if the

causal graph is known, direct and total causal powers can sometimes be

estimated even when there is such confounding.

Consider the simple case of figure 7.3, where U is unobserved and

generative. The total causal power of A to generate E can be estimated

by the method of the previous subsection from prðqbe ¼ 1Þ. The causal

power of B cannot be estimated by any of the methods so far described.

But it can be estimated. If all causes are generative:

E ¼ qbeBl queU

B ¼ qabAl qubU

Substituting and factoring, we get the following:

E ¼ qbeqabAl ðqbequb l queÞU

Figure 7.3
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Now prðqbe ¼ 1Þ � prðqab ¼ 1Þ can be estimated by the methods of

section 7.2. But A and B are unconfounded, and so prðqab ¼ 1Þ can be

estimated analogously. The ratio gives prðqbe ¼ 1Þ. It can be shown that

knowledge of prðqbe ¼ 1Þ permits the calculation of the probability of E

given an intervention that fixes (or randomly assigns a value to) B.

The technique, called in econmetrics the method of instrumental

variables, need not work for other parametrizations of structures with

binary variables. I believe it does not work if A is generative and B pre-

venting, or if A is preventing and B generative, or if both A and B are

preventing, although I have not proved as much. Noisy or gates have

other similarities to linear models: in both linear and noisy-or-gate

models the Tetrad Representation Theorem (Spirtes et al. 1993, 2001)

provides both a graphical condition and a relation among measured

correlations sufficient for four measured variables to have a single

unmeasured common cause.

Consider next the case where all causes are generative and U and W

are not observed (figure 7.4). The direct causal power of A to generate B

and of B to generate E can be estimated; more surprisingly, so can the

total causal power of A to generate E. To estimate prðqbe ¼ 1Þ, condi-

tion on the absence of A and apply the method of section 7.2. To esti-

mate prðqab ¼ 1Þ, apply the method of section 7.2 directly, since there

is no confounding. Now by an obvious variant of previous results, the

total causal power of A to generate E is prðqab ¼ 1Þ � prðqbe ¼ 1Þ.
Finally, consider a circumstance that sometimes arises in science,

and presumably in everyday life as well, in which the effect itself influ-

ences what is observed. Let ‘‘S ’’ represent the property that a system is

observed, and suppose that the causal structure is that given in figure

7.5.

Figure 7.4

86 Adult Judgements of Causation



All of the observations are conditioned on S ¼ 1, and U and W are

unobserved. In this case the probability that qae ¼ 1 cannot be esti-

mated. Recall from the Monte Hall problem, described in chapter 6,

that, conditional on their common effect, two otherwise independent

variables, in this case A and U, are dependent. So A and U are depen-

dent conditional on E. But the same is true if the conditioning variable

is any descendant of a common effect (Pearl 1988). So A and U are

dependent conditional on S.

7.6 Discovering the Causal Graph

The theory of estimation for Cheng models so far developed assumes

that the causal graph is completely known, save that if the associated

direct causal powers are zero, some represented edges may be phantoms.

My separation of causal graphs and estimates of causal powers may

seem artificial and unmotivated. Since the occurrences of features we

encounter in life are usually ordered by their known time of occurrence,

given a set of features whose causal relations are to be investigated,

why not apply Cheng’s method, the method of sections 7.2 and 7.3, to

determine the influence of each feature on subsequent features? The

method is formally a sequence of regressions: in judging the influence, or

causal power, of a candidate cause, all other observed candidate causes

are conditioned on. Then the causal graph would appear to emerge as a

result of, not a precondition for, the estimation of causal powers.

The preceding section and the preceding chapter supply an obvious

reason why the method will not be reliable: unobserved common causes.

We have seen that the estimation methods of sections 7.2 and 7.3

are generally insufficient when there are unobserved common causes at

work, and often we have no idea before we begin inquiry whether such

factors are operating.

Figure 7.5
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In the last decade there has been extensive research into the causal

information that can and cannot be obtained under the Markov and

faithfulness assumptions, or similar conditions, and it continues. I will

not survey it here (see Spirtes et al. 2001, especially chapter 12, for a

review), but I will give some examples.

Suppose, to take almost the worst case, that time order is not known

and nothing is known about the true causal structure, except that there

is one, and that the Markov and faithfulness assumptions hold. Our aim

is to estimate the causal power of A to influence E. Suppose that the true

unknown structure is that given in figure 7.6 and that only C, D, A, and

E are observed. Figure 7.6 implies that C and D are independent of each

other and independent of E conditional on A, and that no other observed

independencies hold. We can begin the inquiry by supposing that for all

we know, any of C, D, A, E may be directly dependent on one another

(figure 7.7). Examining figure 7.6, we see that C and D are independent,

and so there can be no direct connection between them (figure 7.8). But

C is independent of E conditional on A, and D is also independent of

E conditional on A. Hence there can be no direct connection between C

and E or between D and E (figure 7.9). Since C and D are independent,

but not independent conditional on A, it follows from the faithfulness

assumption that they must have arrows directed into A, although one

cannot tell whether they cause A or have a common cause with A or

Figure 7.6

Figure 7.7
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both (figure 7.10). (In figure 7.10 the small circles mean that we cannot

tell whether there is a direct cause, an unobserved common cause, or

both.) Now C and D are jointly independent of E conditional on A,

but neither is independent of E. If E caused A, then C and D would

be independent of E, and they are not. If there were in addition an

unobserved common cause of E, then C and D would not be indepen-

dent of E conditional on A (Monte Hall again). So we conclude that the

causal structure is that of figure 7.11, and the causal power of A to

generate (or prevent) E can therefore be estimated by the methods of

section 7.2. For the general algorithm and proofs that it gives the correct

result under the Markov and faithfulness conditions, as well as other

procedures for learning Bayes nets from data, see Spirtes et al. 2001.

DC

Figure 7.8

DC

Figure 7.9

Figure 7.10

Figure 7.11
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Finally, consider a case in which the time order is known and a causal

power can be estimated, but not by a regression procedure. Suppose

that the true causal structure is that given in figure 7.12, with U and W

unobserved. Estimating the causal power of A by conditioning on B or

on the absence of B will result in the wrong answer (Monte Hall yet

again). But an elaboration of the procedure illustrated previously results

in the structure in figure 7.13, where the double headed arrow indicates

the presence of an unobserved common cause. The causal power of A

can then be estimated by the method of section 7.2, except that we do

not condition on B.

7.7 Conclusion

Some of the results of section 7.5 suggest experiments on human sub-

jects, whether adults or children, that have not been done, and some of

which should be. The normative theory, Cheng’s theory embedded in

causal Bayes nets, may of course not describe human judgement pre-

cisely. It may be, for example, that people typically ignore the possibility

of unobserved common causes and repair their erroneous judgements

Figure 7.12

Figure 7.13

90 Adult Judgements of Causation



only as it proves necessary, and, of course, there are memory and pro-

cessing limitations. For that reason Cheng’s recent study (1999) of

the under- and overestimates that result from incorrect assumptions is

an especially valuable step. We need, besides, an understanding of how

incorrect causal Bayes nets—networks that postulate connections that

don’t exist, networks that omit common causes, networks that leave out

connections that do exist—can be remedied without starting over from

scratch. Most of the data from which an erroneous network has been

learned will have long since been forgotten when new phenomena are

discovered that require its modification. Neural-net models, for example,

typically must be retrained when a new property is considered, and that

is a feature very much to be avoided in a psychological model. There is

as yet no repair theory for Bayes nets that is compatible with severe

memory and computational limitations. In the next chapter, however,

I consider some interactions between causal Bayes-net representations

and memory and computational limitations.
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8
Learning Procedures

8.1 Introduction: The Virtues of Rescorla-Wagner

Our consideration of child and adult causal judgement has only hinted

at learning heuristics for causal Bayes nets. The essential questions—

in my view, some of the most important issues about human learning—

concern the algorithmic procedures people, especially young people,

carry out in naive causal learning, where ‘‘naive’’ means at least before

any statistics is taught. This chapter reviews some of the theoretical pos-

sibilities and their advantages and disadvantages. I begin with a theory

that appears not to be empirically adequate for the psychology of causal

learning, the Rescorla-Wagner model, but which has striking virtues one

or another of which other theoretical alternatives so far lack.

The Rescorla-Wagner model of classical conditioning has several sig-

nal advantages, both as a plausible theory of learning and as a useful

working hypothesis. I will list those that seem to me most important:

. Implementing RW requires minimal memory. The learner need only
remember a single number for each ‘‘cue’’ under consideration. Past data
need not be remembered.
. RW is computationally tractable. The learner need only execute a sim-
ple algebraic operation. More technically, the complexity of RW compu-
tation is a linear function of the number of cues considered.
. RW gives a theory of learning dynamics. Subject to some empirically
determined parameters, RW yields a response curve for the learner
that is a unique function of the data presented to the learner and four
parameters.
. RW has intelligible asymptotics. In many cases, the equilibrium values
of the RW learning function are conditional DP values (Cheng 1997).



. The RW model is a pretty good qualitative approximation for lots of
learning phenomena.

Nonetheless, RW has some artificial restrictions that a correct learning

strategy should generalize. In particular, the RW algorithm presupposes

a set of cues and an outcome property, assumes all of these are coded as

binary—present or absent—and assumes that their degree, where that

makes sense, has no influence on learning. But people discover novel

properties and investigate their causal relations, and sometimes matters

of degree do matter to some degree.

Some of the alternative learning strategies that are prominent in the

psychological or Bayes-net literatures are these:

. Data-driven point estimates of causal strength Cheng’s model is of
this kind: subjects estimate causal strength from observations, and a
potential cause is held to be actual if the estimate is nonzero. One can
imagine these procedures as general learning algorithms for which values
of variables or features are given and the time order of occurrence of
related events is given (potential causes before effects).
. Adaptive scores for causal models There are many statistical proce-
dures that assign an initial score to alternative hypotheses—in this case,
alternative causal hypotheses—and alter that score by some rule as data
are acquired. I refer to all of these as adaptive scores. The best known is
Bayesian conditioning, in which an initial or prior probability is assigned
to all conceivably relevant alternative hypotheses and for each hypothe-
sis a probability (called a likelihood) is assigned to all finite sequences of
data. When a new datum is received, the probability of each hypothesis
is changed to its conditional probability, given the new datum. Typi-
cally, the likelihoods do not change with the data.
. Model construction from constraint detection Constraint-detection
algorithms apply some statistical procedure or other to identify (or at
least guess) patterns in the data and then use the patterns (rather than
the data itself) to construct one or more causal explanations, which
may contain parameters with unspecified values (e.g., corresponding to
‘‘causal strength,’’ etc.). The parameter values may then be separately
estimated from the data. Techniques of this kind formed the beginning
of psychometrics, and include Spearman’s early tetrad analysis and Thur-
stone’s factor analysis, but there are also many other newer and more
robust techniques.

I will consider the advantages and disadvantages of each of these strat-

egies as a starting point for developing a theory of human causal learning.
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8.2 Point Estimates of Causal Powers

Cheng and her collaborators give formulas for estimating causal powers

from joint frequencies of potential causes and their potential effects. The

formulas are clearly intended to describe what subjects do after they

have observed sufficient data, and no theory is provided for what pro-

cessing (other than remembering relevant frequencies and conditional

frequencies) subjects do in the meanwhile, nor is any explanation given

of how sufficiency is determined. The memory and processing require-

ments for her estimates are not large. Subjects need to remember the

relative frequency of an effect conditional on each observed potential

cause and the absence of all other causes, and the frequency of each

effect in the absence of all of the observed potential causes. Given those

numbers, simple algebra suffices.

Besides the absence of a dynamics, several examples in the previous

chapter illustrate that there are many circumstances in which causal

powers cannot be correctly estimated by these methods, but can none-

theless be correctly estimated.

Cheng and her collaborators have provided a persuasive experimental

demonstration of the formation of the selection of novel causal cate-

gories from among predicates of varying specificity (e.g., red/blue versus

colored/not colored), but a theory of the discovery of causal relations

that focuses on estimating causal powers of observed features to produce

an observed effect essentially assumes there are no unobserved common

causes that contribute to the association of putative causes and their

putative effects. In many cases that may be so, but as a model of human

learning, it assumes that humans cannot learn that so far unnoticed or

unobserved factors are producing associations among observed factors.

That too may be so, although I doubt it, but the matter should certainly

be tested.

8.3 Adaptive Scores: The Bayesian Way

Rigorous Bayesian methods for learning causal hypotheses assign an

initial or prior probability to all alternative causal hypotheses, and also

assign prior or initial probabilities to any parameters (e.g., causal
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strengths, or linear coefficients, or conditional probabilities, etc., depend-

ing on the class of models considered). Each causal hypothesis and set

of related parameter values determines a probability, or likelihood, for

any sequence of data. The total probability of any data sequence is thus

the sum, over all models and parameter values, of the probability of

the data sequence conditional on the model and parameter values, mul-

tiplied by the probability of the model and the parameter values. As each

new datum is acquired, the previous probability of each causal model and

parameter setting for that model is changed to the conditional probabil-

ity, on the previous probability measure, of the causal model and param-

eter setting, given the new datum.

The Bayesian formalism has the advantage that it easily accommo-

dates various ideas about reasoning from evidence that are widely

championed. One example is considered in the next chapter. Further, the

Bayesian formalism has (or can have) nice memory features. The force of

the whole sequence of previous data up to a time is captured by the

probability measure at that time; the data themselves do not have to be

remembered, only the probability distribution, and for various families

of probability distributions, any particular probability measure can be

uniquely described by a few numerical parameters.

As an account of human causal learning, however, the Bayesian for-

malism has some serious difficulties. First, in many cases the apparatus is

indifferent to the order in which the data are obtained; the same proba-

bility measure results even if the data are permuted. Human learning

appears not to work like that. Second, the formalism is computationally

intractable. As a consequence, Bayesian statistics has until recently often

been a kind of bait and switch enterprise in which alternative hypotheses

were severely (and often unjustifiably) restricted at the outset, and

posterior probabilities on the evidence were not computed but rather

approximated by formulas that hold only in the limit of large samples.

Ingenious work in Bayesian statistics in recent years has overcome

the latter problem, but only at the price of computationally intensive

numerical-simulation methods. The existence of astronomical numbers

of possible hypotheses is still a fundamental difficulty for Bayesian data-

mining methods, and almost all ‘‘Bayesian’’ algorithms that mine data

for causal relations use various heuristics to avoid scoring all possible

models. Third, the Bayesian formalism has a problem with novelty: no
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feasible, consistent Bayesian method for introducing new, unobserved

causes of observed associations is known. That is, while a handful of al-

ternative explanations of data may be computed using Bayesian methods

even though they contain unobserved common causes (latent variables),

no correct, feasible, general Bayesian procedure is known that provides

correct information—in the large sample limit—about the existence of

unobserved common causes of observed variables.

Much of the appeal of the Bayesian formalism is normative rather

than descriptive, and the preponderance of recent psychological work on

human judgement under uncertainty assumes that rationality requires

coherent degrees of belief and Bayesian updating on evidence. There are

theoretical considerations that argue against the Bayesian standard for

rationality. Whatever else is true of our notion of rationality, it is limited

by these principles:

. To obtain an all-things-considered goal, a rational agent chooses a
means that will obtain that goal, if there is such a means.
. An agent is not irrational if she does not do what she cannot do, and is
not irrational if she does not try to do what she rationally believes she
cannot do.

I assume that our cognitive processes are computationally bounded:

insofar as they are discrete, they are Turing computable. I assume that

they have low complexity bounds. Insofar as conscious or unconscious

computations are nonpolynomial-hard, we do not do them, or do them

only in easy cases. On these two assumptions, three theoretical results

argue that rationality does not require us, or does not always require us,

to be coherent Bayesians:

. If we have probability assignments for sentences over a ‘‘rich’’ lan-
guage, that is, one adequate for standard first-order logic, we cannot be
probabilistically coherent unless we are infinitely dogmatic, that is, unless
we assign zero probability to an infinity of contingent propositions. That
is an elementary consequence of the undecidability of first-order logic.
. There are discovery problems—specifications of alternative hypotheses
and disjoint sets of possible sequences of observations respectively consis-
tent with each alternative hypothesis—for which no Turing-computable
Bayesian who learns by using the evidence to update a prior probability
assignment for the alternatives will reliably converge to the true hy-
pothesis. That is, for each mathematically computable Bayesian method,
there will be a hypothesis among the alternatives such that for some data
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sequence consistent with that hypothesis and only that hypothesis, the
Bayesian learner will not converge to assigning probability 1 to that
hypothesis. But for some of the same problems, there are Turing com-
putable non-Bayesian learners that do reliably converge to the true
hypothesis, no matter which alternative is true (Osherson et al. 1988,
Juhl 1997).
. A principled theory for being approximately Bayesian is only now
beginning to be developed (Schervish et al., forthcoming). While
there are measures of ‘‘distance’’ from one probability measure to an-
other, there is no standard measure from nonprobability measures to
probability measures, nor is there a comparative measure of which non-
probability measures are more nearly probability measures.

8.4 Building on Patterns in the Data

Constraint detection procedures typically determine that two variables

are independent (not associated) or are independent conditional on

values of other observed variables. As this information is acquired,

the procedures construct features of the world to explain the patterns

of dependency and independency. Typically, in the absence of further

information (time order, for example) what results is a set of alternative

causal models, alternative directed graphs, although with background

knowledge a unique explanation may result. Early psychometric algo-

rithms, factor analysis, for example, had a similar overall strategy, but

overreached. Unlike factor analysis and the heuristic procedures that

preceded it, modern constraint-based algorithms for discovering causal

structure have proofs of their large-sample (‘‘pointwise’’) correctness

under quite general assumptions (Spirtes et al. 1993, 2001), have been

extensively tested on simulated data, and have generated real, inde-

pendently established predictions.

The advantages of constraint-detection methods as a model of human

causal learning are these: they are computationally tractable when the

actual causal relations are sparse, that is, when most features have no

causal connection with one another; in some contexts, they permit the

discovery of unobserved causes of observed associations; the discovery

procedures can be designed so that if they are aborted (for example,

because computational demands become to large) the partial informa-

tion obtained before aborting the procedure is correct; they can make
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extensive use of previous knowledge of the domain, thereby decreasing

complexity of computation and increasing the significant information

that can be obtained from observations.

The disadvantage of causal-inference algorithms based on constraint

detection is in their memory requirements. Existing algorithms require

comparatively large data sets, and they do not reliably build up correct

explanations from new data and previous explanations.

8.5 Heuristics and Compromises

Since neither adaptive scores nor existing constraint-based algorithms

meet reasonable behavioral constraints, the real issue is which idealiza-

tion to start from in searching for an empirically adequate—better, true—

account of human causal learning. In practice, many data-mining

algorithms inspired by Bayesian statistics are ‘‘greedy’’: they start with

an initial model and iteratively choose whichever small variation of it

most increases the probability. The number of ‘‘Bayesian’’ heuristics is

limited only by ingenuity. And, of course, there are other kinds of

adaptive scores besides posterior probabilities.

Constraint-based algorithms can diminish their data requirements

by artificially boosting sample sizes—that is, by treating a sample of 5

as though it were a sample of 50 or 500 for the purpose of deciding

whether features are or are not independent or conditionally indepen-

dent, or by otherwise changing the decision procedure for independence.

While such devices sacrifice reliability to reduce uncertainty, they need

not alter the large-sample reliabilities of constraint-based algorithms.

The problem for such strategies then becomes to form an empirically

adequate model of how erroneous conclusions can be correctly identified

and modified if most data are forgotten.

Almost finally, the dichotomy between learning algorithms with adap-

tive scores and learning algorithms based on identifying patterns of

constraints in the data is not quite a dichotomy. The two learning strat-

egies can be combined in many ways. One such combination has proved

remarkably good. On the most common one tested, data from a large

graphical model simulating causal relations among variables in an emer-

gency room, a very accurate greedy procedure due to Christopher

Meek uses probabilities, not for individual graphical models, but for
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Markov equivalence classes of such models. Despite the greedy heuristic,

the procedure is very slow. Its run time is cut in half, without loss of

accuracy, if it starts with an initial Markov equivalence class obtained

from a constraint-based procedure.

8.6 Building on Sand

The problem of finding a model for causal learning that explains human

behavior is made considerably more difficult by the ambiguity of what

is to be explained. Typical experimental designs ask subjects to judge

‘‘efficacy’’ or ‘‘causal power’’ or something similar on scales that may

vary from �100 to 100 or 0 to 100, or to give a causal explanation.

These judgements are the outcome of the treatment (the instructions and

data) given to the subject. Very rarely, subjects are required or allowed

to manipulate some feature, and that manipulation is the outcome. Data

presentations vary enormously, and include presentations of numerical

statistics for various properties, graphical presentations (histograms or

pie charts), and one-by-one observation of cases. When the subjects

observe cases, the number of cases observed by each subject is typically

fixed in advance by the experimenter, but may sometimes vary from

subject to subject.

Here are some of the issues these experimental designs generate:

1. The responses given in typical learning experiments vary with the
format in which the data are presented.

2. Responses to requests for judgements of ‘‘efficacy,’’ etc., may be
reports of judgements of some measure of causal strength, reports of
judgements of subjects’ confidence that there is some causal connection,
or a mixture of both.

3. Subjects’ understanding of the ‘‘power’’ or ‘‘efficacy’’ of A to produce
B may be separated from their judgement about what would happen
about B if someone were to act to produce A—they may, in other
words, be in the grip of a theory about ‘‘causation’’ which biases their
verbal responses.

4. Requests for causal explanations are embedded in a complex of con-
versational conventions, moral attitudes, and other factors not under the
experimenter’s control.

5. Designs in which subjects observe a fixed number of trials may not be
at equilibrium or be ‘‘asymptotic’’ for iterative learning models such as
Rescorla-Wagner.
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Designs should have an ecological validity, but only for the ecology

of what one is trying to get at. If fundamental preverbal or subverbal

learning mechanisms are being studied, point 1 argues that data should

be presented one by one as observed cases. If, by contrast, the judgements

of physicians who see summary data are under study, then numerical

formats might be appropriate. The important thing is not to confuse one

ecology with another, for example, not to argue that people do not learn

from covariation, because when asked to explain morally laden cases,

they do not seek out covariation data.

Because of points 2, 3, and 4, investigations of fundamental human

causal learning might be designed to have outcomes that are nonverbal

attempts at problem solutions, for example, a choice of optional routes

to try to bring about some state of affairs. And because of point 5, data

that are relevant to many theoretical issues must let the subjects them-

selves determine when they have seen enough evidence. Experiments on

causal judgement that satisfy these various strictures seem to be rather

rare. Even then, there are difficulties. Danks (2001) points out that

even in the simple case of two generative, unconfounded, noninteracting

causes C1 and C2 of an effect E, there are probabilities where C1 has

greater causal power and larger conditional DP than C2, but the proba-

bility of E occurring on an intervention to make C2 present is greater

than the probability of E on an intervention to make C1 present.
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9
Representation and Rationality: The Case of

Backward Blocking

9.1 Backward Blocking

One of Isaac Newton’s Rules of Reasoning in Natural Philosophy, the

Vera Causa rule in book 3 of Principia, recommends this: postulate no

more causes except as are true and sufficient to save the phenomena.

Newton intended the rule to justify assuming that only the force of

gravitation acts on the planets and their satellites, and on the tides, for

he had established that cause, and it sufficed.

Some recent work on associative learning (Van Hamme et al. 1994)

argues that adults sometimes apply a version of the Vera Causa rule in

contexts with less gravitas. In ‘‘cue competition’’ or ‘‘backward block-

ing,’’ features A and B appear together followed by an effect E, and

judgements of the ‘‘efficacy’’ of both A and B increase. If A then appears

alone and is followed by E, the judgement of the efficacy of B is reduced.

The causal role of A is established and suffices to explain the data.

It is well known that backward blocking is inconsistent with the

familiar Rescorla-Wagner model of associative learning, and various

modifications of the model have been proposed to deal with the phe-

nomenon. But backward blocking has also been explained by various

ad hoc causal models. Using causal graphical models, predictions about

backward blocking and about many related experiments can be uni-

formly derived from alternative causal theories, and for simple ex-

periments the possible theories and their predictions can be classified.

Extending the classification to more complex experiments takes us into

open mathematical problems in the theory of Bayes nets.



9.2 Experiments

We consider experiments in which there are three trials involving three

variables, potential causes A and B and effect E. In each of the first

two trials the experimenter forces each potential cause, A and B, to be

present or absent, and the subject observes these actions. The subject

also observes, sequentially, the value of E on the first and second trials

and is told in advance of all trials what the values of A and B will be

(i.e., present or absent) on the third trial. The subject is required, after

each of the first two trials, to judge the probability that E will occur

on the third trial. A variation also elicits from the subject a probability

for E in the condition of the third trial before any trials are carried out.

In either variation, if we ignore the cases in which neither A nor B are

present, there are 108 possible experiments of this kind; allowing such

cases, there are 256 experiments.

I will be particularly concerned with the experiment: hA;B;E;

A;@B;E;@A;B; i, where ‘‘@’’ indicates that the cause operated on is

not present. Indicating trial numbers by subscripts, I will say that back-

ward blocking occurs if and only if in this experiment subjects’ judge-

ments of probability satisfy (1):

(1) prðE3 jE1Þ > prðE3 jE1;E2Þ

This formulation does not prejudice the analysis for or against any partic-

ular causal theory of subjects’ judgements.

9.3 Backward Blocking Does Not Hold in All Models

There are six parameters whose joint values characterize all possible

joint probability distributions on A, B, E that satisfy the Markov Assump-

tion for the following graph:

They are:
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QA ¼ prðA ¼ 1Þ

QB ¼ prðB ¼ 1Þ

QAB ¼ prðE ¼ 1 jA ¼ 1;B ¼ 1Þ

QA@B ¼ prðE ¼ 1 jA ¼ 1;B ¼ 0Þ

Q@AB ¼ prðE ¼ 1 jA ¼ 0;B ¼ 1Þ

Q@A@B ¼ prðE ¼ 1 jA ¼ 0;B ¼ 0Þ

In the experiment we are considering, on trial 1, A and B are forced to

be present; on trial 2, A is forced to be present, and B is prevented from

being present; on trial 3, B is forced to be present, and A is is prevented

from being present. Hence the Q values for A and for B are known and

fixed for each trial. Consider a prior subjective probability distribu-

tion prðQAB;QA@B;Q@AB;Q@A@BÞ for which the Qs are all independent.

Implicitly conditioning on the values forced on A and B, we find that the

joint prior subjective probability for the effects is the following:

prðE1 ¼ 1;E2 ¼ 1;E3 ¼ 1Þ

¼
ððð

QAB prðQABÞQA@B prðQA@BÞQ@AB prðQ@ABÞ

� dQAB dQA@B dQ@AB

¼
ð

QAB prðQABÞ dQAB

ð
QA@B prðQA@BÞ dQA@B

�
ð

Q@AB prðQ@ABÞ dQ@AB

The marginal probabilities and relevant conditional probabilities over

E1 ¼ 1, E2 ¼ 1, E3 ¼ 1 are these:

prðE1 ¼ 1Þ ¼
ð

QAB prðQABÞ dQAB

prðE2 ¼ 1Þ ¼
ð

QA@B prðQA@BÞ dQA@B

prðE3 ¼ 1Þ ¼
ð

Q@AB prðQ@ABÞ dQ@AB

prðE1 ¼ 1;E3 ¼ 1Þ ¼
ð

QAB prðQABÞ dQAB

ð
Q@AB prðQ@ABÞ dQ@AB

prðE1 ¼ 1;E2 ¼ 1Þ ¼
ð

QAB prðQABÞ dQAB

ð
QA@B prðQA@BÞ dQA@B
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Since

prðE3 ¼ 1 jE1 ¼ 1Þ ¼ prðE1 ¼ 1;E3 ¼ 1Þ=prðE1 ¼ 1Þ

and

prðE3 ¼ 1 jE1 ¼ 1;E2 ¼ 1Þ

¼ prðE1 ¼ 1;E2 ¼ 1;E3 ¼ 1Þ=prðE1 ¼ 1;E2 ¼ 1Þ

it follows that

prðE3 ¼ 1Þ ¼ prðE3 ¼ 1 jE1 ¼ 1Þ ¼ prðE3 ¼ 1 jE1 ¼ 1;E2 ¼ 1Þ

and backward blocking does not hold.

It will help for subsequent analysis if we represent this model graphi-

cally. A well-known trick in the Bayes-net literature is to expand a causal

graph by introducing new vertices representing the independent param-

eters of a model and new edges from these new vertices to the effects that

the parameters control. The Markov Assumption and its consequences

(the d-separation algorithm) then determine the conditional dependencies

and independencies. One graphical representation of the model above is

the following graph with three disconnected pieces:

(Here I have taken the innocuous liberty of indicating the values of the

A and B variables in the vertices corresponding to the three trials.) The

Markov Assumption implies that, conditional on its parents in the graph,

E3 is independent of E2, and of E1 and E2 jointly, that is, conditional on

the value of QA@B and on @A3 and B3. These vertices, in turn, have no

parents in the graph, and so are independent of everything except E3.

Hence, there is no backward blocking.

9.4 Backward Blocking Holds for Cheng Models

Backward blocking will hold if we impose some appropriate dependence

among the Q parameters. For generative, noninteractive Cheng models

with no unobserved causes, we have (2):
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(2) E ¼ qAEA4qBEB

Here ‘‘4’’ is inclusive ‘‘or.’’ Further, for the Cheng model, for any trial:

QAB ¼ QA@B þQ@AB �QA@BQ@AB

QA@B ¼ prðE ¼ 1 jA ¼ 1;B ¼ 0Þ ¼ prðqAE ¼ 1Þ

Q@AB ¼ prðE ¼ 1 jA ¼ 0;B ¼ 1Þ ¼ prðqBE ¼ 1Þ

Q@A@B ¼ prðE ¼ 1 jA ¼ 0;B ¼ 0Þ ¼ 0

Rather than attempt to derive backward blocking by disentangling

integrals for the Cheng model, we can use a graphical representation of

the model and a consequence of the Markov Assumption and the faith-

fulness assumption to see that prðE3 jE2;E1Þ is not equal to prðE3 jE1Þ.
The graphical representation of the Cheng model is this:

The arrows between the Q vertices are necessary because Cheng’s gener-

ative model takes the causal power of A and B together to be a (posi-

tive) function of the causal power of A and the causal power of B, in

agreement with equation (2).

Now we have a Bayes net and inferences that involve the collider phe-

nomenon, roughly analogous to the Monte Hall game and to Pearl’s

example of the relations between a car starting, the state of its fuel sup-

ply, and the state of its battery. In the Cheng model, QA@B and Q@AB

are independent, as are E2 and E3. E1 is a descendant of both QA@B and

Q@AB. Conditional on E1, QA@B and Q@AB are no longer independent.

And because E2 is a descendant of QA@B and E3 is a descendant of

Q@AB, E3 and E2 are likewise no longer independent, conditional on E1.

Hence, prðE3 jE2;E1Þ is not equal to prðE3 jE1Þ. The inequality does not

itself establish backward blocking, because it does not say which condi-

tional probability, prðE3 jE2;E1Þ or prðE3 jE1Þ, is greater. For that, we

need another consideration.
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Rather than considering the continuous quantities QAB, QA@B, and

Q@AB, I will replace them with the binary variables Y, Z, and X,

respectively. We then have a noisy or gate in which Z and only Z gen-

erates E2 with probability prðqze2
¼ 1Þ, Y and only Y generates E1 with

probability prðqye1
¼ 1Þ, and X and only X generates E3 with probability

prðqxe3
¼ 1Þ, and further, X and Z generate Y by analogy with equation

(2) above. Some tedious algebra (which, along with much else, I owe

to Peter Spirtes) shows that in this case prðE3 jE1ÞV prðE3 jE1;E2Þ.
I believe, but have not proved, the same result holds for probabilities

computed with any prior probability distribution over the Q variables

that is faithful to their relations in figure 9.3. For any noisy or gate

Z! Y  X, the probability of X conditional on Y is greater than the

probability of X conditional on Y and Z, and the same is true if, as in

this case, we consider the probability of E3, the effect of X, conditional

on the respective effects of Y and of Y and Z. Pearl (1988) calls this

phenomenon ‘‘explaining away.’’ It is an essential feature of the noisy

or gate parameterization; the reverse inequality would hold, for exam-

ple, if we had the same graph but Y ¼ qzxy � Z �X, as in the interaction

case discussed in chapter 7.

9.5 General Considerations

We can describe a large class of theories of causal judgement in experi-

ments of the kind considered here by the graphical structures imposed

on the Q parameters and the functional relations among the variables.

Cheng’s model imposes one particular graphical structure on the Q

parameters, but there are 25 distinct possible directed acyclic graphs on

the three Q vertices. As noted in an earlier chapter, the 25 graphs on 3

vertices form 11 classes of graphs such that all and only the graphs

in the same class are Markov equivalent, that is, imply the same set of

independencies and conditional independencies. Graphs in different

Markov equivalence classes will imply different sets of independence and

conditional-independence relations among the Q variables. These inde-

pendencies (but not necessarily the conditional independencies) between

Q variables are reflected in independencies between the corresponding E

variables. Many of these theories may be empirically uninteresting, but

few of them have been investigated either theoretically or experimen-
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tally. The same is true for most of the remaining 255 experiments. In

principle, similar classifications can be given when there are three or

more potential causes, or when there are more than one kind of effect on

each trial, or when there are trials in which both A and B are absent, but

the number of distinct graphs grows superexponentially with the number

of Q parameters, and no general counting principle is known for the

number of Markov equivalence classes of directed acyclic graphs as a

function of the number of vertices. If there are more than three trials and

the Q values are constant, the same form of graphical representation

can be used. If, for example, on a forth trial the experimental condition

were A4, B4, a directed edge would be added from QAB to E4. Further,

the independence and conditional-independence relations among the Q

values may imply constraints among the E variables that are not them-

selves independence or conditional-independence relations. Algorithms

are known for identifying such constraints (Geiger, Heckerman, and

Meek 1996), but they are superexponentional and infeasible for more

than four variables.

9.6 Backward Blocking in the Cheng Model and Inference from

Frequencies

The preceding sections give an essentially Bayesian analysis of inference

in the kinds of experiments we have considered. But the basic ideas of a

model of causal judgement may sometimes be paired with other methods

of inference, for example, with inferences based more directly on fre-

quencies, and the calculations involved may be quite simple.

Consider a non-Bayesian treatment of backward blocking in the con-

text of the Cheng model. The principle I will use is this: estimate as much

as you can about the unknown quantities, or their Boolean combina-

tions, from the data, assuming that the observed frequencies of E on

various combinations of the presence or absence of the cues A and B

equal the corresponding conditional probabilities of E, and assuming the

Cheng model. The principle is an uncomplicated version of an inference

strategy described in Glymour (1980), there called ‘‘bootstrapping’’ (not

to be confused with a statistical procedure of the same name) because

the hypothesis to be tested is used in calculating quantities that occur in

the hypothesis. Similar inferences are made every day in scientific work,
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and, indeed, Newton’s argument for universal gravitation uses analogous

methods.

Suppose that subjects are given data about the frequency of E in trials

in which A and B are absent, but that there are unobserved causes U of

the variation in E. They can estimate (3):

(3) prðque ¼ 1Þ � prðUÞ ¼ frðE j@A;@BÞ

Now suppose that they are given data about the frequency of E in the

presence of both A and B. They can estimate (4):

(4) prðqae ¼ 1 or qbe ¼ 1Þ

¼ ½frðE jA;BÞ � frðE j@A;@BÞ�=ð1� frðE j@A;@BÞÞ

But they cannot estimate prðqae ¼ 1Þ or prðqbe ¼ 1Þ, other than noting

that these probabilities are each between 0 and prðqae ¼ 1 or qbe ¼ 1Þ.
Suppose, finally, that they are given data about the frequency of E in

the presence of A without B. Then they can estimate (5):

(5) prðqae ¼ 1Þ ¼ ½frðE jA;@BÞ � frðE j@A;@BÞ�=ð1� frðE j@A;@BÞÞ

Further, although B was not present in the previous data, they can

now also estimate prðqbe ¼ 1Þ.

(6) prðqbe ¼ 1Þ

¼ ½prðqae ¼ 1 or qbe ¼ 1Þ � prðqae ¼ 1Þ�=ð1� prðqae ¼ 1ÞÞ

¼ ½frðE jABÞ � frðE jA;@BÞ�=½1� frðE jA;@BÞ�

Other things equal, the closer the frequency of E when A alone is

present is to the frequency of E when A and B are both present, the

smaller is the estimated value of prðqbe ¼ 1Þ, the causal power of B.

Note that in the case in which E always occurs if either A or B occur,

the causal power of B cannot be estimated this way, because the de-

nominator in (6) is zero. (So this method of inference would not yield

backward blocking in the three-trial experiment considered previously

in sections 9.3 and 9.4 of this chapter.) We have a form of backward

blocking for noisy or gates estimated with elementary algebra using

Cheng’s procedures, presumably not used consciously.1
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III
Inference and Explanation in Cognitive

Neuropsychology





10
Cognitive Parts: From Freud to Farah

10.1 Parts, Beliefs, and Habits: Classical Neuropsychology

Things often go wrong. People often make mistakes because they have

the wrong beliefs or desires, and when they do, the fix is symbolic, to

give them better beliefs and desires by providing information. People

often make mistakes because they have, not the wrong beliefs, but the

wrong habits or dispositions, and when they do, the fix is to train them

to form new habits. And sometimes when people and physical objects

fail to perform normally, the fix is to locate a broken or depleted part or

parts, and repair or replace them.

In the late nineteenth century there were no examples of machines that

were fixed symbolically or by training, but there were plenty of examples

of machines that worked because of the cooperation of parts, and broke

down because parts failed. And, of course, there were human models of

broken parts. The very idea of a part is of an object continuously located

in space, with special causal roles. In the paradigm cases, a part has

inputs from the external world or from other parts, inputs that change

the state of the part, and in return the part produces responses that

change the state of other parts or of the external world. There were and

are side conditions of what counts as a part, and cases that are vague or

uncertain. Stuff that tends to get used up in the operation of the machine

more rapidly than anything else does not count as a part. So the coal is

not a part of the steam engine, nor is the water or the air. Stuff that is

essential for functioning and longer lasting than fuel but shorter lasting

than wood or metal is not clearly a part, especially if it has no unam-

biguous inputs or outputs. So lubricants do not count as parts. Throttles,

wheels, axles, combustion chambers, and so on all count as parts because

they have a locale, a function, and a semipermanence.1



The idea that humans have parts was standard in nineteenth-century

physiology—lungs, nerves, hearts, even, ambiguously, blood were thought

of as parts from Harvey and even before. The great innovation of the

nineteenth century was to apply the conception of parts to thought, to

cognition; to suppose that the organ of thought, the brain, has cognitive

parts. (The great innovation of the twentieth century was to repay the

compliment by applying the idea of symbolic instruction and training to

machines.). That idea was almost inevitable once materialist physiology

became a going concern. For scientific legitimacy, the idea of cognitive

parts required evidence of locale, evidence that a particular region or

regions of the brain housed a particular part. That evidence was pro-

vided by two routes in the nineteenth century. One route was direct

intervention on brains of living animals, including surgical removal of

parts of the cortex and, more successfully, electrical stimulation of cor-

tical regions. The other route, taken by Paul Broca and later by Carl

Wernicke and many others, relied on nature’s interventions in humans.

(Broca and Wernicke respectively identified two regions of the cortex

associated with two different forms of aphasia.)

The work of Broca and Wernicke inaugurated classical cognitive neu-

ropsychology, and a number of workers—Meynert, Lissauer, Lichtheim

—continued with similar investigations. Theodor Meynert, Wernicke’s

teacher and mentor at the University of Vienna, concluded that there

must be ‘‘conduction aphasias’’ produced by destruction of fiber tracts

connecting Broca’s and Wernicke’s areas. Meynert’s reasoning is reveal-

ing. Damage to Wernicke’s area, in the temporal lobe just posterior to

the auditory cortex, was associated with inability to understand speech,

although perfectly grammatical speech (often semantically jumbled) could

be produced. Damage to Broca’s area, in the inferior frontal gyrus, was

associated with an inability to produce speech, although sounds could

be perfectly well produced and speech was understood. In Wernicke’s

and Meynert’s view, these areas did not merely house cognitive parts

necessary for the respective normal functions. Rather, the cognitive parts

are stations in an information-processing system. Sound is received in

the auditory cortex, and its meaning is extracted in Wernicke’s area.

In reverse, thoughts are transformed into sentences in Broca’s area. The

connection between the two areas might be through other areas in the

cortex responsible for the formation of thoughts, or directly through
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subcortical fiber tracts connecting the two areas. The latter idea led to

Meynert’s proposal that there should occur a distinctive aphasia—he

called it ‘‘conduction aphasia’’—characterized by the ability to under-

stand, the ability to spontaneously speak, and the inability to promptly

repeat meaningful speech, associated with the destruction of nerve fibers

connecting Wernicke’s and Broca’s areas.

Wernicke’s and Meynert’s ideas remain one standard in neuropsy-

chology: the brain is an information-processing system; the system is

composed of localized cognitive parts; the cognitive parts function to

transform some definite information—extracting meaning from sound,

transforming thoughts into natural-language syntactic strings, and so

on. The processes can operate in parallel and in series—you can repeat

what you hear through the direct connection between Wernicke’s and

Broca’s areas or through a slower process that goes through the associa-

tion cortex. With information about the locations of cognitive parts with

specific cognitive functions, brain anatomy suggests hypotheses about

connections and possible dissociations, but the fundamental evidence is

from the patterns of dissociations presented by clinical patients. Modern

imaging technology has only modified this framework by allowing the

equivalent of living autopsies.

10.2 The Connectionist Alternative

The framework developed by Wernicke and Meynert had opponents,

who drew their inspiration from two sources: Cajal’s revelations of the

axon-dendrite structure of nerve connections and Hughlings Jackson’s

rather vague, holistic conception of how the brain works. The most artic-

ulate and forceful critic was Meynert’s own student, Sigmund Freud. Just

as the essentials of Meynert’s framework remain today, the essentials

of Freud’s connectionist alternative in neuropsychology remain today,

amplified by the ability to produce computer simulations of brain con-

nections responsible for normal behavior, to simulate lesioning parts

of the simulated brain connections, and to observe the simulated abnor-

malities that result. By 1895 Freud had worked out a detailed connec-

tionist model of how the brain produces cognition, borrowing heavily

from a book published in the previous year by his former colleague

Sigmund Exner. Freud’s model contains many (arguably most) of the
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central ideas of late-twentieth-century connectionist models, including

a prototype of the Hebb synapse, the idea of neural Darwinism, local

weight adjustment, and more. Freud’s earlier published work is more

directly relevant to neuropsychology and, again, is closely paralleled in

arguments that appeared a century later.

In 1891 Sigmund Freud published a book-length essay entitled On

Aphasia. In 1990 Martha Farah published a somewhat longer book-

length essay, Visual Agnosia. A century apart, the two works are about

distinct phenomena in cognitive neuropsychology, anomalies of speech,

and anomalies of vision, but the books are surprisingly alike. Except for

the much wider range of cases and alternative modular theories she con-

siders, Farah’s book could well have been written in 1891. Both argue

for a connectionist model of mental processing, although Freud’s is more

radical than Farah’s. They use analogous data—the cognitive deficits of

nature’s wretched experiments, studied individually or collectively. And

they argue in similar ways. The similarities are less an indication of lack

of progress in the subject than an indication of an invariance of method

natural to the goals and the data.

Freud offered a connectionist critique of modular classifications and

theories of speech deficits then advocated by Meynert, Wernicke, Licht-

heim, and others. In 1890 Lissauer had published a modular classifica-

tion and theory of visual deficits, but Freud did not discuss his work

and treated only one of the phenomena—optical aphasia—discussed by

Lissauer. The similarities in the strategies of argument Freud and Farah

use—strategies that can be found in any number of neuropsychological

publications in the last thirty five years—suggest, at least to me, that the

problems and the data are naturally arranged so that certain modes of

representation and argument are inevitable.

10.3 Freud

Wernicke distinguished ‘‘sensory aphasia’’ (Wernicke’s aphasia) from

‘‘motor aphasia’’ (Broca’s aphasia) and ‘‘conduction aphasia,’’ suppos-

edly associated with the destruction of nerve tracts connecting the two

areas responsible for normal speech understanding and normal speech

production. As elaborated by Lichtheim, the theory asserts that speech is

organized according to the following diagram:
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Here a represents the acoustic nerve. A represents a center responsible

for the recognition of sounds. In Freud’s account of Wernicke and Licht-

heim, A stores some record of sounds, and recognition is by some un-

specified mechanism of matching. B represents all higher-order processes

that may use or produce language. M is the center responsible for turn-

ing thought into speech; again, according to Freud on Lichtheim, it

does so by having some record of the muscular movements requisite for

each sound. And m consists of the actual motions that produce speech.

The seven slashes indicate possible lesions, each of which produces a

different characteristic form of aphasia.

The short version of Freud’s objection to the theory is this: (1) it

implies that there are combinations of deficits that (in 1891) have not

been observed, (2) it does not explain deficits that have been observed,

(3) by combining lesions, almost any combination of deficits could be

explained, and (4) the clinical classification of deficits is uncertain. If

these objections seem to contradict one another, one should not con-

sider the source, but rather recognize that scientists, like lawyers, often

argue in the alternative. Similar complaints were made in many con-

texts by many authors against many theories. The methodological issues

that arise when one examines the details of Freud’s objections are more

interesting.

Freud reports a more elaborate diagram, also due to Lichtheim:
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Here O represent a ‘‘centre for visual impressions.’’ E is ‘‘the centre of

cheiro-kinaesthetic impressions,’’ whatever they are. O and its con-

nections are responsible for the capacity for reading and for reading

aloud. Freud’s objection to this hypothesis is interesting and typical of

Freud (later he laid a similar objection against his own theory of hyste-

ria): ‘‘Lichtheim already knew of a common instance which he was

unable to fit into his schema, i.e., the combination of motor aphasia and

alexia which is too frequent to be attributed to the coincidental inter-

ruptions of two fibre tracts’’ (1891, 9). The remark is interesting because

it at least suggests the use of frequency constraints as tests of cognitive

models, but of course Freud made, and could make, no case about how

frequent the combination of deficits should be.

Freud objects that while the initial diagram predicts ‘‘conduction

aphasias,’’ in which the subject can understand speech and can produce

spontaneous speech but cannot repeat what he has just heard, no such

cases are known: ‘‘The faculty of repeating is never lost as long as

speaking and understanding are intact’’ (1891, 11). Instead, Wernicke’s

‘‘conduction aphasias’’ in fact produce only paraphasia, the mistaken

use of words. Freud quotes research—confirmed in modern studies—

that such errors can be caused by lesions in a great many regions of the

cortex, and most cases of aphasia involve paraphasia as well.

The method of argument—a certain phenomenon, whose possibility

the theory requires, has not been observed—contrasts sharply with the

procedure recommended by Karl Popper, the only philosopher of science

who seems actually to have influenced scientists’ conceptions of meth-

odology (Peter Medawar’s, for example). Popper says scientific hypoth-

eses should be refutable by observations, but here we have a prediction

that no finite set of observations can logically refute, but its failure to be

verified is counted against the theory.

Freud considers, on Wernicke’s and Lichtheim’s behalf, another expla-

nation of the absence of cases in which understanding and production

are intact but repetition is impossible: perhaps repetition occurs through

the route M B A even when the route M A is disrupted. Freud

argues in the alternative that, either way, Wernicke’s model does not

save the phenomena. If repetition occurs through the M B A route

when the M A route is disrupted, then, on the understanding of the

functions of the modules, repetition of meaningful words should be
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retained, but the capacity to repeat nonsense should be lost. Freud says

no such cases have been found, although they have been sought for.

But if, in the alternative, the destruction of the M A route breaks all

connection between the two centers, then we are back to a case already

unsolved.

The structure of Freud’s argument introduces issues about how

diagrams, or functional models, are to be interpreted. His argument de-

pends on a particular processing role assigned to the cognitive parts, a

role that makes them necessary for some activities but unnecessary

for other closely related activities. And his argument introduces an

issue about the gating of the human information-processing system that

Wernicke and Meynert and Lichtheim propose: for normal functioning,

must every pathway from input to output be intact, or just one pathway,

or do different capacities have different requirements, or something else?

Which inferences from what data about deficits are robust, independent

of which interpretation is assumed, and which ones are not?

‘‘Transcortical motor aphasia’’ is marked by inability of spontaneous

speech, but repetition and reading aloud, though without understanding,

are unimpaired. On Lichtheim’s model, this is explained by the inter-

ruption of the B!M pathway. Against this account, Freud has an

argument that, for the first time, involves an interplay between physical

localization and functional localization. Freud cites a patient whose cor-

tical damage does not accord with Lichtheim’s diagram. Freud’s concludes

that there is no such thing as the separate centers B and A.

The argument illustrates one possible use of information about ana-

tomical pathology, a use that goes back to Broca himself: if pieces of a

diagrammatic model are identified with particular anatomical structures,

then physical evidence of tissue destruction in those areas should co-occur

with the corresponding deficits. In an adequate theory that modularizes

function and localizes the functional component modules, one should be

able to predict deficits from lesions and lesions from deficits. One may,

of course, have perfectly consistent theories that modularize functions

without localizing some (or any) of the modular components, but

these cannot be theories of cognitive parts—parts do not have to be very

local in a machine, they do not have to be in the same relative place in

every machine that has such a part, but in each machine, they must be

somewhere.
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Freud insists at length that Lichtheim’s diagram does not account

for ‘‘paraphasias’’ (an erroneous word use). Wernicke allowed as much

and suggested that these phenomena are due to a degradation but

not destruction of connections. This explanation, which Freud rejects, im-

plicitly invokes the idea that some capacities may be more fragile than

other capacities that make use of the same modules, so that damage to a

module may produce one incapacity but not the other. The idea seems to

have been a commonplace among cognitive neuropsychologists of the

day; Freud himself cites Bastian as a source. The same idea has been

reborn in contemporary neuropsychology in Farah’s model of optical

aphasia and in Tim Shallice’s proposal that some capacities require

more resources of their modules than do others. The proposal, which

is plausible enough in substance, raises questions about how the notion

of fragility or varying resource demands can be used to make reliable

inferences about mental architecture. For example, how can the differing

resource requirements be determined empirically, and if they cannot, are

models that postulate varying resource requirements radically under-

determined by any behavioral data?

Freud considers an intricate case of ‘‘amnesic aphasia,’’ now called

‘‘optic aphasia’’—subjects recognize objects but cannot name them.

(Actually, as described, the patient also showed other agnosic deficits,

for example, ‘‘he was unable to synthesize, and to perceive as wholes,

object images, sound images, impressions of touch and symbols’’ (1891,

36). In Freud’s explanation of the case, there are no centers of the kind

the diagram makers proposed. Instead, there are parts of the brain that

receive input from the special senses, whether vision or sound or touch,

and the whole of the remainder of the cortex produces cognition by a

network of connections with these input centers. Tissue destruction closer

to one input source in the cortex than another—closer to the auditory

input region than to the visual, say—is likelier to produce deficits in the

corresponding set of capacities. But, and here is the modern part, the

network does not degrade uniformly with respect to the normal cog-

nitive capacities: some may fail from lesions while others, that work

through the same network, survive. Freud thinks of perception as pro-

viding atomistic inputs that are then assembled through associations in

the web. The deficits he considers are, in his terms, failures of associa-

tion, not of perception. Farah, as we will see, argues that many of the

agnosias are failures of perception, but the difference is largely termino-
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logical—she regards the building up of perceptual wholes from pieces as

part of ‘‘perception,’’ while Freud counts it as part of ‘‘association,’’ but

as we will also see, she thinks the aufbau is exactly what Freud calls

‘‘association.’’

There is in Freud’s book a great deal more clinical detail and discus-

sion of models of other phenomena, alexia for example, but the mode of

argument and the theory are the same, and so I turn to Farah.

10.4 Farah

Farah’s aim is to revise the classification of agnosics on the basis of pat-

terns of incapacities, and from these distinctions to draw modest theo-

retical conclusions. Her explanation is that the agnosias chiefly result from

disturbances of mid-level visual processing that normally uses either or

both of two separate capacities: one for grouping spatially distributed,

complex objects into wholes and another for grouping complex features

of a single object. Because the data indicate a localization of pathologies

and because explanations of the patterns of deficits seem to require it,

her more detailed models have cognitive parts, but the parts themselves

are typically association networks. Her discussion of optical aphasia

may serve to illustrate the similarity of her approach to Freud’s and a

number of issues about representation and inference.

Optical aphasia is marked by the inability to name visually presented

objects, although their function and facts about them can be correctly

indicated by gesture and their written name correctly recognized and

understood. Optical aphasics are able to sort visually dissimilar objects

into superordinate categories and match visually presented objects by

function. The ability to recognize and name objects through other modal-

ities—sound or touch, for example—remains intact. Farah considers five

different explanations of the phenomena.

The first is Ratcliff and Newcombe’s model:
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This diagram, like all of those Farah gives, is explicitly undirected but

implicitly directional—the lines could properly be replaced by arrows

going from lower modules to higher modules. Farah has two objections,

of which I will consider only the first: no case is known in which subjects

can correctly name visually presented objects but have no knowledge of

the objects (1990, 135). Her objection underscores the ambiguity of the

representation: Does the model presuppose that lesioning any pathway

between visual input and naming incapacitates the ability to name from

sight? If so, then the model implies that a case of the kind required in her

objection is impossible, which would make her objection moot. Alter-

natively, does the model presuppose that only lesioning all pathways

from input to output incapacitates? On that reading, the model with the

single lesion does not explain optical aphasia: another lesion is required

between Semantics and Naming.

A second model based on ideas of Beauvois is diagrammed this way:

Her objection is not empirical but methodological: ‘‘The notion that we

have multiple ‘copies’ of our entire stock of semantic knowledge, one for

each modality of stimulus presentation, seems quite ad hoc, not to men-

tion unparsimonious’’ (1990, 137).

A third model is taken from Riddoch and Humpreys:
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Farah has two objections: First, the model implies that optic aphasics

should do poorly on categorization tasks with visually presented mate-

rials, but they do not, although it turns out that the correct empirical

assessments are in some dispute. Second, the model implies that optical

aphasics should not be able to make semantically correct gestures from

visual presentations, but they can. Here the implicit directionality—from

semantics to gesture—is essential. And another ambiguity of represen-

tation emerges. ‘‘Gesture’’ actually stands for two distinct kinds of per-

formances using the same motor capacities: one performance responsive

simply to the physical appearance of the visual stimulus, the other

responsive to other knowledge about the object. The direct route from

visual input to gesture is manifested, for example, by indicating the size

of the object with one’s hands and arms; the route through semantics is

what is required for Charades.

A fourth model is from Coslett and Saffran:

Farah makes no objection at all to this model, which differs both in

connections and in the interpretation of the semantic modules from the

otherwise similar model attributed to Beauvois.

The fifth model, which Farah seems to favor, is given in the following

diagram:
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In this model, visual input, semantics, and naming are each neural net-

works, with their outputs connected as shown. No lesions are specified.

Farah’s discussion bears quoting:

The probability of success in visual naming is not simply the product of the prob-
abilities of success in nonverbal tests of vision and nonvisual tests of naming.
Vision and naming per se seem near-normal in these patients, and yet visual
naming is grossly impaired. Therefore, in order to explain optic aphasia by
damage at two separate loci, one must assume that effects of the damage are
superadditive.

Is it completely ad hoc to suppose that the effects of damage at two separate
loci would be superadditive? . . . The massively parallel constraint satisfaction
architectures in section 5.1.3 have the ability to complete or recover partially
damaged or degraded input representations, provided the damage is not too
great. . . .

It is conceivable that when a task involves activating just one damaged part of
the system, the noisy output of that part can be restored, or ‘‘cleaned up’’ by the
remaining intact network, but that when two damaged parts of the system must
operate together, with the noisy output from one damaged subsystem being the
input to another damaged subsystem, the recovery capabilities of the network
will be exceeded and performance will drop precipitously. . . . Of course it must
be tested empirically by building and damaging such a system, a project currently
underway. (1990, 140–141)

Since it may make a difference whether a network is damaged or

whether the damage is confined to the output of a network that is input

to another network, the description is ambiguous among possibilities: a

visual-input network whose output nodes and connections are damaged

and a semantics network whose output nodes and connections are

damaged (figure 10.1), or damage to the output nodes and connections

of visual input and to the interior of the semantics neural net itself

(figure 10.2), or damage to both network modules (figure 10.3).

Figure 10.1
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Farah’s model employs a limited notion of computational resources

required by a capacity. Her account does not require that some capac-

ities demand more computational resources than others, but it does

require that resources can be quantitatively degraded and that intact ca-

pacities require a minimal threshold of resources. It is a small step from

there to the idea that different capacities may have different thresholds.

There is much more of methodological interest in Farah’s book, but

her most trenchant attack on the Wernicke/Meynert framework is in a

subsequent article. There Farah formulates the hypothesis to which she

objects:

The locality assumption Cognitive neuropsychologists generally assume that
damage to one component of the functional architecture will have exclusively
‘‘local’’ effects. In other words, the undamaged components will continue to
function normally, and the patient’s behavior will therefore manifest the under-
lying impairment in a relatively direct and straightforward way. This assumption
follows from a view of the cognitive architecture as being ‘‘modular’’ in the sense
of being ‘‘informationally encapsulated’’ (Fodor, 1983)

. . . The locality assumption licenses quite direct inferences from the manifest
behavioral deficit to the identity of the underlying damaged cognitive compo-
nent, of the form ‘‘selective deficit in ability A implies component of the func-
tional architecture dedicated to A.’’ Obviously, such inferences can go awry if the

Figure 10.2

Figure 10.3
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selectivity of the deficit is not real, for example if the tasks testing A are merely
harder than the comparison tasks, if there are other abilities that are not tested
but which are also impaired, or if a combination of functional lesions is mistaken
for a single lesion (see Shallice, 1988, ch. 10, for a thorough discussion of other
possibilities for misinterpretation of dissociations within a weakly modular theo-
retical framework). In addition, even simple tasks tap several components at
once, and properly designed control tasks are needed in order to pinpoint the
deficient component, and absolve intact components downstream. However,
assuming the relevant ability has been experimentally isolated, and the deficit is
truly selective, the locality assumption allows us to delineate and characterize the
components of the functional architecture in a direct, almost algorithmic way.
(1994, 46)

In my terms, Farah’s locality assumption combines three separate

ideas. One is the idea of cognitive parts—discrete, causally connected,

spatially localized systems whose joint normal activity creates cognitive

competence. Another is the idea that the function of each cognitive part

is to do a distinct piece of cognitive processing in an information pro-

cessing system. The third is that the occurrence of a specific, isolated

cognitive deficit indicates damage to a specific cognitive part whose

function is to perform the task missing in the abnormal performance.

The last idea is gratuitous and indefensible, and Farah is right to reject

it. Because an automotive part heats up abnormally, it doesn’t follow

that some other part whose function is to cool the abnormally hot part

has failed. The inference works for the container on refrigerator trucks

but not for the brakes on a wheel of your car. Her objections to the

other two parts of the ‘‘locality’’ idea are less convincing. She analyzes

three cases, and for each she offers an alternative connectionist expla-

nation. But connectionist models can have cognitive parts, and hers do.

Connectionist networks can often be resolved into topological parti-

tions, where a topological partition divides the nodes into sets, with the

members of some sets not directly connected to any of the members of

certain other sets and (often, but not always) the nodes within one set all

connected to one another. Farah’s alternative explanations of deficit

patterns all have cognitive parts of this kind, as do other attempts to give

distributed representations of functional modularity. Moreover, the cog-

nitive parts in Farah’s connectionist models have distinctive cognitive

functions, and she so describes them; what makes her story different

from those to which she objects is that the internal mechanism of the

cognitive parts she postulates is connectionist, and the cognitive func-
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tions of the parts are not directly to produce the feature absent in the

deficit but, typically, to produce some other feature that, in turn and in

context, normally causes the feature in deficit. Thus to explain recogni-

tion and knowledge deficits specific to living things, she postulates a

cognitive part consisting of a set of nodes dedicated to ‘‘semantic knowl-

edge of functions’’ and another dedicated to ‘‘visual semantic knowl-

edge,’’ and she postulates damage to the later, assuming that knowledge

about objects involves their functions more than does knowledge about

animals.

Farah’s contrast between ‘‘parallel distributed processing’’ and ‘‘lo-

cality’’ is partly spurious in substance but substantive in methodology. In

practice, both rely on cognitive parts and differ only in the details (and

amount of detail) of the models. There are, however, real alternatives.

One of them is Freud’s, which almost no one now endorses, in which

the cortex is a single connectionist structure with no discernible sub-

structures with distinct functions. Another is one Farah seems to take

seriously: ‘‘Finally, even if PDP were false, there remain other ways of

conceptualizing human information processing that provide explicit,

mechanistic alternatives to modularity. For example, in production sys-

tem architectures (see Klahr, Langley & Neches, 1987) working memory

is highly nonencapsulated’’ (1994, 59).

Production system ‘‘architectures’’ for cognition do not have cognitive

parts, because there is no implied organic locality for their data struc-

tures. A program written for your computer in Pascal or LISP or what-

ever may involve a lot of data structures, but their implementation is

scattered over the memory chips of your machine, and has no finer

locale. The same is true with ACT* and SOAR, because these ‘‘theories’’

are simply programming languages with some built-in, automated pro-

cessing. They cannot and do not account for patterns of neuropsycho-

logical deficits.

10.5 Issues

The diagrams that neuropsychologists have used for more than a century

to represent the hypothetical causal relations among hypothetical cog-

nitive parts are causal Bayes nets. The values of the variables are often

unclearly specified, but they can usually be reconstructed as 2-valued,
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one value for normal input or output and another for abnormal input or

output. The hypothesis that the brain produces cognitive competence

through the action of cognitive parts is the indispensable minimum in

cognitive neuropsychology—even if the parts themselves are neural nets

—and that is why, whether recognized or denied, the assumption and

the diagrams are ubiquitous.

Brain anatomy and the character of deficits may suggest various dia-

grams and hypotheses about the functions of their hypothetical parts,

but the fundamental methodological question is whether, and how, pat-

terns of deficits can distinguish among alternative diagrams. The ques-

tions have been bitterly debated in the neuropsychological literature,

usually by citing slogans from the philosophy of science or by debating

particular examples. As the neuropsychologists have framed them, the

questions can be divided into two sorts: what can surveys of patterns of

deficits exhibited by individuals tell us about ‘‘cognitive architecture,’’

and what can comparisons of measures for different groups of people tell

us. To these questions I will add a third. Reversing Freud’s complaint

against Lichtheim, it is often complained that neural net models can

‘‘explain anything.’’ Can lesioning causal Bayes nets ‘‘explain anything,’’

or are there natural explanatory limitations? The next three chapters

examine these questions from fresh viewpoints, emphasizing, for the first

two issues, the central point: how to get to the truth, whatever it may be.
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11
Inferences to Cognitive Architecture from

Individual Case Studies

11.1 The Issues

Neuropsychology has relied on a variety of methods to obtain informa-

tion about human ‘‘cognitive architecture’’ from the profiles of capaci-

ties and incapacities presented by normal and abnormal subjects. The

nineteenth-century neuropsychological tradition associated with Broca,

Wernicke, Meynert, and Lichtheim attempted to correlate abnormal

behavior with loci of brain damage, and thus to found syndrome classi-

fication ultimately on neuroanatomy. At the same time, they aimed to

use the data of abnormal cognitive incapacities to found inferences to

the functional architecture of the normal human cognitive system. Con-

temporary work in neuropsychology involves statistical studies of the

correlation of behavior with physical measures of brain activity in both

normal and abnormal subjects, statistical studies of the correlations of

behavioral abnormalities in groups of subjects, and studies of behavioral

abnormalities in particular individuals, sometimes in conjunction with

information about the locations of lesions.1 The goal of identifying the

functional structure of normal cognitive architecture remains as it was in

the nineteenth century.

The fundamental methodological issues about the enterprise of cogni-

tive neuropsychology concern the characterization of methods by which

features of normal cognitive architecture can be identified from any of

the kinds of data just mentioned, the assumptions upon which the relia-

bility of such methods are premised, and the limits of such methods—

even granting their assumptions—in resolving uncertainties about that

architecture. These questions have recently been the subject of intense

debate occasioned by a series of articles by Caramazza and his collabo-



rators (1984, 1986, 1988, 1989); these articles have prompted a number

of responses, including at least one book. As the issues have been framed

in these exchanges, they concern the following:

. Whether studies of the statistical distribution of abnormalities in groups
of subjects selected by syndrome, by the character of brain lesions, or by
other means, are relevant evidence for determining cognitive architecture
. Whether the proper form of argument in cognitive neuropsychology
is ‘‘hypothetico-deductive’’—in which a theory is tested by deducing
from it consequences whose truth or falsity can be determined more or
less directly—or ‘‘bootstrap testing’’—in which theories are tested by
assuming parts of them and using those parts to deduce (noncircularly)
from the data instances of other parts of the theory
. Whether associations of capacities, or cases of dissociation in which
one of two normally concurrent capacities is absent, or double disso-
ciations in which of two normally concurrent capacities A and B, one
abnormal subject possesses capacity A but not B, while another abnor-
mal subject possesses B but not A, are the ‘‘more important’’ form of
evidence about normal cognitive architecture

Bub and Bub (1991) object that Caramazza’s arguments against group

studies assume a ‘‘hypothetico-deductive’’ picture of theory testing in

which a hypothesis is confirmed by a body of data if from the hypothesis

(and perhaps auxiliary assumptions) a description of the data can be

deduced. They suggest that inference to cognitive architecture from neuro-

psychological data follows instead a ‘‘bootstrap’’ pattern much like that

described by Glymour (1980). They, and also Shallice (1988), reassert

that double-dissociation data provide especially important evidence for

cognitive architecture. Shallice argues that if a functional module unde-

rlying two capacities is a connectionist computational system where one

capacity requires more computational resources than another, then

injuries to the module that remove one of these capacities may leave the

other intact. The occurrence of subjects having one of these capacities

and lacking the other (dissociation) will therefore not permit a decision

as to whether or not there is a functional module required for the first

capacity but not required for the second. Double dissociations, Shallice

claims, do permit this decision.

The main issue in these disputes is this: by what methods, and from

what sorts of data, can the truth about various questions of cognitive

architecture be found, whatever the truth may be? There is a tradition in
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computer science and in mathematical psychology that provides a means

for resolving such questions. Work in this tradition characterizes mathe-

matically whether or not specific questions can be settled in principle

from specific kinds of evidence. Positive results are proved by exhibiting

some method and demonstrating that it can reliably reach the truth;

negative results are proved by showing that no possible method can do

so. There are results of these kinds about the impossibility of predicting

the behavior of a ‘‘black box’’ with an unknown Turing machine inside,

about the possibility of such predictions when the black box is known to

contain a finite automaton rather than a Turing machine, about the in-

distinguishability of parallel and serial procedures for short-term memory

phenomena, about which classes of mathematically possible languages

could and could not be learned by humans, about whether a computa-

tionally bounded system can be distinguished from an uncomputable

system by any behavioral evidence about the logical limits of the prop-

ositions that can be resolved by any learner, and much more (see Kelly

1996 for a review and references to the literature). However abstract

and remote from practice such results may seem, they address the logical

essence of questions about discovery and relevant evidence. From this

point of view, disputes in cognitive neuropsychology about one or an-

other specific form of argument are well motivated but ill directed: they

are focused on the wrong questions.

From what sorts of evidence, and with what sorts of background as-

sumptions, can questions of interest in cognitive psychology be resolved,

no matter what the answer to them may be, by some possible method,

and from what sorts of evidence and background assumptions can they

not be resolved by any possible method? With some idealization, the

question of the capacities of various experimental designs in cognitive

neuropsychology to uncover cognitive architecture can be reduced to

comparatively simple questions about the prior assumptions investiga-

tors are willing to make. The point of this chapter is to present some of

the simplest of those reductions.

11.2 Theories as Functional Diagrams and Graphs

Neuropsychological theories typically assume that the brain instantiates

‘‘functional modules’’ that have specific roles in producing cognitive
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behavior. In the processes that produce cognitive behavior, some of the

output of some modules is sent as input to other modules until even-

tually the task behavior is produced. Various hypothetical functional

modules have standard names, e.g., the ‘‘phonemic buffer,’’ and come

with accounts of what they are thought to do. Such theories or ‘‘models’’

are often presented by diagrams. For example, Ellis and Young (1988)

consider the ‘‘functional model’’ for object recognition given in figure

11.1.

In explaining profiles of normal capacities and abnormal incapacities

with the aid of such a diagram, the modules and their connections are

understood to be embedded in a larger structure that serves as a kind of

deus ex machina in producing particular inputs or particular outputs.

For example, a subject’s capacity to name familiar objects in experimen-

tal trials is explained by assuming that presentation of the object is

supplied as input to this diagram, and that the subject has somehow

correctly processed the instruction ‘‘Name the object before you,’’ and

that this processing has adjusted the parameters of the functional mod-

Figure 11.1
Functional model for object recognition
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ules and their connections so that the subject will indeed attempt to

name the object. None of the instructional processing is represented in

the diagram. Further, it is understood that the modules represented in

such diagrams are connected to other possible outputs that are not rep-

resented, and that with different instructional processing, the very same

stimulus would activate a different collection of paths that would result

in a different output. For example, if the subject were instructed ‘‘Copy

the object before you’’ and processed this information normally, then the

presentation of the object would bring about an attempt to draw the

object rather than to speak its name.

In effect, most parts of theories of cognitive architecture are tacit,

and the normal behavior to be expected from a set of instructions and

a stimulus can only be inferred from the descriptions given of the in-

ternal modules. For example, when Ellis and Young describe an internal

module as the ‘‘speech-output lexicon,’’ we assume that it must be acti-

vated in any process producing coherent speech, but not in processes

producing coherent writing or in the processes of understanding speech,

writing, or gestures. Evidently, it is a great convenience and a practical

necessity to leave much of the theory tacit and indicated only by descrip-

tions of internal modules, although the descriptions may sometimes

occasion misunderstanding, equivocation, and unprofitable disputes.

The practice of cognitive neuroscience makes a considerable use of

scientists’ capacities to exploit descriptions of hypothetical internal mod-

ules in order to contrive experiments that test a particular theory.

Equally, the skills of practitioners are required to distinguish various

kinds or features of stimuli as belonging properly to different inputs,

which means that these features are processed differently under the same

set of instructions. I propose to leave these features of the enterprise to

one side and to assume for the moment that everyone agrees as to what

stimulus conditions should be treated as inputs to a common input

channel in the normal cognitive architecture, and that everyone agrees as

to what behaviors should be treated as outputs from a common output

channel.

It is also clear that in practice there are often serious ambiguities about

the range of performance that constitutes normal or abnormal behavior,

and that much of the important work in cognitive neuropsychology

consists in resolving such ambiguities. I will also put these matters to one
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side and assume that all such issues are settled, and that there is agree-

ment as to which behaviors count as abnormal in a setting, and which

normal.

With these rather radical idealizations, what can investigation of the

patterns of capacities and incapacities in normal and abnormal subjects

tell us about the normal architecture?

11.3 Formalities

The diagram in figure 11.2 is also given by Ellis and Young (1988). The

idea is that a signal, auditory or visual, enters the system, and various

things are done to it; the double arrows indicate that the signal is passed

back and forth, the single arrows indicate that it is passed in only one

Figure 11.2
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direction. If any path through the semantic system from the input chan-

nel is disrupted while the rest of the system remains intact, then the

remaining paths to the phoneme level will enable the subject to repeat a

spoken word or pronounce a written word, but not to understand it.

The evidence offered for a diagram consists of profiles of capacities

that are found among people with brain injuries. There are people who

can repeat spoken words but cannot recognize them, people who can

recognize spoken words but can’t understand them, people who show

parallel incapacities for written words, people who can repeat or recog-

nize or understand spoken words but not written, and people with the

reverse capacities. What is the logic of inferences from profiles of this

kind to graphs or diagrams? To investigate that question it will help to

standardize diagrams.

Performances whose appearance or failure (under appropriate inputs)

is used in evidence will be explicitly represented as vertices in the graphs,

and the corresponding stimuli or inputs will be likewise distinguished. So

where Ellis and Young have an output channel labeled simply ‘‘speech,’’

I will have output nodes labeled ‘‘repeats,’’ ‘‘repeats with recognition,’’

‘‘repeats with understanding.’’ In any context that a psychologist would

identify a normal capacity, I will place a corresponding set of input

nodes and an output node. This convention in no way falsifies the prob-

lem, for such relations are certainly implicit in the theory that goes

with the conventional diagram; I am only making things a bit more

explicit. Second, I will assume for the time being that each represented

pathway from input to output is essential for a normal capacity. There

are certainly examples in the literature of capacities that have alternative

pathways, either of which will produce the appropriate output. I will

ignore this complication for the moment, but not forever.

The system of hypothetical modules and their connections form a

directed graph, that is, a set V of vertices or nodes and a set E of ordered

pairs of vertices, each ordered pair representing a directed edge from the

first member of the pair to the second. Some of the vertices represent

inputs that can be given to a subject in an experimental task, and some

of the vertices represent measures of behavioral responses. Everything

in between, which is to say most of the directed graph that represents

the cognitive architecture, is unobserved. Each vertex between input and

behavioral response can represent a very complicated structure that may
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be localized in the brain or may somehow be distributed; each directed

edge represents a pathway by which information is communicated. That

assumption requires replacing bidirected edges with two edges, one in

each direction, but nothing is lost thereby.

Such a directed graph may be a theory of the cognitive architecture of

normals; the architecture of abnormals is obtained by supposing that

one or more of the vertices or directed edges of the normal graph has

been removed. Any individual subject is assumed to instantiate some

such graph. In the simplest case, we can think of the output nodes of

as taking values 0 and 1, where the value 1 obtains when the subject

exhibits the behavior expected of normal subjects for appropriate inputs

and instructions, and the value of 0 obtains for abnormal behavior in

those circumstances. I will call a capacity any pair hI;Oi, where O is an

output variable (or vertex) and I is an input vertex, such that in normal

architecture there is a directed path from I to O.

Between input and output a vast number of alternative graphs of

hypothetical cognitive architecture are possible a priori. The fundamen-

tal inductive task of cognitive psychology, including cognitive neuro-

psychology, is to describe the intervening structure common to normal

humans.

To begin with, I make some simplifying assumptions about the

directed graph that represents normal human cognitive architecture. I

will later consider how some of them can be altered.

Assumption 1 Assume that the behavioral response variables take only
0 or 1 as values, where the value 1 means, roughly, that the subject
exhibits normal competence and the value 0 means that the subject does
not exhibit normal competence.

Assumption 2 Assume that all normal subjects have the same graph,
i.e., the same cognitive architecture.

Assumption 3 Assume that the graph of the cognitive architecture of
any abnormal subject is a subgraph of the normal graph, i.e., is a graph
obtained by deleting either edges or vertices (and, of course, all edges
containing any deleted vertex) or both in the normal graph.

Assumption 4 The default value of all output nodes—the value they
exhibit when they have not been activated by a cognitive process—is 0.

Assumption 5 If any path from a relevant input variable to an output
variable that occurs in the normal graph is missing in an abnormal
graph, the abnormal subject will output the value 0 for that out-
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put variable on inputs for which the normal subject outputs 1 for that
variable.

Assumption 6 Every subgraph of the normal graph will eventually
occur among abnormal subjects.

These assumptions are in some respects unrealistic, and in some ways

less unrealistic than they might at first appear. One might object to the

assumption that all pathways in a graph between input and output must

be intact for the normal capacity, and substitute instead the requirement

that for normal capacities at least one pathway must be intact. I will

later describe what results from this alternative, or from assuming igno-

rance as to which of these gatings is correct. For the purpose of the

analysis, it does not matter whether the pathway to a node inhibits or

promotes some response, so long as when all pathways are intact, the

response is counted as normal, and when one of them is removed, the

response, whatever it may be, is counted as abnormal. Nor is it unreal-

istic to assume that inputs and outputs take values 0 and 1 only. The

input node identifies a particular task condition, and 1 on the input node

simply codes that the task is demanded and the relevant stimulus sup-

plied. The subject’s performance, whatever it may be, is either counted

as normal, in which case the output node has value 1, or it is not, in

which case the output node has value 0.

The structures that satisfy these axioms are causal Bayes nets if the

graph is acyclic. The structures that result from lesioning any such acy-

clic diagram are causal Bayes nets with interventions. The problem of

inference is to reliably determine which of a collection of alternative

causal explanations of this kind is true from data generated with and

without interventions, when the nature of the intervention, if any, is

unobserved.

11.4 Discovery Problems and Success

We want to know when, subject to these assumptions, features of

normal cognitive architecture can be identified from the profiles of the

behavioral capacities and incapacities of normals and abnormals. It is

useful to be a little more precise about what we wish to know, so as to

avoid some likely confusions.
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I will say that a discovery problem consists of a collection of alter-

native conceivable graphs of normal cognitive architecture. As far as we

know a priori, any graph in the collection may be the true normal cog-

nitive architecture. We want our methods to be able to extract as much

information as possible about the true structure, or to be able to answer

some question about the true structure, no matter which graph in the

collection it is. Whichever graph may actually describe normal architec-

ture, the scientist receives examples, normal subjects, who instantiate the

normal graph and examples, abnormal subjects, who instantiate various

subgraphs of the normal graph. For each subject, the scientist obtains a

profile of that subject’s capacities and incapacities. So, abstractly, we can

think of the scientist as obtaining a sequence of capacity profiles, where

the maximal profiles (those with the most capacities) are all from the

true but unknown normal graph, and other profiles are from subgraphs

of that normal graph.

We have assumed that eventually the scientist will see every profile of

capacities associated with any subgraph of the normal graph, although

nothing in our assumptions implies that the scientist will know when

profiles of every subgraph of the normal graph have been observed.

Let us suppose, as is roughly realistic, that the profiles are obtained in

a sequence, with some (perhaps all) profiles being repeated. After each

stage in the sequence, let the scientist (or a method) conjecture the

answer to a question about the cognitive architecture. No matter how

many distinct profiles have been observed at any stage of inquiry, the

scientist may not be sure that further distinct profiles are impossible. We

cannot be sure at any particular time (save in special cases) that cir-

cumstance has provided us with every possible combination of injuries,

separating all of the capacities that could possibly be separated. Hence,

if by success in discovering the normal cognitive architecture we mean

that after some finite stage of inquiry the scientist will be able to specify

that architecture and know that the specification will not be refuted by

any further evidence, success is generally impossible. We should instead

require something weaker for success: the scientist should eventually

reach the right answer by a method that disposes her to stick with the

right answer ever after, even though she may not know when that point

has been reached.
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I will say that a method of conjecturing the cognitive architecture (or

conjecturing an answer to a question about that architecture) succeeds

on a discovery problem posed by a collection of alternative hypothetical

architectures if for each of these architectures, and for each possible

ordering (into an unbounded sequence) of the profiles of normals and

abnormals associated with that architecture, there is a point after which

the method always conjectures the true architecture or always answers

the question correctly. In other words, if we think of a method of infer-

ence as an infinite series of conjectures in response to an ever increasing

sequence of data, the number of erroneous conjectures is finite. If no

method can succeed on a discovery problem, I will say the problem is

unsolvable.

On first encounter, this idea of success in inquiry may be confusing,

and a simple example may help. Let the data consist of facts about

the color of particular emeralds, given in arbitrary order. Consider the

hypotheses ‘‘All emeralds are green’’ and ‘‘Some emerald is not green’’

and imagine a method of investigation that seeks to settle the question

with certainty after seeing some finite number of emeralds. In applica-

tion, the conjectures of the method can be withheld until enough data

have been acquired so that the method is certain, and then the answer

can be announced. By the very characterization of the method, there

must be a number n of green emeralds such that if that number is seen

and no emerald of any other color is seen, the method must announce

with certainty that all emeralds are green. Such a method cannot be cor-

rect in all possible circumstances, consistent with our ignorance at the

beginning of inquiry. For one possible circumstance is that the first n

emeralds are green and the next is not, and in that circumstance the

method will fail. We assumed nothing about the method except that it

acts only on the data and that it produces a conjecture after some finite

amount of evidence is seen, a conjecture that purports to be correct no

matter what. So no such method exists.

Our little argument is the problem of induction in the form given it

first by Plato and later by Sextus Empiricus. It is the reason why Karl

Popper insisted that the aim of science could only be to falsify theories—

which he took to make universal claims—but not to verify them. Yet

in cognitive neuropsychology, many of the important hypotheses are
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existential—models of normal architecture imply that certain combina-

tions of deficits should exist, and the failure to find them is used in

arguments against the model. This is a kind of inference that Popper’s

methodology does not allow. But we can allow it if we weaken the

requirement of success in inquiry from that of finding the right answer

with certainty after a finite amount of evidence is seen to the requirement

that our method of conjecture eventually settle upon the truth and stick

with the truth ever after, even if we do not know when the truth has

been reached. That is exactly what is done by the requirement of success

proposed above. To solve the problem about emeralds, we can adopt the

method that conjectures that all emeralds are green so long as all emer-

alds so far observed are green, and that says that there is an emerald of

another color ever after one of that color is seen. If we occupy a world in

which there is a nongreen emerald, then by assumption, it will eventually

turn up in the data, and our method will give the true answer ever after.

If, to the contrary, we occupy a world in which all emeralds are green,

our method will forever conjecture that all emeralds are green, and it

will always be right.

Probabilistic accounts of inquiry and methodology are undoubtedly

more familiar. The procedure most routinely used in psychology is hy-

pothesis testing, which, however, is not a method of inquiry: hypothesis

testing tells us, at best, what hypotheses to reject, but itself provides no

reliable method of finding any positive truth, either in the short run

or the long run. A less familiar but more thoroughgoing probabilistic

account of method is Bayesian. It would have us, before any data is seen,

put a probability distribution over the hypotheses, and also specify for

each hypothesis the probability of any finite sequence of data, condi-

tional on the truth of the hypothesis. This initial, or prior, probability

distribution is then changed as data is acquired, by computing the proba-

bility of each hypothesis, conditional on the evidence so far seen.

From the Bayesian perspective, reliability consists in converging to-

ward probability 1 for the true hypothesis, no matter what the truth

may be from among the alternatives considered at the outset. As it turns

out, that success criterion is here equivalent to the one I have proposed:

if there is a method that solves a discovery problem, in the sense defined,

then there is a prior probability distribution whose conditional distri-

butions converge to 1 for the true hypothesis on every possible data
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sequence. The converse is equally true: if Bayesian convergence is pos-

sible, then the discovery problem is solvable in the sense defined. What

this means for theoretical (and practical) analysis is this: so long as we

are concerned with finding the truth, whatever it is, in settings of the

kind we are considering in this chapter, we do not have to complicate

matters with probability calculations.

11.5 An Illustration

The role of these ideas in understanding the power and limits of ideal-

ized individual data in cognitive neuropsychology can be illustrated by

considering a discovery problem, given by six alternative graphs, sche-

matizing hypotheses about the normal cognitive architecture involved

in four normal capacities. The graphs are given in figure 11.3. All of

these graphs allow the same normal profile: N ¼ fhI1;O1i; hI1;O2i;

hI2;O1i; hI2;O2ig. With each of these graphs there is associated the

subgraphs that can be formed by lesioning one or more edges or vertices,

and each subgraph will have a characteristic set of deficits—interrupted

normal capacities. Note the similarity to the graphs for optical aphasia

in chapter 10.

Figure 11.3
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Each normal graph entails constraints on the profiles that can occur in

abnormals. Graph 1, for example, entails the empty set of constraints;

every subset of N is allowable as an abnormal profile if graph 1 repre-

sents the normal architecture. Graph 2 imposes strong constraints: if

an abnormal has two intact capacities that together involve both in-

puts and both outputs, then he must have all of the normal capacities.

Graph 3 allows that an abnormal may be missing hI1;O1i while all other

capacities are intact. Graph 4 allows that an abnormal may be missing

the capacity hI2;O2i while all other capacities are intact. We have

the following inclusion relations among the sets of allowable (normal

and abnormal profiles) associated with each graph: The set of profiles

allowed by graph 1 includes those allowed by graphs 3 and 4. The set of

profiles allowed by graph 4 is not included in and does not include the

set of profiles allowed by graph 3. The sets of profiles allowed by graphs

3 and 4 both include the set of profiles allowed by graph 2. And so on.

To make matters as clear as possible, I give a list of the profiles that

the six graphs permit, where a profile is a subset of the four capacities,

and the capacities ðIi;OjÞ are identified as ordered pairs i; j. The set of

all possible profiles is given in table 11.1.

Table 11.1
The set of all possible profiles

Profile Capacities

N 1; 1 1; 2 2; 1 2; 2

P1 1; 1 1; 2 2; 1

P2 1; 1 1; 2 2; 2

P3 1; 1 2; 1 2; 2

P4 1; 2 2; 1 2; 2

P5 1; 1 1; 2

P6 1; 1 2; 1

P7 1; 2 2; 1

P8 1; 1 2; 2

P9 1; 2 2; 2

P10 2; 1 2; 2

P11 1; 1

P12 1; 2

P13 2; 1

P14 2; 2

P15
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Graph 1 Abnormals with every profile occur.

Graph 2 Abnormals with P5, P6, P9–P15 occur.

Graph 3 Abnormals with P4, P5, P6, and P9–P15 occur.

Graph 4 Abnormals with P1, P5, P6, and P9–P15 occur.

Graph 5 Abnormals with P3, P5, P6, and P9–P15 occur.

Graph 6 Abnormals with P2, P5, P6, and P9–P15 occur.

The following procedure solves the discovery problem: conjecture any

normal graph whose set of normal and abnormal profiles includes all the

profiles seen in the data but has no proper subset of profiles (associated

with one of the graphs) that also includes all of the profiles seen in the

data.

We have seen examples from the nineteenth century through the end

of the twentieth in which a normal capacity was held to be intact

provided at least one pathway from input to output was intact. Such

theories can be analyzed by replacing assumption 5 above with the

assumption, call it 5*, that abnormal output occurs if and only if all

pathways from input to output are interrupted, or more generally, with

the assumption that, for each normal capacity, one of assumptions 5 and

5* holds. The last alternative is the most interesting, and amounts to

having to learn both the topology and the gating. The sets of profiles

that can be obtained from the six graphs by lesioning, under assumption

5*, are as follows:

Graph 1 Abnormals with every profile occur. The gatings for this struc-
ture are the same under assumption 5 or 5*.

Graph 2 Abnormals with P5, P6, and P9–P15 occur. The gatings for
this structure are the same under assumption 5 or 5*.

Graph 3 Abnormals with P2, P3, P5, P6, P8–P15 occur.

Graph 4 Abnormals with P2, P3, P5, P6, P8–P15 occur.

Graph 5 Abnormals with P1, P4, P5, P6, P7, P9–P15 occur.

Graph 6 Abnormals with P1, P4, P5, P6, P7, P9–P15 occur.

Under the gating of assumption 5*, in which a capacity is disabled

only if all paths from input to output are interrupted, graphs 3 and 4

cannot be distinguished, and graphs 5 and 6 cannot be distinguished.

The discovery problem posed by the six graphs under this gating is un-

solvable. The best procedure, is to guess the indistinguishability class

with the smallest set of abnormal profiles that includes all abnormal

profiles so far observed.
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What about the discovery problems posed by the twelve structures

consisting of the six graphs each with the two alternative gatings, 5 and

5*? The task is then to determine the graph and the gating. Gatings 5

and 5* are the same for graphs 1 and 2. For the remaining four graphs

the gatings are distinct, and which of the gatings is correct can be inferred

from the observed profiles: gating 5* requires in these cases that P7 or P8

occur, while neither profile can occur with gating 5 for graphs 3, 4, 5,

and 6. Save for the indistinguishable pairs under gating 5*, all distinct

graph/gating pairs have distinct profile sets and, up to that indistin-

guishability, the combined problem can be solved.

11.6 Complications

There are at least three other ways in which indistinguishable structures

can occur: The edges coming into a vertex V can be pinched together at

a new vertex V 0 and a directed edge from V 0 to V introduced. The edges

coming out of a vertex V can be moved so that they are out of a new

vertex V 0 and an edge from V to V 0 introduced. And finally, a vertex V

can be replaced by a subgraph G such that every edge in V is replaced by

an edge into G, every edge out of V is replaced by an edge out of G, and

every input to G has a path in G to every output of G. Each of these

operations results in a graph that is indistinguishable from the origi-

nal graph in the normal and abnormal profiles it allows. The first two

operations are really only special ways of thinking about the third. For

example, the following graph is indistinguishable from graph 3 under

gating 5:
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One of the ideas of cognitive neuropsychology is that one and the

same module can be involved in the processing of quite different in-

puts related to quite different outputs. For example, a general ‘‘semantic

system’’ may be involved in speech processing, but it may also be in-

volved in writing or nonverbal tasks. Some of the input channels that

are relevant to a nonverbal task that accesses the ‘‘semantic system’’ may

not be input channels for a verbal task that accesses the ‘‘semantic

system.’’ Although there is in the diagram or graph a directed path from

input channels particular to nonverbal tasks to the output channels of

verbal tasks, those inputs are nonetheless irrelevant to the verbal task.

Formally, the idea is that in addition to the directed graph structure,

there is what I shall call a relevance structure, which determines that a

given output variable depends on some of the input variables to which

it is connected in the directed graph but not on other input variables to

which it is so connected. The relevance structure is simply part of the

theory the cognitive scientist provides. One and the same output variable

can have several distinct relevant input sets. Whenever two capacities

have the same output variable, we can ‘‘pinch’’ any subset of their paths

and obtain an indistinguishable graph (figure 11.4).

Of course, the possibilities are not restricted to a single pinch. There

can be any grouping of lines, and there can be hierarchies of inter-

mediate nodes. The space of possibilities is very large. The number of

ways of introducing extra vertices that are immediate between the inputs

and a single output is an exponential function of size of that set. And, of

course, directed edges between intermediate vertices at the same level

can be introduced. One possible view about such indeterminacies is, of

Figure 11.4
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course, that they represent substructure that is unresolvable by cognitive

neuropsychology. Bub and Bub (1991) have suggested that if for each

internal module there is an input/output pair specific to that module,

then the entire graph structure can be identified, and that seems correct if

extraordinarily optimistic.

There are further generalizations that I will not pursue. Jeff Bub has

suggested that any model comes with a specified set of sets of paths from

input to output such that all members of at least one set must be intact

in order for the corresponding capacity to be intact. Given any set of

alternatives of this kind, there is a mathematical fact of the matter of

whether they can be reliably distinguished from deficit patterns, but,

of course, there can be no very interesting completely general theorems

about discovery in such a range of cases. There is, however, no reason

why learning-theoretic analyses need be confined to my simple examples.

As is customary in most of the neuropsychological literature, I have

assumed throughout that the relations among the cognitive parts are

deterministic. A more generalized picture would allow probability distri-

butions; in that case the purely deterministic inference methods described

here might give way to probabilistic methods.

The conclusion seems to be that under the assumptions considered, a

good many features of cognitive architecture can in principle be dis-

tinguished from studies of individuals and the profiles of their capacities,

although a graph cannot be distinguished from an alternative that has a

functionally redundant structure. Under those assumptions, several of

Caramazza’s claims are essentially correct: He is correct that the essen-

tial question is not whether the data are associations, dissociations, or

double dissociations; the essential question is what profiles occur in the

data. He is correct that from data on individuals one can solve some

discovery problems. In any particular issue framed by assumptions of

this kind, an explicit characterization of the alternatives held to be pos-

sible a priori and clear formulation in graph-theoretic terms of the dis-

covery problem at issue would permit a definite decision as to whether

the question can be answered in the limit, and by what procedures.

11.7 Resource/PDP Models

A picture of the brain that has a long history supposes that regions of

the brain function as parallel distributed processors, and receive inputs
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and pass outputs to modules in other regions. Thus the vertices of the

graphs of cognitive architecture that we have thus far considered would

be interpreted as something like parallel-distributed-processing networks

(McClelland et al. 1986). These ‘‘semi-PDP’’ models suggest a different

connection between brain damage and behavioral incapacities than is

given by our previous assumptions. A familiar fact about PDP networks

is that a network trained to identify a collection of concepts may suffer

differential degradation when some of its ‘‘neurons’’ are removed. With

such damage, the network may continue to be able to make some in-

ferences correctly but be unable to perform others. Thus a ‘‘semi-PDP’’

picture of mental functioning argues that damage to a vertex in a graph

of cognitive architecture is damage to some of the neurons of a network

and may result in the elimination of some capacities that involve that

vertex, but not others. Shallice (1988), for example, has endorsed such a

picture, and he uses it to argue for the special importance of double-

dissociation phenomena in cognitive neuropsychology. He suggests that

some capacities may be more difficult or computationally demanding

than others, and hence more easily disrupted. Double dissociations, he

argues, show that of two capacities, at least one of them uses some

module not involved in the other capacity.

Consider whether, under this hypothesis, information about profiles of

capacities and incapacities permits us to discover anything at all about

cognitive architecture.

With each vertex or edge of the normal graph we should imagine a

partial ordering of the capacities that involve that edge or vertex. That

capacity 1 is less than or equal to capacity 2 in the partial ordering

indicates that any damage to that edge or vertex that removes capacity 1

also removes capacity 2. If capacity 1 is less than or equal to capacity 2

and capacity 2 is less than or equal to capacity 1, then any injury to the

module that removes one capacity will remove the other. If capacity 1 is

less than or equal to capacity 2 for some edge or vertex, but capacity 2 is

not less than or equal to capacity 1 for that edge or vertex, then capacity

1 is less than capacity 2 for that edge or vertex, meaning that capacity 2

can be removed by damage to that element without removing capacity 1.

If capacity 1 is not less than or equal to capacity 2 for some edge or

vertex and capacity 2 is also not less than or equal to capacity 1 for that

edge or vertex, then they are unordered for that graph element, meaning

that some injury to that graph element can remove capacity 1 without
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removing capacity 2, and some injury to that graph element can remove

capacity 2 without removing capacity 1. A degenerate case of a partial

ordering leaves all capacities unordered. I will call a graph in which

there is attached to each vertex and directed edge a partial ordering

(including possibly the degenerate ordering) of the capacities involving

that graph element a partially ordered graph.

The set of objects in a discovery problem are now not simply directed

graphs representing alternative possible normal cognitive architectures.

The objects are instead partially ordered graphs, where one and the same

graph may appear in the problem with many different orderings of

capacities attached to its edges and vertices. The presence of such alter-

natives indicates an absence of background knowledge as to which

capacities are more computationally demanding than others. I will assume

that the goal of inference remains to identify the true graph structure.

Rather than forming abnormal structures by simply deleting edges or

vertices, an injury is implicitly represented by labeling a directed edge or

vertex with the set of damaged capacities involving that edge or vertex.

The profile of capacities associated with such a damaged labeled graph

excludes the labeled capacities. Depending on whether or not there is a

partial ordering of capacities or outputs attached to graph elements, there

are restrictions on the possible labelings. When there are partial order-

ings, a discovery problem is posed by a collection of labeled graphs.

On these assumptions alone the enterprise of identifying modular

structure from patterns of deficits seems hopeless: even the simplest

graph structures become indistinguishable. An easy illustration is given

Figure 11.5
If ðI1;O1Þ is more demanding (i.e., greater) than all other capacities, profile
P4 is added. If ðI1;O2Þ is more demanding than all other capacities, profile P3

is added. If ðI2;O1Þ is more demanding than all other capacities, profile P2 is
added. If ðI2;O2Þ is more demanding than all other capacities, profile P1 is added.
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by six graphs in figure 11.3. Consider what happens when the discovery

problem under the gating of assumption 5 is expanded by adding to

graph 2 some possible orderings of the computational demands placed

on the internal module V by the four capacities considered in this exam-

ple (see figure 11.5).

Thus, in addition to the profiles previously allowed by graph 2, any

one of the four profiles characteristic of graphs 3 through 6 may appear,

depending on which capacity places the greatest computational demands

on the internal module. If all capacities are equally fragile, the set of

profiles originally associated with graph 2 is obtained; still other profiles

can be obtained if orderings of the internal module of graph 2 are com-

bined with orderings of the directed edges in that graph. Similar things

are true of graphs 3 to 6. Thus, unless one has strong prior knowledge as

to which capacities are the most computationally demanding (for every

module), even simple discovery problems appear hopeless.
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12
Group Data in Cognitive Neuropsychology

12.1 Introduction

According to Alfonso Caramazza and a number of other neuropsycholo-

gists, statistical studies that compare the behavior of different groups of

brain damaged people, or that compare brain damaged groups with

normal groups, are of no value to cognitive neuropsychology and are

apt to introduce erroneous conjectures. The principal trouble with group

studies, the objection goes, is that a group of Broca’s aphasics may be a

mixture of people who have suffered different sorts of damage to their

cognitive systems, and who therefore produce in different ways the con-

figuration of deficits characteristic of the syndrome. At best, they claim,

group studies throw away the valuable information about individuals,

and at worst, they form the basis for utterly erroneous inferences about

the organization of mind.

Disputes of this kind are not entirely new; in different forms they

ran through nineteenth-century psychology, physiology, and scientific

medicine. Claude Bernard ridiculed the use of statistical hypotheses

in physiology, which he regarded as a poor substitute for experimental

identification of exact causes. Joseph Lister rejected the Lancets’ call for

statistics about his successes and failures with antiseptic surgery and

instead succeeded in persuading the medical community through a single

dramatic case. Caramazza and his colleagues conclude—with Bernard,

Lister, Freud, and the nineteenth-century tradition in neuropsychology—

that individuals should be studied and generalizations about the mind

drawn from the patterns they severally exhibit. The nineteenth-century

neuropsychological tradition paid little heed to statistics, but this is the



century of probability, and the revival of cognitive neuropsychology in

our time made a clash with statistical methods almost inevitable.

12.2 An Inexhaustive Review

In one of the most articulate statements of the objection to group data,

Caramazza and McCloskey say that they assume the following:

1. Normal cognitive performance (O) is the result of the activity of a set of
processing components, which together comprise a cognitive system, M.

2. Impaired cognitive performance (O�) reflects the activity of a functionally
lesioned cognitive system, that is Mþ L! O�.

3. Basic research activity in cognitive neuropsychology involves determining, for
any patient (P) whether or not there is an appropriate modification of a cognitive
system—that is a functional lesion—which would account for the observed pat-
tern of impaired cognitive performance. (1988, 520)

Their argument involves a diagram illustrating the (abnormal) out-

comes (O�
i ) of a cognitive test (C) applied to various patients (Pi) who

may be judged to share a ‘‘syndrome.’’ In the equations below, M

represents the normal cognitive organizations, while Li represents the

damage to that structure suffered by patient Pi. Consider now the case

for research with brain-damaged patients. The following equations are a

schematic representation of a group of patients.

P1: Mþ Cþ L1 ! O�
1

P2: Mþ Cþ L2 ! O�
2

P3: Mþ Cþ L3 ! O�
3

Pi: Mþ Cþ Li ! O�
i

Pn: Mþ Cþ Ln ! O�
n

Averaging performance O�
1 through O�

n would be justified if we could assume
that Ms, Cs, and Ls are equivalent in relevant respects for patients P1 through
Pn. We have already expressed our willingness to accept the assumption that Ms
and Cs are equivalent. We cannot do the same, however, for the Ls—these are
not under the control of the experimenter. It is an empirical matter to be decided
by careful analysis whether or not any set of functional lesions are equivalent.
In other words, in our research with brain-damaged patients we begin with
the presumption that these patients have abnormal cognitive systems, and we
may legitimately average their performance if and only if we have demonstrated
empirically that the patients have equivalent functional lesions. (Caramazza and
McCloskey 1988, 522–523)

152 Inference and Explanation in Cognitive Neuropsychology



Most of the critical responses to this and related demonstrations

treat the argument as straightforward but fallacious. A long list of psy-

chologists have offered rebuttals. Some of the responses involve obvious

changes in the point of inquiry—from finding the structure and functions

of cognitive parts to merely collecting data (Kosslyn and Intriligator

1992; Zurif, Swinney, and Fodor 1990), recourse to grand philosophical

claims about the vanity of science (Zurif, Swinney, and Fodor 1990), and

arguments about the difficulties of reliable measurement in individuals

without group data (Bates, McDonald, MacWhinney, and Appelbaum

1991.) However important the latter claims are to methodology, they

are irrelevant responses to the argument Caramazza, McCloskey, and

others give about the unreliability of inference with group data. If both

arguments were sound, the right conclusion would be that there can be

no cognitive neuropsychological science.

Appealing to unspecified principles of philosophy of science rather

than to any details of experimental design, Zurif, Swinney, and Fodor

(1990) have objected that the argument must be unsound, for otherwise

it would invalidate all of experimental psychology. Shallice (1988), who

alone among the commentators gives the issue some statistical structure,

also claims that, were it sound, standard pieces of experimental psy-

chology would be invalid. A common response is to describe some sta-

tistical study that purports to establish something about the structure of

mind. In effect, these examples say, ‘‘Look here, what’s wrong with this

use of group data?’’ For their side, Caramazza, McCloskey, and their

colleagues have in turn attacked these examples.

The irrelevance of most of the rebuttals in defense of group data sug-

gests that the argument against group studies is not very clear after all.

With typical succintness, Martha Farah has reformulated the argument

of Caramazza and McCloskey in a few sentences:

Traditional neuropsychological group study designs . . . are not appropriate for
answering most questions about cognitive processes: These groups will be hetero-
geneous with respect to the impairments that are the subject of study, and we
therefore risk basing our conclusions on average performance profiles that are
artifactual, in that they may not exist in any one case. (1990, 145)

Farah’s point is that if data are aggregated, we cannot identify individual

profiles of the sort discussed in the previous chapter. Whether that is so,

and what it implies, depends on how the data are aggregated. There
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are essentially only two ways to aggregate data on incapacities by syn-

drome: We may, for a sample population with the syndrome, record the

individual profiles and report the frequency of each profile, or in other

terms, the joint frequency of the possible incapacities. Alternatively, we

may record for a sample the frequency of one incapacity, then record for

the same sample (or another sample of subjects with the same syndrome)

the frequency of another, distinct, incapacity, and so on. The second

procedure records the marginal frequency of each incapacity, but does

not tell us how often sets of incapacities occur together. Arguably,

the second sort of aggregation is more typical. One study of a group of

Wernicke aphasics may test them for one incapacity, while other studies

of the same or other groups of Wernicke aphasics test for other inca-

pacities, and the joint frequencies of incapacities are never investigated.

In principle, group studies that report the joint frequency of a set of

possible incapacities tell us exactly as much as do individual studies, and

they admit the same kind of learning-in-the-limit analysis offered in the

previous chapter for individual studies. Group studies that report only

marginal frequencies are more interesting.

12.3 Problems of Discovery from Frequencies with Deterministic

Input/Output Behavior

Consider the problem of identifying normal structure from data that

consists, not of the abnormal profiles observed, but only of the marginal

frequency of observed incapacities. Recall the six graphs of the previous

chapter (figure 12.1). Graph 2 implies that whenever incapacity hI1;O1i

occurs, either incapacity hI1;O2i or incapacity hI2;O1i or both must

occur. Hence, necessarily, the frequency of the first incapacity cannot be

greater than the sum of the frequencies of the later two incapacities

minus the frequency of their joint occurrence. That is,

(1) frð@hI1;O1iÞa frð@hI1;O2ÞiÞ þ frð@hI2;O1iÞ � frð@hI1;O2Þi
&@hI2;O1iÞ

Therefore,

(2) frð@hI1;O1iÞa frð@hI1;O2ÞiÞ þ frð@hI2;O1iÞ

Here the @ before a capacity indicates the absence of that capacity.

Inequality (2) is, of course, vacuous if frð@hI1;O2ÞiÞþ frð@hI2;O1iÞb1.
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Graph 2 implies a constraint of the form (2) for each of the four

capacities, that is:

(3) frð@hI1;O2iÞa frð@hI1;O1ÞiÞ þ frð@hI2;O2iÞ

(4) frð@hI2;O1iÞa frð@hI1;O1ÞiÞ þ frð@hI2;O2iÞ

(5) frð@hI2;O2iÞa frð@hI1;O2ÞiÞ þ frð@hI2;O1iÞ

Each of graphs 3, 4, 5, and 6 will imply a distinct set of three of

these four inequalities ((2) to (5)). For the alternative gating in which a

capacity is intact if any path in the normal graph from input to output

remains intact, all graphs except graph 1 imply all four inequalities.

The upshot is that under the conditions in which data on frequencies

of incapacities are often obtained, there is a good case against trying to

infer features of normal structure from the frequencies of individual

incapacities. In our simple example, any structure is consistent with any

set of marginal frequencies. If one assumes that models that imply

observed inequalities like those above are true, rather than models that

are merely consistent with the inequalities but do not imply them and

one assumes that normal capacities are removed by the destruction of

Figure 12.1

Group Data in Cognitive Neuropsychology 155



any pathway, then if one is lucky in the frequencies with which inca-

pacities occur (and lucky as well that graph 1 is not the true structure),

then five of the hypotheses about normal structure may be distinguished.

If one assumes that normal capacities are only removed by destroying all

pathways, then with the same assumptions and the same luck, one can

infer only that there is an intermediate unobserved node (‘‘V ’’) in the

normal structure. Either way, these are a lot of assumptions and a lot

of luck.

The proposal of Bates et al. (1991) that cognitive neuropsychology

rely on the maximum-likelihood principle might be understood as a

preference for the graphs that entail observed inequalities among the

frequencies over graphs that are merely consistent with the observed

inequalities. So, on finding all four inequalities that graph 2 entails,

we should prefer graph 2 to the other five graphs. The difficulty with

the proposal is that no singular or unlikely event is necessary for other

graphs to be true and accommodate the frequencies. The proposal, in

effect, says that no credence should be given to that possibility.

12.4 Problems of Discovery with Indeterministic Input/Output

Relations

Suppose that classification of responses as normal or abnormal is an

imperfect indication of brain damage. There is a (high) probability that

people without lesions will give the normal response, but also a (small)

probability that people with lesions will give the normal response. The

derivations of the inequalities of the previous section now no longer

hold. Relations of statistical dependence take their place. Thus graph 2

requires that an incapacity in hI1;O1i and the set of incapacities

fhI1;O2i; hI2;O1ig be statistically dependent, since in graph 2, once

more, every lesion that removes a pathway in hI1;O1i removes a path-

way in one of the two capacities in the set. Graph 1 allows the depen-

dency but does not require it.

A typical strategy in group studies is to compare average performance

on a cognitive skill in a group of subjects selected for a combination

of performance deficits (a syndrome) with the average performance of

groups of normals for the same skill. In effect, the strategy is to find

correlations, or statistical dependencies, among incapacities. The strat-
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egy seems to rely on the same principles as those discussed in the

previous sections, but with statistical dependencies in place of strict

inequalities. With luck, the strategy can falsify some of the six graphs;

with the likelihood principle, the strategy can yield a preference for some

graphs over others but cannot establish their truth.

Solutions to the problem of identifying mental structure in this case

depend, then, either on luck or on stronger assumptions connecting

lesions and the probability distribution of the data.

Assume that the probability of a response associated with an output

node depends only on the state of the modules feeding directly into that

output node. Then graphs of mental functioning have a Markov prop-

erty. For example, for graph 2,

prðO1 j I1Þ ¼
X

v

prðO1 jVÞ � prðV j I1Þ

Here the sum is take over all states v of the intermediate node V and we

assume that the inputs are mutually exclusive. A similar condition can

be imposed when inputs and responses are continuous, or when input

values are discretely valued and responses are continuous. In any of

these cases, the problem looks like standard psychometrics for normal

subjects. For example, if the inputs are randomized and it is assumed

that all of the influences are linear with independent noises, each normal

graph and each lesioned subgraph determine characteristic constraints

on the correlations. Graph 2, again, then requires the following:

rI1;O1
rI2;O2

¼ rI1;O2
rI2;O1

Here r is the correlation coefficient for the subscripted pair of variables.

None of the other normal graphs entails this condition, but subgraphs of

graphs 3 to 6 will do so. So graph 2 could be identified from normals.
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13
The Explanatory Power of Lesioning Neural

Nets

13.1 Introduction

In recent years a number of neural-net or ‘‘connectionist’’ models have

been proposed to explain both normal cognitive behavior and the cog-

nitive characteristics of patients who, through brain damage, have lost

some normal capacities. Typically, a network model is developed that

generates some symbolic representation of the normal capacity; sub-

sequently, some set of network nodes, links, or both are removed to

generate a representation of the capacities of a brain-damaged subject

or subjects. The ‘‘lesioned’’ network may or may not be retrained.1

Messaro (1988) objects that for every conceivable behavior, there is

some connectionist model able to explain it, and thus according to a

common methodological perspective, no general connectionist hypothe-

sis is supported by the phenomena. The same objection was raised

against Farah’s (1994) illustrations of lesioned neural-net explanations

of neuropsychological data.

The force of such objections can be given a Bayesian cast. Suppose

it is shown that, with proper adjustment of free parameters, a certain

theory can accommodate any possible empirical phenomena. Let p be

the unique vector of parameter values for T that, with T, is consistent

with and entails E. Then prðE jTÞ ¼ prðp jTÞ, and therefore:

prðT jEÞ ¼ prðE jTÞ � prðTÞ=prðEÞ ¼ prðp jTÞ � prðTÞ=prðEÞ

If, now, prðp jTÞ ¼ prðEÞ, which seems the only plausible prior prob-

ability distribution for parameters in a theory that can accommodate

all possible data, it follows that prðT jEÞ ¼ prðTÞ and no data can

confirm T.



The objection raises a set of methodological questions about neural

nets and cognitive neuropsychology. Neural-net models have a repre-

sentation of behavior as input/output functions, or more generally, as

probability distributions on observable nodes. A damaged-brain neural-

net model is really two models representing two behavior sets, one

normal and one injured, related by the fact that the abnormal model is a

lesioned, and possibly retrained, version of the normal model.

1. Under what conditions is the objection true or false? Think of al-
ternative assumptions about neural nets as defining various classes of
models. Which classes have the property that they are universal, that is,
after lesioning and retraining, they can generate all mathematically pos-
sible pairs of behavioral representations each of which is representable
singly?

2. If a class of models is not universal, how can counterexamples to the
class be recognized?

3. If a model class is not universal, is it possible to learn from empirical
data (for example, by Bayesian inference or some other method) whether
it is true, and if so, under what assumptions is such learning possible?

4. Within which model classes is it possible to falsify, or at least to
falsify in the limit with increasing data, a particular normal hypothesis
by observing abnormal behavior?

5. Correspondingly, within which model classes is it possible to falsify,
or at least to falsify in the limit with increasing data, a particular normal
hypothesis by observing abnormal behavior?

In what follows, I answer some of these questions for certain classes of

neural-net models. The classes for which results can be shown do not

correspond neatly to the divisions among models used in the neural-net

literature, but they are recognizable versions of neural-net assumptions.

I note some difficult open questions and some issues about alternative

reconstructions of neural-net statistics. I will give no proofs, since the

results described below are simply applications of theorems in the statisti-

cal and computer-science literature on directed graphs and probabilities.

13.2 Networks and Graphs

The neural nets we will be concerned with represent behavioral patterns

as probability relations over nodes or vertices that in turn represent

cognitive stimuli or responses. The net determines a probability distri-
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bution over the values of a collection of nodes, each node thought of

as a system that can take varied values. Some of the nodes, and their

values, represent actions or behavior that is measured in some setting,

some experiment. The total probability distribution on all of the nodes

and their possible values is related to the probability relations between

network nodes. Think of the nodes as cognitive parts, and imagine a

node A with several inputs and a single output, as below:

Assume for the time being that that there is no feedback loop from E

to B, C, or D, and that there is no further node that influences both A

and B or both A and C. If all of the links between B, C, and A are

broken and B, C have no direct or indirect links with D, variation in B,

C will produce no variation in A.

A may then vary spontaneously or, through its link with D, because D

varies, but A does not vary because of any connection with B and C. In

this case, observing B or C or both should tell us nothing about A. In

probabilistic terms, the probability of any value of A, given values of B

and C, would just equal the probability of that value of A without

the information about B or C: prðA jB;CÞ ¼ prðAÞ. The absence of any

causal relation between parts is directly reflected in the independence of

probabilities of states of those parts.
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Suppose that in the unbroken condition, B, C, D influence E only

through A and there is no node that influences both E and any of B, C,

or D. Then if A or all the links into A or all the links out of A are bro-

ken, B, C, D will be independent of E: prðE jB;C;DÞ ¼ prðEÞ. What

about the unbroken condition? Since B, C, and D influence E only

through A and nothing influences both E and B, C, or D, if we know the

value of A at any moment, knowing the value of the B, C, D that helped

to produce that value of A will tell us nothing further about the value of

E (at any time). If we do an experiment in which B, C, D are varied

as we wish and then the values of A and of E are measured for each

distinct state imposed on B, C, D, the values of E will be indepen-

dent of the values of B, C, D conditional on the values of A, that is,

prðE jB;C;D;AÞ ¼ prðE jAÞ. E is conditionally independent of B, C, D

given A. Such independencies can be verified in feedforward nets with

any of the activation functions commonly used.

The sorts of neural networks we are discussing can be thought of as

directed graphs whose nodes are variables that can take different values

and have a joint probability distribution on all of their possible values.

The remarks in the previous two paragraphs indicate that not just any

probability distribution can be coupled with just any (acyclic) directed

graph corresponding to a feedforward network. The connectivity struc-

ture of a network implies restrictions, in the form of independence and

conditional-independence requirements, on any probability distribution

associated with the network. Recurrent networks correspond to directed

graphs containing a cycle. I will formalize this idea and address some of

the questions posed above first for feedforward networks and then for

recurrent networks.

13.3 Feedforward Networks as Bayes Nets

Our first problem is to state in a general and precise way the restrictions

on probability given by a network structure in feedforward networks.

We require some preliminary definitions. A directed graph is a pair, V,

E, where E is a set of ordered pairs (directed edges) of members of non-

empty V (vertices). A member of E will be represented as A! B. For an

undirected graph, E is a set of unordered pairs (undirected edges). For a

mixed graph, E may contain both directed and undirected edges. For a
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directed edge A! B, A is the tail of the edge and B is the head; the edge

is out of A and into B, and A is a parent of B and B is a child of A. A

sequence of edges hE1; . . . ;Eni in a graphical object G is an undirected

path if and only if there exists a sequence of vertices hV1; . . . ;Vnþ1i such

that Ei has endpoints Vi and Viþ1. A path U is acyclic if no vertex

appears more than once in the corresponding sequence of vertices. We

will assume that an undirected path is acyclic unless specifically men-

tioned otherwise. A sequence of edges hE1; . . . ;Eni in G is a directed

path D from V1 to Vn if and only if there exists a sequence of ver-

tices hV1; . . . ;Vnþ1i such that for 1 < i < n, there is a directed edge

Vi ! Viþ1 on D. If there is an acyclic directed path from A to B or

B ¼ A, then A is an ancestor of B, and B is a descendant of A. If Z is a

set of variables, A is an ancestor of Z if and only if it is an ancestor of a

member of Z, and similarly for descendants. A directed graph is acyclic

if and only if it contains no directed cyclic paths. A vertex V is a collider

on an undirected path U if and only if U contains a pair of distinct edges

adjacent on the path and into V. Vertices X, Y in a directed graph are

d-separated by a set Z (not containing X or Y ) of vertices if and only

if every undirected path between X, Y either contains a noncollider in

Z or a collider having no descendant in Z. If X, Y are not d-separated

by Z, then they are said to be d-connected, given Z. The notions of

d-separation and d-connection are due to Judea Pearl (1988).

Let us give the connections between nodes in neural networks a

slightly more definite form. Assume that the state of each node X in a

network G may be written as (1):

(1) X ¼ FXðY1; . . . ;Yn; eXÞ

Here the Yi are nodes in the network with edges directed into X—the

parents of X in the network—and eX is not a node variable but a noise

term with positive variance. All noise terms are jointly statistically inde-

pendent, and each noise term eX is jointly independent of all variables

(nodes) that are not descendants of X in G. Further assume that for

some range of values of the error terms, the set of all equations (1) have

a simultaneous solution. Then the equations and the probability distri-

bution on the error terms determine a joint probability distribution on

the nodes of the graph. I will sometimes refer to functions such as FX as

transmission functions.
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I assume that lesioning a network and perhaps retraining may alter the

transmission functions, but also that the compositions of those functions

are determined by the respective topologies of the normal and lesioned

networks. The results that follow can be found in Spirtes et al. 1993,

2001.

Theorem 1 Let G be a directed acyclic graph. Let G* be an extension
of G that contains, for each vertex X in G, a vertex eX (error for X) of
zero indegree and unit outdegree adjacent to X, and let P be a joint
probability distribution of positive variance on the vertices of G*, and
let FX be the transmission function (measurable with respect to P) for
vertex X. For all nodes U, V and all sets Z of nodes in a directed acyclic
graph (whose nodes are related by transmission functions such as (1)), if
P is a joint probability distribution on the noise terms, with positive
variance making all noise terms jointly independent, then U is indepen-
dent of V given Z if Z d-separates U, V.

A subnetwork, or subgraph, of G is any graph obtained by deleting

in G edges or nodes (and edges adjacent to those nodes) or both. The

following result is elementary (Spirtes et al. 1993, 2000):

Theorem 2 If U, V are d-separated by Z in a directed acyclic graph G,
then they are d-separated by Z in every subgraph of G containing them.

These theorems mean that the connectivity of a feedforward net may

imply various independence facts, no matter what the form of the trans-

mission function between nodes—no matter, that is, whether F is addi-

tive, sigmoid, etc. And further, lesioning such a network cannot eliminate

any of these independencies.

13.4 Feedforward Networks without Unobserved Nodes

For this class of network models, deleting any edge or vertex (and

therefore edges into or out of that vertex) results in a network that, how-

ever trained and parameterized, will generate at least one conditional-

independence relation that does not hold in the original network.

Theorem 3 For any acyclic network G faithfully parameterized by
functions such as (1) with independent noises and any network G 0

whose topology is a subgraph of G and that is parameterized by
functions such as (1) with independent noises, an independence or
conditional-independence relation holds for G 0 that does not hold for G.
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I will say that an oracle for independence is a procedure that responds

with the correct answer to any query about the independence or

conditional independence of variables represented by observed nodes in

a network. I will say that an asymptotic oracle is a procedure that

responds to any such query and sample data with answers that converge

in probability to the correct answer as the sample size increases without

bound. For example, for Gaussian-distributed variables, an asymptotic

oracle can be fashioned by systematically reducing the significance level

as sample size increases in tests for vanishing correlations or partial

correlations. Now some of the questions posed in section 13.1 can be

answered:

1–2. Given an oracle, the class is refuted by any normal/damaged pair
of probability distributions in which every independence or conditional-
independence relation in the damaged distribution holds in the normal
distribution.

3. Given a linear ordering of the (noninput and nonoutput) nodes, for
example, a time ordering, the network structure can be uniquely deter-
mined from the facts of independence and conditional independence.

4–5. For any hypothesis (in this class) about normal networks, there is a
probability distribution that, if observed in brain damaged subjects,
would refute the hypotheses.

Question 3 has a more complicated answer, which we will not con-

sider here, when an ordering of the nodes is not known.

13.5 Hidden Nodes

A probability distribution on the nodes of a network may imply inde-

pendence facts that are not guaranteed by the network structure. Extra

independencies will arise, for example, if there are two pathways, one

excitory and one inhibitory, from a node U to a node V whose influences

on V exactly cancel one another. We say a distribution P is faithful to a

directed graph G if there are no extra independencies of this kind, that

is, if every conditional independence P corresponds to a d-separation

fact about G. It has been shown that when the functions F in (1) are

linear, almost all distributions corresponding to a given graph are faith-

ful, or in other terms, that for parameter values giving an unfaithful

distribution, almost any arbitrarily small variation in parameter values
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will result in a faithful distribution (Spirtes et al. 1993, 2000). A parallel

result holds when the functions F are stochastic, the error terms are

eliminated, and each node has a finite set of possible values. Faithfulness

may be viewed as a kind of stability requirement, for the almost any

variation in the parameters of an unfaithful network would eliminate

some probabilistic independence or conditional independence (although

small deviations from independence would only be revealed in large

samples).

A common assumption about explanations is that, other things equal,

explanations that necessitate extra parameters and perfect cancellations

are to be abjured when alternative explanations without these features

are available and are otherwise as good. So far as reliable inference is

concerned, a methodological preference of this kind is an assumption

about how the world is not. So we have:

Assumption 1 The probability distribution associated with the neural
network of the brain is faithful to that network.

From the assumption and the two theorems (and on the assumption

that lesions break edges), it follows immediately that any independencies

or conditional independencies in a probability distribution for a network

representing normal structure must also be present in any probability

distribution obtained by lesioning and retraining the network. Of course,

a lesioned network can exhibit further independencies not exhibited

by the normal network. In one reasonably clear sense, the claim that

lesioning neural nets can simulate any imaginable pairing of normal and

abnormal behavior is false.

13.6 Recurrent Networks

The case of recurrent networks—or, equivalently, networks with feed-

back or networks represented by cyclic directed graphs—is more com-

plicated. We continue to assume that a node is influenced by its parent

nodes according to a function of form (1). Suppose that we make the

following unrealistic assumption:

Assumption 2 All transmission functions F are linear.

In the case of assumption 2, Spirtes (1993, 1995) has shown that

theorem 1 applies to cyclic graphs as well as to acyclic networks. Theo-
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rem 2 applies as well, and Assumption 1 makes as much sense here as

for acyclic graphs. So we again have the result that there are mathe-

matically possible normal behaviors that can be represented by a linear

recurrent network—a cyclic graph—G, and there are similarly conceiv-

able abnormal behaviors that can be represented by a linear recurrent

network H, but for no G and H representing the probability distribu-

tions of the normal and abnormal behaviors can H be obtained by

lesioning G.

In nonlinear recurrent systems, conditional independence does not

neatly correspond to lesioning. But a generalization of theorem 1 shows

that the independence implications of nonlinear cyclic networks can be

obtained by (1) transforming a strongly connected component (a set

of vertices each of which is the ancestor of all others) into a clique, (2)

adding edges from the parent of any vertex in the cycle to all vertices

in the component, (3) applying d-separation (Spirtes 1993, 1995).

Faithfulness and assumption 1 make sense as before, and under those

assumptions we again have the result that there are pairs of patterns of

independence and conditional-independence relations that cannot be

reproduced as a normal net and its lesioned subnet.

13.7 Implications

The application of directed graphical models to this methodological

issue is potentially more than an oddity. Brain events can now be re-

corded by a variety of physical techniques, including evoked-response

potentials, functional magnetic resonance imaging, etc. Characteriza-

tions of the equivalence classes of graphical representations implying the

same conditional-independence relations invite the design of algorithms

that will use the outcomes of tests for conditional independence to help

reconstruct causal sequences of brain events during and after various

cognitive tasks. Algorithms for the acyclic case are already available and

implemented in several programs, for example, the TETRAD programs,

(Scheines et al. 1994). Richardson (1994) has characterized graphical

d-separation equivalence for cyclic graphs, and under the assumption

outlined in previous sections, he has found a feasible algorithm that

uses conditional-independence facts to construct the equivalence class

of cyclic graphs for linearly related variables. While there is no reason
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to think the dependencies among brain events are linearly related,

as in other areas linear approximations may be very useful. And the

d-separation property, while provably necessary in the linear case, re-

mains a reasonable assumption for nonlinear recurrent networks. Still

needed are algorithms that, as in the acyclic cases, are correct and com-

plete even when unmeasured common causes may be influencing two or

more recorded variables, and a theory of equivalence and search for the

nonlinear case.

It may well be, however, that recurrent neural nets are better modeled

by time series than by the finite cyclic graphs conventionally used to

represent them. The relations between the two representations, both

used widely in econometrics, are little understood.2
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Psychometrics and Social Psychology





14
Social Statistics and Genuine Inquiry:

The Case of The Bell Curve

14.1 Introduction

Herrnstein and Murray’s The Bell Curve (1994) put American aca-

demic social scientists—economists, epidemiologists, sociologists, social

psychologists—in an uncomfortable place. The conclusions of the book

are unwelcome, while the methods of the book appear to be the stand-

bys of everyday social science. The unstated problem for many com-

mentators is how to reject the particular conclusions of The Bell Curve

without also rejecting the larger enterprises of statistical social science,

psychometrics, and social psychology. The hard issue is whether the

methods of large parts of social science are bogus, phony, pseudoscien-

tific. They are. The other hard issue is whether there are better methods

attempted to the important tasks of social science. There are.

14.2 Varieties of Pseudoscience

Pseudoscience comes in a lot of varieties, not equally irremediable. The

cold fusion episode represents one sort of pseudoscience, the sort in

which competent, serious scientists step outside of their range of exper-

tise and make unskillful and incompetent use of techniques that others

more expert can and do use reliably to address the same questions.

Astrology is quite another sort of pseudoscience, the sort that has a

technology that no one—not even the greatest astrologer—can reliably

use to gain useful information, because it is premised on radically false

claims. There is a third kind of pseudoscience, of which no exact his-

torical examples come to mind (determinations of atomic weights in

chemistry from 1810 to 1860 or so was something like this), charac-



terized by techniques that work reliably only in rare domains but are

used much more widely, where they succeed, if at all, only by chance.

The first employment of the young Leibniz, later a discoverer of the cal-

culus, illustrates a fourth kind of pseudoscience. Leibniz was charged

with devising a proof that a certain person, and no other, should be

selected for a political office, a proof that Leibniz completed some years

after the selection had been made. In Leibniz’s kind of political science,

methods are designed and applied with the intention of justifying pre-

fixed conclusions. Conclusions drive inquiry rather than inquiry conclu-

sions. Leibniz’s example is only the extreme of a range of cases in which

data are not permitted to speak freely.

Besides all these, there is a kind of metapseudoscience that, without

proof, declares vast terrains of inquiry ever beyond exploration by any

scientific method. J. M. Dumas was the most influential French chemist

of the middle of the nineteenth century—his textbook is still in print in

France—and he ruled that the atomic composition of matter is unknow-

able. If he were master, he wrote, the word atom would be banned

from chemistry because it presupposes something beyond all experience.

Dumas’s view was not that atomism was false or nonsensical; he

knew it was unknowable. At the end of the nineteenth century the great

German physical chemist W. Ostwald held the same opinion. In the

middle of the twentieth century B. F. Skinner ruled that whatever mental

phenomena intervene between stimulus and response are unknowable—

no doubt something goes on in between, but no scientific method could

discover what. Critics rightly pointed out that strict behaviorism was an

elaborate self-deception: as if to defy Descartes’s ‘‘Cogito, ergo sum,’’

John Watson, the first American behaviorist, went so far as to claim that

there are no minds. In practice, behaviorists everywhere attributed inner

states to people and creatures, and used those attributions in the design

and assessment of their experiments. They were forsworn, nonetheless,

from actually thinking about what they were doing, and so from any

chance of doing it better. Karl Pearson’s legacy in statistics is much the

same. Pearson wrote perhaps the most silly influential book of philoso-

phy ever published, The Grammar of Science (1911), in which he main-

tained, repeatedly and without any sense of incongruity, that there is no

material world, the entire world is nothing but subjective sensation, and

sensation is the production of brains. He coupled an acute critical sense
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with a wonderful tolerance for conceptual incoherence, nowhere more

damaging than in his strong convictions about particular causal relations

(the hereditary causes of virtue—Pearson was a keen eugenicist) incon-

gruously coupled with his equally strong conviction that causation is

nothing but correlation, so that in his judgement Yule’s and Spearman’s

searches for structure behind data were vain efforts deserving the scorn

he gave them. The Grammar of Science is still the semiofficial philoso-

phy of some professional statisticians, and the opinions of several con-

temporary eminences seem close to Pearson’s.

Almost unanimously, social scientists criticizing The Bell Curve have

treated the book as a cold fusion episode, in which people who should

have known better used the competent methods of the social sciences—

factor analysis, regression, and logistic regression—incompetently. I have

read any number of perfectly sound criticisms of this sort, and yet I

think they do not refute, but only repress, the terrible thought that The

Bell Curve signals something fundamentally wrong with much of con-

temporary social science: that social-scientific methods are like those

of early nineteenth-century chemists, used widely but reliable only in

special cases, and that the standard of argument in social science is

Leibnizian. Part of what troubles me about the cold-fusion simile is that

parallel criticisms could be, and have been, made of many celebrated

pieces of empirical social science: the arguments that smoking causes

lung cancer were soundly ridiculed by statistically sophisticated critics;

econometric reanalysis of the influence of lead exposure on children’s IQ

failed to find any significant effect when reasonable measurement error

was allowed; the regression model of the American Occupational Struc-

ture, cited by the National Academy of Science as primo social science,

fails almost any statistical test, and so on. What troubles me more is

that the principal methods of causal analysis used in The Bell Curve and

throughout the social sciences are either provably unreliable in the cir-

cumstances in which they are commonly used or are of unknown relia-

bility. But I’m getting ahead of the story.

14.3 Inquiry and Discovery

Philosophical skepticism trades on two maneuvers: a focus on the worst

case and a demand that any method of forming belief find the truth in all

Social Statistics and Genuine Inquiry 173



logically possible circumstances. When action must be taken, skepticism

is in league with obscurantism and know-nothingism and stands in oppo-

sition to forces that are more optimistic about the information that

inquiry can provide to judgement. In the last century the principal tool

of scientific optimism—although not always of social optimism—was

social statistics. Social statistics promised something less than a method

of inquiry that is reliable in every possible circumstance, but something

more than sheer ignorance; it promised methods that, under explicit

and often plausible assumptions, but not in every logically possible cir-

cumstance, converge to the truth, whatever that may be—methods whose

liability to error in the short run can be quantified and measured.

That promise was kept for three important statistical enterprises—ex-

perimental design, hypothesis testing, and parameter estimation—which

for decades were the cynosure of professional statistical study, but it

failed in the important parts of social inquiry that decide which param-

eters to estimate and which hypotheses to test when full experimental

control, or at least randomization of putative causes, is unavailable. To

make those decisions with the same guarantee of conditional reliability

requires methods of search and theoretical inquiries into the reliabilities

of those methods. Social statistics produced and used a variety of pro-

cedures—factor analysis and regression are the principal examples—for

searching for appropriate hypotheses, but no analysis of the conditions

for their reliability. The reasons their reliabilities were insufficiently ana-

lyzed and alternative methods not sought are complex. They have to do

with a positivism that, to this day, grips much of social statistics, and that

holds that causal hypotheses are intrinsically unscientific. Since almost

all hypotheses of social inquiry are causal, this opinion requires a certain

mental flexibility that inquiry into the reliabilities of methods of search

for causal hypotheses would surely complicate. Perhaps an equally im-

portant reason that reliabilities were not sufficiently analyzed is the view

that causal hypotheses are theories, and theories are the special prerog-

ative of experts, not of algorithms. These prejudices combined with a

number of more technical disciplinary issues. For example, search methods

are difficult to associate with any uniform measure of uncertainty anal-

ogous to the standard-error function for a parameter estimator, and

social scientists and social statisticians have come to demand such mea-

sures without reflection. Again, disciplines are usually blind to their his-
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tory, and although causal questions motivated much of the development

of statistics, the paradigmatic tool for mathematical analysis in statistics

is the theory of probability—there is no formal language in the subject

for causal analysis (Pearl 2000). In some measure this state of affairs has

been abetted by philosophy of science, which for generations taught that

there could be no principles, no ‘‘logic,’’ to scientific discovery.

The incoherence between practice and methodological theory would

do little harm were the methods of searching for causal hypotheses that

have developed in social statistics, and that are widely taught to psy-

chologists and social scientists and widely used to justify conclusions,

reliable under conditions that might reasonably be assumed in the vari-

ous domains to which the search methods are applied. They are not.

We are left with enterprises that use the most rigorous possible methods

to estimate parameters in causal models that are often produced by

whimsy, prejudice, demonstrably unreliable search procedures, or, often

without admission, ad hoc search methods that are sometimes reliable,

sometimes not.

There is a remedy. Clear representations by directed graphs of causal

hypotheses, and their statistical implications, in train with rigorous inves-

tigation of search procedures, have been developed in the last decade

in a thinly populated intersection of computer science, statistics, and

philosophy. The empirical results obtained with these methods, including

a number of cases in which the causal predictions were independently

confirmed, have been good, perhaps surprisingly good.

14.4 The Bell Curve

The Bell Curve is distinguished from a thousand and more efforts at

non- or semi- or quasi-experimental social science and social psychology

chiefly by its length, popular style, ambition, and conclusions. The statis-

tical methods of the book are multiple regression, logistic regression, and

factor analysis—techniques routinely taught to psychology and social

science students in almost every graduate program in these subjects and

routinely applied to make causal inferences from data of every kind.

Most social samples are convenience samples, not random samples. The

methods and kinds of data of The Bell Curve are not very different

in character from those in celebrated works of social statistics, for
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example, the regression analyses in Peter Blau and Otis Dudley Duncan’s

The American Occupational Structure or the factor analyses in Melvin

Kohn’s Class and Conformity; many statistical consultants use the same

methods to guide business, military, and government policy on endless

issues. One of the authors of The Bell Curve, Charles Murray, is a

well-trained political scientist, and the other, Richard Herrnstein, was a

prominent psychologist; these authors are not naı̈fs or incompetents.

When Herrnstein and Murray write ‘‘cause,’’ I take them to mean

cause—something that varies in the population and whose variation

produces variation in other variables, something that, if we could inter-

vene and alter, would alter something else we did not directly wiggle.

When they say genes cause IQ scores, I take them to mean that if some-

how we could alter the relevant distribution of genes in the population,

without altering directly anything else—the ‘‘environment’’—then a dif-

ferent distribution of IQ scores would result. That is how Ronald Fisher

(1958) thought of the causal role of genes in producing phenotypes, and

it is how we think of causation in most other contexts. Some statis-

ticians, notably Paul Holland (1986), have claimed, contrary to Fisher,

that it is nonsensical to talk of genes as causes. The thought seems to be

that causation is a relation between individuals or between attributes of

an individual, and I, for one, and you, for another, could not be who

we are if our respective genetic structures were altered. The objection is

wonderfully philosophical, Leibnizian even, though it harks to a differ-

ent aspect of Leibniz’s philosophy than his political proofs, but hardly

persuasive in an age in which we can stick bits of DNA in chromosomes

and reidentify the chromosome before and after the insertion.

There are two parts to the causal argument of The Bell Curve. One

part argues that there is a feature of people, general intelligence, that is

principally responsible for how people perform on IQ tests. The other

part argues that this feature, as measured by IQ tests, causes a lot of

other things. The first part is argued by appeal to factor analysis; the

second part by appeal to regression. Because the hypotheses are causal,

there is no substitute for making the causal claims explicit, and for that I

will use graphical causal models. They explicitly represent important

distinctions that are often lost when the discussion is couched in more

typical formalisms.
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14.5 Factor Analysis

Herrnstein and Murray rely on factor analytic studies to justify the claim

that there is a single unobserved cause—which they, following Charles

Spearman, call g for general intelligence—whose variation in the human

population is responsible for most of the variation in scores on IQ tests. I

want instead to consider the very idea of factor analysis as a reliable

method for discovering the unobserved.

The issue is one of those delicate cases where it is important to say the

right thing for the right reason. Stephen Jay Gould says the right thing

about factor analysis—it is unreliable—but partly for the wrong reasons:

that there exist alternative, distinct causal structures that are ‘‘statisti-

cally equivalent’’ and that entities and processes postulated because they

explained observed correlations should not be ‘‘reified,’’ that is, should

not be taken seriously and literally. At the level of generality they are

given, even if not intended, Gould’s reasons would be the end of science,

including his own. Atoms, molecules, gravitational fields, the orbits of

the planets, even the reality of the past are all beyond the eye and

earshot that led our scientific ancestors, and lead us still, to believe in

them. Physicists and philosophers of science have known for much of

this century that standard physical theories—Newtonian gravitational

theory, for example—admit alternative theories with different entities

that equally save the phenomena. An objection that, when applied even

handedly, indicts factor analysis along with the best of our science leaves

factor analysis in excellent company. The problems of factor analysis

are more particular: the kinds of alternatives factor-analytic procedures

allow, the kinds of restrictions the factor-analytic tradition employs to

eliminate alternatives, and, in consequence, the want of correspondence

between factor-analytic results and actual structures from which data are

generated.

Herrnstein and Murray’s history of factor analysis requires a correc-

tion. They say that Spearman introduced the concept of general intelli-

gence upon noticing that scores on his ‘‘mental’’ tests were all strongly

positively correlated. Not exactly. Spearman developed his argument in

various roughly equivalent forms over half a century,1 but it came down

to the following. The correlations of any four mental test scores i, j, k, l

satisfy three equations:
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rijrkl ¼ rilrjk ¼ rikrjl

Spearman observed that these ‘‘tetrad’’ equations are implied by any

linear structure in which scores on tests are all influenced by a single

common cause, and otherwise sources of variation in test scores are

uncorrelated. The graph is given in figure 14.1, where unobserved fac-

tors appear in circles.

Spearman realized that certain alternative structures would also gen-

erate the tetrad equations, for example, the graph in figure 14.2, but he

thought of such structures as simply finer hypotheses about the structure

of general intelligence, g.

Spearman must have known that structures with still more latent

variables can account for the data. The tetrads, for example, can be

made to vanish by suitable choice of the linear coefficients when there

are two or more common latent factors affecting the measured variables.

Such models might be rejected on the grounds that models that postulate

fewer unobserved causes are more likely to be true than those that save

the same phenomena by postulating more unobserved causes, but that

Figure 14.1

Figure 14.2
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is a very strong assumption. A weaker one would serve the purpose:

factor models assume that observed variables that do not influence one

another are independent, conditional on all of their common causes—

an assumption that is a special case of the Markov Assumption for di-

rected graphical models. The rank constraints used in factor analysis—of

which vanishing tetrads are a special case—are implied by conditional

independencies in factor models, conditional independencies guaranteed

by the topological structure of the graph of the model, no matter what

values the linear coefficients or ‘‘factor loadings’’ may have. To exclude

more latent variables when fewer will do, Spearman needed only to

assume that vanishing tetrads do not depend on the constraints on the

numerical values of the linear coefficients or ‘‘factor loadings,’’ but are

implied by the underlying causal structure. A general version of this

second assumption has been called ‘‘faithfulness.’’ It is known that the

set of values of linear parameters (coefficients and variances) that gener-

ate probability distributions unfaithful to a directed graph is measure

zero in the natural measure on parameter space.

To see the point, compare graphs 1 and 2 in figure 14.3. Let the factor

loadings of g in graphs 1 and 2 be ai, the factor loadings of h in graph 2

be bi, and the factor loadings of f be ci, where the index is over the

measured variable connected to the factor. Then in graph 1 the vanish-

ing tetrad differences follow from the commutativity of multiplication,

that is, that aiajakal ¼ aiakajal. In graph 2, however, the tetrad equation

r12r34 ¼ r13r24 requires that a1a2ða3a4 þ b3b4 þ c3c4Þ ¼ a1a3a2a4, that

is, b3b4 ¼ �c3c4.

Figure 14.3
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In the absence of further substantive assumptions, however, neither

faithfulness nor the much stronger simplicity assumption would lead

from tetrad constraints to Spearman’s latent-common-cause models.

Quite different structures also imply his tetrad equations, for example,

the graph in figure 14.4, where I have omitted the error terms. The

vanishing of all tetrads guarantees that a single common cause suffices; it

doesn’t guarantee that the common cause is unmeasured. Figures 14.1

and 14.4 are distinguished, however, by the vanishing partial correla-

tions they require among measured variables: figure 14.1 requires none;

figure 14.4 requires that all partials on X1 vanish. But figure 14.5 cannot

be distinguished from figure 14.1 by vanishing tetrads and vanishing

partial correlations. So far as I know, Spearman and his followers never

considered these matters.

Spearman’s original mental tests did not prove well correlated with

teachers’ and others’ judgements of intelligence, and they were replaced

by tests in Binet and Simon’s mode. These latter tests had more com-

plicated correlation structures, and typically, all tetrads did not vanish.

Spearman’s followers, notably Karl Holzinger, began the practice of

assuming a single common cause, g, and then introducing additional

common causes as they were needed to account for residual correlation

and prevent the implication of tetrad equations not approximated in the

Figure 14.4

Figure 14.5
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data. Their procedure guaranteed that if most of the correlation among

measures could be attributed to one common cause, it would be, even if

alternative structures and factor loadings were consistent with the data.

Reliability was never an issue.2

Thurstone (1947) said he discovered factor analysis when he realized

the tetrads were merely the determinant of a second-order minor. The

mathematical idea in factor analysis is that the rank of the correlation

matrix gives information about the minimum number of latent common

causes needed to reproduce the matrix. The procedural idea is a method

—the centroid method—of forming from the covariances a particular

linear causal model in which all of the correlations of measured variables

are due to latent common causes. Thurstone realized that the models his

procedure produced were not the only possible linear-, latent-variable

explanations of the data from which he started, and that in fact any

nonsingular linear combination of latent factors obtained by his centroid

method would do as well.

Thurstone’s problem is fairly compared to John Dalton’s. Thurstone

had no means of uniquely determining the latent factor loadings and

relations, and Dalton had no means of determining relative atomic

weights. Both sought to remove or at least reduce underdetermination

with a simplicity principle.3 In graphical terms, Thurstone’s proposal

was to find the linear combination of latents that produces the fewest

total number of directed edges from latent factors to measured variables.

Thurstone thought such a ‘‘simple structure’’ is unique for each correla-

tion matrix, but it is not. More important, why should we think actual

mental structures obey Thurstone’s rule of simplicity any more than

atoms obey Dalton’s? Unlike faithfulness, simple structure has no special

measure-theoretic virtue and no special stability properties.

Thurstone’s factor analysis rapidly displaced Spearman’s methods.

Reliability does not seem to have been one of the reasons. Guilford,

who discusses both in his Psychometric Methods, recommends factor

analysis over tetrad analysis on the grounds of computational tractability.

Explicitly for Thurstone, and implicitly no doubt for many users of his

method and its variants, factor analysis was a procedure for searching

for latent causes. Thurstone has no theoretical means of establishing the

reliability of such searches, which is no doubt motivation for his equiv-

ocations about the aims of factor analysis. Lacking a digital computer,
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he also had no means of testing the reliability of his search procedure on

data produced from known structures. We do.

I understand the serious claims of factor-analytic psychometric studies

to be (1) that there are a number of unmeasured features fixed in each

person but continuously variable from person to person; (2) that these

features have some causal role in the production of responses to ques-

tions on psychometric tests and the function giving the dependence of

measured responses on unmeasured features is the same for all persons;

(3) that variation of these features within the population causes the

variation in response scores that members of the population would give

were the entire population tested; (4) that some of these unmeasured

features cause the production of responses to more than one test item;

(5) that the correlations among test scores that would be found were the

entire population tested is due entirely to those unmeasured features that

influence two or more measured features. Suppose, for the moment, that

we grant these psychometric assumptions. The reliability of factor anal-

ysis does not follow. For factor analysis to find the truth, a number of

other conditions are necessary, including these: (6) the measured vari-

ables must be normally distributed, linear functions of their causes; (7)

measurement of some features must not influence the measures found for

other features, and neither the values of measured features nor the values

of their unmeasured causes should influence whether a person is sam-

pled; (8) two or more latent factors must not perfectly cancel the effects

of one another on measured responses.

These conditions are necessary, but I doubt they are sufficient for any

sort of factor analysis to yield the truth (in sufficiently large samples)

about the number of factors, about what measured variables each latent

factor influences, or about the strengths of those influences. So there are

really two questions. First, when the eight assumptions just mentioned

are granted, how reliable is factor analysis? And second, what credence

should we give to the assumptions?

The rank of the population-correlation matrix gives the minimum

number of variables n such that each measured variable can be written

as a linear function of n variables plus random, independent error. In

general, this is not the number of latent variables—for example, if some

of the measured variables have a linear dependence on other measured

variables. But when there are no measured-variable-to-measured-variable

influences, the rank of the correlation matrix for the population tells us
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the minimum number of latent factors. Even so, on finite samples, factor

analysis may fail either because the true structure does not minimize

the number of latent variables or because of statistical or algorithmic

artifacts. Computer simulation provides the best way I know to come

to some understanding about the reliability of the methods on the

given assumptions. Specify a number of alternative structures as directed

graphs, identifying nodes as latent or measured. Specify means and vari-

ances for each of the exogenous variables (in graphical terms, variables

of zero indegree), and for each directed edge specify a nonzero real

number representing the corresponding linear coefficient. Then, for

each such structure, calculate the correlation matrix of the measured

variables, give the matrix to factor-analysis programs, and count the

error rates of the procedures for the various features that factor analysis

is supposed to reveal. Do the same again using the structures and a

random-number generator to generate sample correlation matrices for

samples of various sizes. I will at least illustrate what I have in mind with

some simple examples of such graphs:
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Each e is a distinct independently distributed variable, and each X

variable has a distinct error term not shown in the graphs. I gave each of

the exogenous variables, including the error terms, a mean of 0 and a

variance of 1; I randomly assigned linear coefficients between 0.5 and

1.5, and generated the covariance matrices. The models, with a (required)

phoney sample size of 32,000, were give to two programs: the default-

principal-factors (4M) program in BMDP and the principal-components

program in EQS. EQS has a default calculation of the number of factors;

BMDP uses a constant in determining the number of factors and suggests

that the constant be set equal to 1 divided by the number of measured

variables, which was done. So far as I can tell, this rule for setting the

constant is about optimal for these cases.

How do these programs do at determining the number of latent com-

mon factors in the structures that generated the covariances? The graphi-

cal representation brings to notice an ambiguity in the question. How

do we count the number of latent common causes of a set of measured

variables? Do we count the number of zero-indegree nonnoise ancestors

of any two or more measured variables, or do we count the number of

parents of any two or more measured variables? The rank theorem

applies to the number of parents only. By the first count, zero-indegree

ancestors, graph 1 has two common causes of the X variables; by the

second count, parents, it has three. Table 14.1 reports the number of

factors reported by the programs and the number of actual latents in

the graphs, according to the two ways of counting.
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The only generalization that seems true is that both programs report

no more factors than there are parents of two or more measured vari-

ables. Only twice was BMDP right about the number of zero-indegree

ancestors, and only twice was it right about the number of parents of

two or more variables. EQS was right four times out of seven about the

number of zero-indegree ancestors, and two times out of seven about the

number of parents.

This example is only an illustration of the sort of thing that would

have to be done far more extensively, and come out far better, to afford

any evidence that, on the eight assumptions described earlier, factor

analysis is reliable in various respects. (The BMDP program I used, for

example, assumes that the latent variables are uncorrelated, and a pro-

cedure that allows ‘‘oblique rotation’’ might do better on the first three

structures. But notice that the BMDP procedure did no better on the

four structures in which the latent factors were uncorrelated than on the

three structures in which the latents were correlated.) Although there are

fragmentary simulation studies of special cases, so far as I can tell,

studies of this sort are rarely done, never described in the documentation

for commercial factor-analysis programs, and an adequate study of this

kind—surveying a reasonable variety of structures, a variety of factor

analysis procedures, and the sundry properties they are supposed to

discover—has never been done at all. The only simulation tests I have

found of the reliability of programs at finding the number of latent

factors fail to make clear what that means, and assume besides that

the factors are uncorrelated. The assumption seems unwarranted. If we

Table 14.1
The number of latent factors identified by BMDP and EQS from simulated data

Graph

1 2 3 4 5 6 7

No. of 0-indegree ancestors of measured
variables

2 1 1 3 3 3 4

No. of parents of measured variables 3 3 3 3 3 3 4

BMDP no. of latents 1 1 3 2 * 3 3

EQS no. of latents 1 1 1 1 3 3 2

The asterisk (*) indicates a case for which BMDP would not converge.
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adopt for the moment the first four basic psychometric assumptions,

then on any of several pictures the distribution of unmeasured factors

should be correlated. Suppose, for example, that the factors have genetic

causes that vary from person to person; there is no reason to think the

expression of genes for various factors are independently distributed.

Suppose, again, that the factors are measures of the functioning or

capacities of localized and physically linked modules. Then we should

expect that how well one module works may depend on, and in turn

influence, how well other modules linked to it work. Even so, a great

number, perhaps the majority, of factor-analytic studies assume that the

factors are uncorrelated; I cannot think of any reason for this assump-

tion except, if wishes are sometimes reasons, the wish that it be so.

What credence should we give to the eight assumptions identified

earlier? The eighth—that two or more latent factors must not perfectly

cancel the effects of one another on measured responses—seems quite

harmless and common to almost all good sciences; one can find its an-

cestor in Isaac Newton’s Rules of Reasoning. The seventh—essentially,

that there is no sample-selection bias—could be warranted by random

sampling from the population, although I think that is rarely done. The

sixth—normality and linearity—is harder to justify, but at least indirect

evidence could be obtained from the marginal distributions of the

measured variables and the appearance of constraints on the correlation

matrix characteristic of linear dependencies, although tests for such con-

straints seem rarely to be done. In any case, the other issues could

be repeated for nonlinear factor analysis. The fifth assumption—that

all correlations are due to unmeasured common causes—is known to be

false of various psychometric and sociometric instruments, in which the

responses given to earlier questions influence the responses given to later

questions. The fourth—that other features of persons influence their

scores on psychometric tests—is uncontroversial. The third—that the

function giving the dependence of manifest responses on hidden features

is the same for all persons—is without any foundation, but if the depen-

dencies were actually linear, independently varying coefficients for differ-

ent persons would not change the constraints that factor models impose

on large-sample correlation matrices. The best evidence for the second

assumption—that the features of persons that produce their responses to

psychometric test questions are fixed, constant, within each person—is
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the high test-retest correlations of IQ scores, but that argument meets

a number of contrary considerations, for example, the dependence of

scores on teachable fluency in the language in which the test is given.

There is another quite different consideration to which I give consid-

erable weight. I have found very little speculation in the psychometric

literature about the mechanisms by which unmeasured features or fac-

tors are thought to bring about measured responses, and none that

connects psychometric factors with the decomposition of abilities that

cognitive neuropsychology began to reveal at about the same time psy-

chometrics was conceived. Neither Spearman nor later psychometricians,

so far as I know, thought of the factors as modular capacities, localized

in specific tissues, nor did they connect them with distributed aspects of

specific brain functions. (It may be that Spearman thought of his latent g

more the way we think of virtues of character than the way we think of

causes.) One of the early psychometricians, Godfrey Thomson, thought

of the brain as a more or less homogeneous neural net, and argued that

different cognitive tasks require more or less neural activity according to

their difficulty. Thomson thought this picture accounted not only for the

correlations of test scores but also for the ‘‘hierarchies’’ of correlations

that were the basis of Spearman’s argument for ‘‘general intelligence.’’

The picture, as well as other considerations, led Thomson to reject all

the assumptions I have listed. I think a more compelling reason to reject

them is the failure of psychometrics to produce predictive (rather than

post-hoc) meshes with an ever more elaborate understanding of the

components of normal capacities. Psychometrics did nothing to predict

the varieties of dyslexias, aphasia, agnosias, and other cognitive ills that

can result from brain damage.

Drawing conclusions about factor analysis is a dangerous business

because the literature is too large for anyone with any other interest in

life to survey. For all I know, asymptotic reliability proofs may exist, and

excellent and thorough simulation studies may have been done, but I

have not found much that addresses the central questions. To all appear-

ances, astrology is better tested than factor analysis. With a very few

exceptions, what I find instead are very modest simulation studies of

special cases, statistical studies of the properties of estimators—studies

that presuppose exactly what is in doubt, the credibility of factor models
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—and introductory discussions that raise the issue of reliability only

to evade it. There is some relevant theoretical work. Representing the

most recent of a sequence of papers by several authors focused on when

there exists a single common cause of observed measures, Junker and

Ellis (1997) have provided necessary and sufficient conditions for the

existence of a unidimensional latent-variable model of any real-valued

measures. Spirtes et al. (1993, 2001) have shown that if the investigator

provides a correct, initial division of variables into disjoint clusters such

that the members of each cluster share at least a distinct latent common

cause, then under certain assumptions, including linearity, unidimen-

sional measurement models may be found for each latent, if it exists, and

from such models and the data, some causal relations among latents may

reliably be found.

Stephen Jay Gould (in Fraser 1995) claims that one of the essential

premises of The Bell Curve is that there is a single common factor g re-

sponsible for performance on intelligence tests. No doubt Herrnstein and

Murray make that assumption, but it is largely inessential to their argu-

ment. If IQ scores measured a pastiche of substantially heritable features

that doom people to misery, the argument of The Bell Curve would be

much the same. So the more important questions for assessing The Bell

Curve concern causal relations between whatever it is IQ measures and

various social outcomes. This brings us to regression, which, with its

sibling, analysis of variance, plays a larger role than factor analysis in

contemporary social statistics.

14.6 Regression and Discovery

Herrnstein and Murray begin the second part of their book (1994) with

a description of some of their methods, and what the methods are used

to do. I ask the reader to keep in mind their account from pages 72–75. I

have numbered their paragraphs for subsequent reference:

(1) The basic tool for multivariate analysis in the social sciences is known as
regression analysis. The many forms of regression analysis have a common
structure. There is a result to explain, the dependent variable. There are some
things that might be the causes, the independent variables. Regression analysis
tells how much each cause actually affects the result, taking the role of all the
other hypothesized causes into account—an enormously useful thing for a
statistical procedure to do, hence its widespread use.
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(2) In most of the chapters of Part II, we will be looking at a variety of social
behaviors, ranging from crime to childbearing to unemployment to citizenship.
In each instance, we will look first at the direct relationship of cognitive ability
to that behavior. After observing a statistical connection, the next question to
come to mind is, What else might be another source of the relationship?

(3) In the case of IQ the obvious answer is socioeconomic status. . . . Our
measure of SES is an index combining indicators of parental education, income,
and occupational prestige. . . . Our basic procedure has been to run regression
analyses in which the independent variables include IQ and parental SES. The
result is a statement of the form ‘‘Here is the relationship of IQ to social
behavior X after the effects of socioeconomic background have been extracted,’’
or vice versa.

The causal picture Herrnstein and Murray seem to have in mind is

that in figure 14.6, where the features in circles or ovals are unobserved,

and the lines without arrows indicate statistical associations that may be

due to influences in one direction or the other, or to unobserved com-

mon causes, or both. Z varies from case to case; often it is age.

If this were the correct causal story, then if very little of the variation

in IQ scores between individuals were due to V, one could estimate the

influence of cognitive ability on X (the behavior under consideration) by

the two methods Herrnstein and Murray use: multiple regression of X

on IQ and SES (socioeconomic status) index when the dependencies are

all linear, and by logistic regression on those variables under other dis-

tribution assumptions. By ‘‘could estimate’’ I mean that the expected

values of estimates of parameters would equal their true values.

Figure 14.6
Note that undirected edges represent correlations whose causal mechanism is not
specified.
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I will sometimes simplify the diagram in figure 14.6 as Herrnstein and

Murray simplify their discussion (see figure 14.7). Under the assump-

tions just mentioned, if estimates of the influence of IQ score based on

the causal model of figure 14.6 are correct, so are estimates of IQ based

on the simpler surrogate structure of figure 14.7.

Now the standard objection to assuming something like the structure

of figure 14.6 or figure 14.7 is put in terms of ‘‘correlated error.’’ The

objection is that in the corresponding regression equation, the error term

U for X may be correlated with any of IQ, SES, and Z, that such cor-

relation cannot be detected from the data, and that when it exists, the

regression estimates of the influence of cognitive ability on X will be

incorrect. Unless correlations arise by sheer chance, the correlation of U

and IQ, say, will typically be due to some common causal pathway

connecting IQ scores with whatever features are disguised by the vari-

able U. A ‘‘correlated error’’ between a regressor such as IQ and the

outcome variable X is typically the manifestation of some unknown

cause or causes influencing both variables.4

Suppose that something else, denoted by W—mother’s character, at-

tention to small children, the number of siblings, the place in birth order,

the presence of two parents, a scholarly tradition, a strong parental

positive attitude towards learning, where (rather than how long) parents

went to school, whatever—influences both cognitive ability and X. Then

the regression estimates of the influence of cognitive ability on X based

on the model in figure 14.6 will compound that influence with the asso-

ciation between cognitive ability and X produced by W (figure 14.8, or

more briefly, figure 14.9). Here is how Herrnstein and Murray respond:

(4) We can already hear critics saying, ‘‘If only they had added this other
variable to the analysis, they would have seen that intelligence has nothing to

Figure 14.7
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do with X.’’ A major part of our analysis accordingly has been to anticipate
what other variables might be invoked and seeing if they do in fact attenuate
the relationship of IQ to any given social behavior.

This sounds quite sensible, until one notes that none of the possible

confounding variables suggested above, nor many others that can easily

be imagined, are considered in The Bell Curve, and until one reads the

following:

(5) At this point, however, statistical analysis can become a bottomless pit. . . .
Our principle was to explore additional dynamics where there was another
factor that was not only conceivably important but for clear logical reasons
might be important because of dynamics having little or nothing to do with IQ.
This last proviso is crucial, for one of the common misuses of regression
analysis is to introduce an additional variable that in reality is mostly another
expression of variables that are already in the equation.

There is a legitimate concern in this remark, which does not, however,

excuse the neglect: if W is an effect of cognitive ability, then including W

among the regressors will omit the mechanism that involves W and will

Figure 14.8

Figure 14.9
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lead to an incorrect estimate of the overall influence of cognitive ability

on X (figure 14.10).

Contrary to Herrnstein and Murray’s remark in paragraph (5), how-

ever, it is exactly the presence of other variables that are common causes

of X and of cognitive ability or IQ, and therefore ‘‘having to do’’ with

cognitive ability or IQ, that lead to the ‘‘correlated errors’’ problem in

estimating the influence of cognitive ability on X. Omitting such vari-

ables, if they exist, ensures that the regression estimates of effects are

wrong. The surprising fact is that the regression estimates may very well

be wrong even if such variables are included in the regression. That

requires some explanation.

The authors of The Bell Curve have been criticized for omitting the

subjects’ educations from their set of regressors, an omission about

which I will have more to say later. But their analysis would have been

no better for including education. Suppose that the true causal structure

is as in figure 14.10, with W representing years of education. Then

multiple regression with education included would mistake the influence

of cognitive ability on X, because it would leave out all pathways from

cognitive ability to X that pass through W. At least, one might say, a

regression that includes education would tell us how much cognitive

ability influences X other than through mechanisms involving education,

SES, and Z. But even that is not so. If there are additional unmeasured

common causes of education and X, the error in the estimate of the

separate effect of cognitive ability on X might be positive or negative.

There are circumstances, arguably quite common circumstances, in which

Figure 14.10
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assumptions about distribution families (normal, etc.) are satisfied, and

there is no ‘‘correlated error’’ between an outcome variable X and a

regressor such as cognitive ability—that is, there is no unmeasured

common cause of X and the regressor—but regression nonetheless mis-

takes the influence of the regressor on the outcome.

Suppose that the actual structure is as in figure 14.11. Notice that

there is no unmeasured common cause of IQ and X, no correlation of

the error term with IQ in the regression equation for X, but the error

term in the regression equation is correlated with another regressor, SES.

In this case, multiple regression of X on IQ, SES, and Z will give an

incorrect estimate of the influence of IQ on X. The error of the estimate

can be arbitrarily large and either positive or negative, depending on

the values of the parameters associated with the unmeasured R and W

variables. For all we know, the subjects in the data of Herrnstein and

Murray’s study are rich in such Rs and Ws.

Critics have noted that the SES index Herrnstein and Murray use is

rather lame, but the criticism is largely beside the point. Suppose that

they had used a better index, compounded of more measured features

of the subjects and their families. The variables in SES indices may be

strongly correlated, but they typically have no single common cause—

those Herrnstein and Murray use demonstrably do not.5 So a better

index would add a lot of causally disparate measures together. Wouldn’t

that make it all the more likely that there are unmeasured variables,

structurally like W in figure 14.10, influencing X and also influencing

one or more of the components of SES? I think so.

Figure 14.11
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Adding extra variables to their study would not necessarily improve

the accuracy of their estimates and might make them much worse, but

leaving extra variables out may result in terribly inaccurate estimates.

Herrnstein and Murray remark that an obvious additional variable to

control for is education, but they do not, first because years of education

are caused by both SES and IQ, second because the effect of education

on other variables is not linear and depends on whether certain mile-

stones, graduations, have been passed, third because the correlation of

education with SES and IQ makes for unstable estimates of regression

coefficients, and fourth for the following reason:

(6) To take education’s regression coefficient seriously tacitly assumes that
education and intelligence could vary independently and produce similar results.
No one can believe this to be true in general: indisputably giving nineteen years
of education to a person with an IQ of 75 is not going to have the same impact
on life as it would for a person with an IQ of I25.

(7) Our solution to this situation is to report the role of cognitive ability for
two sub populations of the NLSY that each have the same level of education: a
high school diploma, no more and no less in one group; a bachelor’s degree, no
more and no less, in the other. This is a simple, but we believe reasonable, way
of bounding the degree to which cognitive ability makes a difference
independent of education.

The third reason is unconvincing, since SES and IQ are already

strongly correlated. The last reason, in paragraph (6), is unconvincing

as a ground for omitting education from the analysis, but correct in

supposing that there is an interaction. The interesting thing, however, is

the alternative procedure suggested in paragraph (7), since it reveals a

problem related to the problem of conditional correlated error that we

have just discussed.

Herrnstein and Murray make it plain—they even draw the graph—

that they have in mind a particular causal picture (see figure 14.12). If

this is the correct structure, then if there is no interaction between IQ

Figure 14.12

Social Statistics and Genuine Inquiry 195



and education in their influence on X, one way to estimate the direct

effect of IQ on X is to condition on any value of education. The point of

measuring IQ and X for subjects with two values of education, I take it,

is to give us some idea of how much the interaction makes this estimate

unstable.

Here is the problem: What if figure 14.12 is not the correct causal

structure? What if, instead, the correct causal structure is figure 14.13,

whatever U may be. In that case, the association between IQ and X

conditional on a value of education will not be a measure of the direct

influence of IQ on X, and the error can be as large as you please, posi-

tive or negative, depending on U and the parameters associated with it.

This sort of problem, sample selection bias, can occur whenever

membership in a sample is influenced by variables whose influence on

one another is under investigation. It may happen, for example, when

using a sample of hospitalized patients, or when using college students as

subjects in psychological experiments, or when subjects in a longitudinal

study are lost, or simply when using a subsample determined by values

of a variable with complex causal relations, as Herrnstein and Murray

do. The same error can be found in other works in social psychology, for

example, in Helgeson et al. 1999.

14.7 The Problems of Causal Inference

Herrnstein and Murray use the tools that their professions, and social

statistics generally, gave to them. The tools are incompetent for the use

Herrnstein and Murray put them to, but what else were they to do?

What else can anyone do who is trying to understand the causal struc-

ture at work in processes that cannot be controlled experimentally?

Consider for a moment some of the difficulties in the problem of

trying to infer causation from observed correlations:

Figure 14.13
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1. Little may actually be known beforehand about the causal relations,
or absence of causal relations, among variables. In typical social studies,
time order often provides the only reliable information—negative infor-
mation, at that—about cause and effect.

2. Observed associations may be due to unmeasured or unrecorded
common causes.

3. There may be a vast number of alternative possible hypotheses—the
larger the number of measured variables, the more astronomical the set
of possible causal structures. When latent variables are allowed, the num-
ber of possible causal structures is literally infinite.

4. Several or even a great many hypothetical structures may equally
account for the same correlations, no matter how large the sample, and
in finite samples a great many models may fit the data quite well.

5. The sample may be unrepresentative of a larger population because
membership in the sample is influenced by some of the very features
whose causal relations are the object of study.

6. The sample may be unrepresentative by chance.

7. Values for sundry variables may be unrecorded for some units in the
sample.

8. The joint distribution of variables may not be well approximated by
any of the familiar distributions of statistics. In particular, there may
be combinations of continuous variables and variables that take only a
finite set of values.

9. Relations among variables may be complicated by feedback, as be-
tween education and IQ.

Many of the same difficulties beset causal inference in experimental

contexts, even though experimental design aims to remove the possibility

of confounding common causes of treatment and to maximize prior

knowledge of the causal structure of the experimental system. Psycho-

logical experiments often concern unobserved and uncontrolled features;

clinical experiments sometimes try to investigate multiple treatments and

multiple outcomes simultaneously, with entirely parallel problems about

confounding and feedback, especially in longitudinal studies. Sample

selection and attrition in experiments, especially experiments with

humans, can create selection bias as in (5) and can result in missing

values. The distribution of treatments in experiments is controlled by the

experimenter, but the distribution of outcomes, which may conform

to no familiar pattern, is not. And subjects may not conform to an experi-

mental regimen.
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We can imagine a black box that addresses these problems. Data and

relevant beliefs are put in, causal information comes out, and inside the

box the problems just listed are taken account of. The box is imaginary,

of course. There are no methods available that more or less automati-

cally address all of these problems. There is no computer program that

will take the data and prior knowledge, automatically take account of

missing values, distributions, possible selection bias, possible feedback,

possible latent variables, and reliably and informatively give back the

possible causal explanations that produce good approximations to the

data, information about error bounds, or posterior probabilities. But we

can think of the box as an ideal, not only for inference but also for

forcing practitioners to cleanly separate the claims they make before

examining the data from the claims they believe are warranted by the

data. How close do the methods used by Herrnstein and Murray and

other social scientists come to the ideal box? And how close could they

come were they to use available, if nonstandard, methods?

Let us leave aside some of these problems and suppose that our

samples are good and distributed nicely (normally, say), that there are

no missing values, no feedback, and no sample selection bias. Consider

for a moment in this context using regression to decide a simpler ques-

tion than estimating the influence of cognitive ability on X from ideal

data on X, cognitive ability, and a definite set of other regressors: does

cognitive ability have any influence at all on X? Multiple regression will

lead to a negative answer when the partial regression coefficient for

cognitive ability is not significantly different from zero. Under a normal

distribution, this is essentially an assumption connecting the absence

of causal influence with a conditional-independence fact, namely that

cognitive ability does not (directly) influence X if and only if cognitive

ability and X are independent conditional on the set of all of the other

regressors.

We have observed in the previous section that the principle in the

italicized phrase is false, in fact intensely false. Indeed, without a priori

causal knowledge, there is no way to get reliable causal information of

any sort from multiple regression. If one should be so fortunate as to

know independently of the data analysis that there are no common

causes of any of the regressors and the outcome variable and that the

outcome variable is not a cause of any of the regressors, then under
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appropriate distribution assumptions, regression gives the right answer.

Otherwise not.

Regression does a funny thing: to evaluate the influence of one regres-

sor on X, it conditions on all other regressors, but not on any proper

subsets of other regressors. Stepwise regression procedures typically do

investigate the dependence of a regressor and X conditional on various

subsets of other regressors, but they do so in completely ad hoc ways,

with no demonstrable connection between the procedures and getting

to the truth about causal structure. Regression and stepwise regression

reflect intuitions from experimental design and elsewhere that absence

of causation has something to do with conditional independence. They

simply don’t get the something right. The correct relationship is far more

complicated.

Fifteen years ago Terry Speed and his student Harry Kiiveri (Kiiveri

and Speed 1982) introduced a correct relation, which, with some his-

torical inaccuracy, they called a Markov condition. Speed has since testi-

fied to the correctness of the principle in the most infamous trial of

our time. The Markov Assumption was discussed in detail in chapter 3,

but I will rehearse it once more for readers who came in late. Under-

standing the condition requires that one variable, Y, say, is a direct cause

of another, X, relative to a set of variables D to which X and Y both

belong. Y is a direct cause of X relative to D if there is a causal pathway

from Y to X that does not contain any other variable in D—in other

words, there is no set of variables in D such that if we were to intervene

to fix values for variables in that set, variations in Y would no longer

influence X. We need one further preliminary definition: I will say that

any set D of variables is causally sufficient, provided that every direct

common cause of two variables in D is in D.

Causal Markov Assumption For any variable X and any set of vari-
ables Z that are not effects of X (and that do not include X as a member)
and any causally sufficient set D of variables including Z and having X
as a member, X is independent of Z conditional on the set of members of
D that are direct causes of X—the set of parents of X in the directed
graph of causal relations.

When true, the Markov condition gives a sufficient causal condition

for conditional independence. The converse condition gives necessity:
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Faithfulness Condition All conditional independencies in a causal
system result from the Causal Markov condition.

The scope of the Markov condition is occasionally misunderstood by

philosophical commentators, and a result from chapters 3 and 5 bears

repeating:

Need for Markov Assumption As a formal principle about directed
graphs and probability distributions, the Markov Assumption is neces-
sary if exogenous variables (including errors or noises) are independent
and each variable is a deterministic function of its parents (including
among parents, any errors or noises). The form of the functional depen-
dence is irrelevant.

In a system whose causal structure is represented by a direct acyclic

graph and that generates a probability distribution meeting the Markov

Assumption for that graph, the faithfulness assumption will fail if

two variables are connected by two or more causal pathways (either

from one variable to another or from a third variable to both) that

exactly cancel one another, or if some of the relations among variables

(excluding error terms) are deterministic. In practice, both the Markov

and faithfulness assumptions are consistent with almost every causal

model in the social-scientific literature, nonlinear models included, that

does not purport to represent feedback or reciprocal influence.

We can use these two conditions to discover what the conditional

independencies implied by the structures that Herrnstein and Murray

postulate could possibly tell us, by any method whatsoever, about those

structures. That is, we will suppose that their causal story is correct and

ask whether they could reasonably infer it is correct from data that

nicely agrees with it. To do so, we need some simple representations of

ignorance about causal structures. Here is a convenient code:

X �—� Y X is a cause of Y, or Y is a cause of Y, or there is a common
unmeasured cause of X and of Y, or one of X, Y causes the other and
there is also an unmeasured common cause.

X ��!Y X is a cause of Y, or there is a common unmeasured cause of
X and of Y, or both.

X ! Y There is a common unmeasured cause of X and of Y, but
neither X nor Y influences the other.

With these conventions, here is what the conditional independencies

implied by the causal hypothesis of figure 14.7 tell us about causal rela-
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tions: nothing at all about whether IQ score is a cause of X (figure

14.14).

Suppose that common sense tells us that X is not a cause of the

other variables. That doesn’t help much. The result is figure 14.15. We

still can’t tell whether IQ has any influence at all on X. For all we know

from the conditional independencies in the data and prior knowledge,

the association between IQ scores and X is produced entirely by the

variation of unmeasured factors that influence both IQ score and X. The

sizes and signs of the observed covariances in this case would give no

other extra information about the actual causal structure.

The Markov and faithfulness assumptions also entail that there are

possible causal relations that we can determine from observed associa-

tions, provided we have none of the problems (5) through (9) listed

above. For example, suppose that we have measures of A, B, C and

D, and that their causal relations are actually as in figure 14.16. Then

according to the two assumptions, we can determine from independence

facts the causal structure in figure 14.17, and so that C is actually a

cause of D. Moreover, there is a certain robustness to the determination,

for if we were to decide that the independencies corresponding to figure

14.16 obtain when in fact they do not quite because of a small common

cause of C and D, and if the association of A and C or B and C is large,

Figure 14.14

Figure 14.15
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then (in the linear case, at any rate) the estimate of the influence of C on

D obtained using the result in figure 14.17 will be a good approximation

to the truth. There is here a general moral—almost never observed—

about the kind of data one should seek if causal relations are to be

inferred from observed data.

The Markov and faithfulness assumptions can just as well give us

information about the presence of unmeasured common causes. Con-

sider the imaginary causal structure in figure 14.18. The Markov and

faithfulness conditions imply that the independence and conditional-

independence relations associated with the structure in figure 14.18

uniquely determine the information in figure 14.19—figure 14.19 is

what can be determined in principle from data using the correlations and

partial correlations.

These remarks would be of little practical use if in any application one

were required to prove some intricate theorem, distinct for almost every

case, characterizing the structures consistent with prior knowledge and

the patterns of independence and conditional independence found in the

data. No such effort is necessary. There are general algorithms,7 freely

available in the TETRAD III program, that do the computations for any

case. The procedures are rarely used, certainly not by Herrnstein and

Murray or their critics. Were they used, social scientists would at least be

forced to be entirely explicit about the causal assumptions that they have

forced on their data analysis.

In keeping with social-scientific tradition, Herrnstein and Murray give

endless pages of statistical conclusions, but their data are all but hidden;

Figure 14.16

Figure 14.17
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Figure 14.18

Figure 14.19
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one has to go to the original sources and know the sample they selected

from it. Although Herrnstein and Murray report any number of linear

regressions with results determined entirely by a simple covariance matrix,

they give only one such matrix in the entire book, and no count data.

Even so, we have excellent reason to think that scientific searches applied

to the data they use would turn up structures such as those in figure

14.18, structures permitting no causal inferences of the kind Murray and

Herrnstein wish to draw.

14.8 Projects and Attitudes

There may never be an inference box that addresses all of the problems

of causal inference from observational data, but there can certainly be

boxes that can help social and behavioral scientists do better than they

will do armed only with their preconceptions, factor analysis, and regres-

sion. The more model specification is automated and data-driven and

the more substantive prior assumptions are mechanically separated from

inferences made from the data, the more algorithms in the box give out

only information justified by explicit assumptions and the less likely is

the kind of work The Bell Curve represents.
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Notes

Chapter 2

1. As Susan Sterrett kindly pointed out to me, along with the differences in
Turing’s imitation games.

2. A Madelyn Rose joke: What two Presidents were named Rose? (Answer:
Teddy and Franklin.)

3. Madelyn’s explanation: Venus moves faster than Earth, which moves faster
than Mars. Why? Because Venus is closer to the Sun than Earth, and Earth is
closer than Mars. Planets closer to the Sun are hotter than planets farther from
the Sun. Hotter things move faster than cold things.

4. See Kelly, The Logic of Reliable Inquiry (1996).

5. I do not mean to suggest that only Gopnik and Meltzoff present them. Related
ideas may be found, for example, in works by Susan Carey, Henry Wellman,
Annette Karmilov-Smith, and others, but I think they are nowhere put so force-
fully or generally as in Gopnik and Meltzoff’s book (1997).

6. There is a nice historical circle to the theory theory. Both Thomas Kuhn and
Jean Piaget have obviously influenced Gopnik and Meltzoff. In the preface to
The Structure of Scientific Revolutions, Kuhn cites Piaget (and The Child’s Con-
ception of Causality, in particular) as one of his sources of inspiration, and some
of his most famous terminology is derived from Piaget. Now the theory theorists
want to take Kuhn’s philosophy of science back to development, but closer to
Enlightenment conceptions of rationality.

7. This is equivalent in many contexts to a standard Bayesian criterion of reli-
able convergence to the truth, and is the criterion used in many mathematical
studies of language learning.

8. For details and references, see Kelly, The Logic of Reliable Inquiry (1996).

9. See Kelly, The Logic of Reliable Inquiry (1996). Reliability analysis in learn-
ing theory with conceptual changes seems a formal solution to the problem of
giving a rational account of scientific progress consistent with Kuhn’s conceptual
relativism. Kuhn spent his years after the publication of The Structure of Scien-
tific Revolutions (1970) searching, in vain, for such a solution.



Chapter 3

1. The alert reader will have noted that, in the toy train example, if both the
engine and the caboose are separately pulled, there is no directed, acyclic graphi-
cal representation of the causal relations.

2. Randomizing treatments in a sample does not remove the influence of other
factors on any particular member of the sample. Rather, it reduces the chance
that other factors produce an average difference between treated and control
subsamples.

3. If x influences y through two or more distinct mechanisms, the influences may
cancel, which would make x and y independent but causally connected.

4. The remark requires technical qualification in view of unpublished work by
Jamie Robins, Richard Scheines, Peter Spirtes, and Larry Wasserman. If a set of
variables is causally sufficient and a time order is known, there are search pro-
cedures that uniformly converge to the true structure as the sample size increases
without bound—meaning that one could construct a kind of confidence interval
for the estimated structure. Absent those assumptions, the procedures can only
converge nonuniformly—meaning that eventually any particular alternative to
the truth can be rendered arbitrarily improbable, but there will always exist, for
any finite sample, alternatives that are not improbable. See chapter 12 of Spirtes
et al. 2000 for details.

Chapter 7

1. Equation (1) has a long history. The first occurrence I know of is in a paper in
the 1850s by the great nineteenth-century mathematician Arthur Cayley,
responding to a problem about causal inference posed by George Boole. Cayley
assumes that U and C are independent. Boole objected to Cayley’s solution to his
problem, but the solution, and equation (3), were defended by Richard Dede-
kind. Cayley’s argument for (3) was quite different from Cheng’s. (For a discus-
sion, references, and the relevant passages from Cayley, Dedekind, and Boole,
see Hailperin 1986.) Equation (9) was introduced in epidemiology in the middle
of the last century (Sheps 1958).

Chapter 9

1. This chapter was motivated by enlightening discussions with Alison Gopnik
and Joshua Tenenbaum. The analysis presented here developed from subsequent
discussions with Peter Spirtes.

Chapter 10

1. I believe that Jerry Fodor’s The Modularity of Mind misread the history as
about ‘‘modules’’ that are ‘‘informationally encapsulated’’—that is, the func-
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tioning of modules is unaffected by ‘‘beliefs.’’ Part of Fodor’s motivation for this
vague condition seems to have been to provide a psychological basis for refuting
Kuhnian perceptual relativism, but I think it has no real basis in current or his-
torical neuropsychological practice. About beliefs and cognitive parts, there seem
to me only two alternatives: either the property of having a belief that p counts
across physical realizations, and so states of cognitive parts, and hence cannot be
an influence on the state of a cognitive part, or else whatever physics corresponds
to beliefs could very well be input to a cognitive part and influence its response
to other inputs. Neuropsychologists who have adopted Fodor’s terminology
misdescribe their own practice.

Chapter 11

1. Neuropsychology has generally made comparatively little use of response
times, and I will ignore them here. But see the excellent study by Luce (1986) for a
discussion of response-time problems related to those considered in this chapter.

Chapter 13

1. For examples, see McClelland and Rumelhart 1986; Cohen and Servan-
Schreiber 1989; Levine 1986; Bapi and Levine 1990; Levine and Prueitt 1989;
Carpenter and Grossberg 1987; Cohen et al., in press; Hinton and Shallice 1991;
Mozer and Behrmann 1990; Patterson et al. 1990.

2. This chapter is joint work with Thomas Richardson and Peter Spirtes.

Chapter 14

1. Beginning with Spearman (1904) and ending (so far as I know) with Jones
and Spearman (1950).

2. C. Glymour (1980) gives an account of Dalton’s simplicity principle and its
empirical difficulties.

3. There is an open technical issue here. There are cases in which a covariance
matrix generated by a model with correlated error cannot be reproduced by that
model but with each correlated error replaced by a distinct latent variable and
the latent variables are uncorrelated—the question is whether such matrices can
always be reproduced from an appropriate latent-variable structure.

4. Herrnstein and Murray give a correlation matrix for their four SES variables.
The TETRAD II program (Scheines 1994) will automatically test for vanishing
tetrad differences not implied by vanishing partial correlations in the matrix. If
there is a single common cause, there should be three such differences. There are
none.

5. The example is due to Chris Meek.

6. Given in Spirtes et al. 1993, 2000.

7. The covariance matrix is given in Spirtes et al. 1993, 2000.
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