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Foreword

Musimathics by Gareth Loy is a guided tour-de-force of the mathematics and physics of music. It
pulls no punches in presenting the scientific fundamentals needed to really understand music, but
at the same time it is so clearly written that readers willing to spend time can learn all they need
to know to do basic research in modern technical music. Advanced placement courses in math and
science in any good high school are plenty of background—from there on Loy leads readers to
wherever they want to go.

Loy has always been a brilliantly clear writer. In Musimathics he is also an encyclopedic writer.
He covers everything needed to understand existing music and musical instruments or to create
new music or new instruments.

Loy’s book and John R. Pierce’s famous The Science of Musical Sound belong on everyone’s
bookshelf, and the rest of the shelf can be empty.

Max Mathews
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Preface

To start a great enterprise requires at the beginning only the first step.1

Mathematics can be as effortless as humming a tune, if you know the tune. But our culture does
not prepare us for appreciation of mathematics as it does for appreciation of music. Though we
start hearing music very early in life, the same cannot be said of mathematics, even though the two
subjects are twins. This is a shame; to know music without knowing its mathematics is like hearing
a melody without its accompaniment.

If you are drawn to mathematics because of your love of music, then this book is for you. It pro-
vides a commonsense, self-contained, self-consistent, self-referential introduction to these sub-
jects for nonspecialist readers. It is designed for musicians who find their art increasingly
mediated by technology, and it is written for anyone who desires to understand the intersection
between art and science.

It has been my experience that there are many who want a deeper understanding of the math-
ematics of music if the subject could be presented in a manner accessible to them. This book aims
to meet that need. My goal is always to sustain readers’ motivation while competence is gradually
built up in mathematical fundamentals.

Readers will need only average experience with mathematics and music—advanced high
school math or college freshman algebra and some basic music theory. No knowledge of the cal-
culus, apart from a small amount supplied in volume 2, is required. Some physics background is
helpful, but the text supplies almost everything necessary for understanding.

Virtually all of this book is focused on the mathematics of music:

■ The topics are all subjects that contemporary composers, musicians, and music engineers have
found to be important.
■ The examples are all practical problems in music and audio.
■ Even the fundamentals are cast in terms of the goal: I try to make it clear up front why a foun-
dation is relevant and what readers will be able to do with it once it is mastered.

This is not a book for the mathematically inexperienced, nor is it for experts. My aim is balance.
I travel at a somewhat leisurely pace through this very remarkable material, examining not just
its mathematical content but its aesthetic and philosophical qualities as well.
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xvi Preface

Musimathics presents the story of music engineering by examining its mathematics. Since engi-
neering is basically about applying human values to nature, readers will discover a lot about them-
selves, about the world of sound and music, and about what human cultures have valued. However,
because I approach these values from an abstract perspective, they can be seen objectively, giving
a better vantage point from which readers can make their own choices.

There are three main directions of inquiry in volume 1:

■ The materials of music: notes, intervals, scales
■ The physical properties of music: frequency, amplitude, duration, timbre
■ The perception of music and sound: how we hear
■ Music composition

Volume 2 presents a deeper cut into the underlying mathematics of music and sound, including

■ Digital audio, sampling, binary numbers
■ Complex numbers and how they simplify representation of musical signals
■ Fourier transform, convolution, and filtering
■ Resonance, the wave equation, and the behavior of acoustical systems
■ Sound synthesis
■ The short-time Fourier transform, phase vocoder, and the wavelet transform

The Web site, http://www.musimathics.com/, contains additional source material, animations,
figures, and sources for other program examples in this book. Also, try saying “Musimathics” to
your favorite Web browser and see what happens. 

About the Author

This section is here to give readers a sense of comfort that they are in good hands. I received my
Doctor of Musical Arts (DMA) degree from Stanford University in 1980 in composition of com-
puter music. I did my graduate work at the Stanford Center for Computer Research in Music and
Acoustics (CCRMA), one of the premier institutions for the study of this subject, then housed in
the Stanford Artificial Intelligence Laboratory. I have been a performing musician all my life (vio-
lin, guitar, lute, sitar, and voice) and am an award-winning composer (Bourges prize) and a
National Endowment for the Arts grant recipient. I spent over a decade conducting research and
teaching computer music, electronic music, and musical acoustics at the University of California,
San Diego, as Director of Research at the Center for Music Experiment. More recently I’ve been
a computer programmer, software architect, and digital audio systems engineer in various companies
in Silicon Valley. I am president of a (very) small corporation, http://www.GarethInc.com/, which
provides engineering consulting services internationally. 
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Preface xvii

But there’s more about me that you should know. Mathematics has never been an easy subject
for me; I am a composer by training, not a mathematician. My academic career suffered badly in
proportion to the amount of mathematics included in the syllabus. The aim of confessing this is
paradoxically to give readers confidence. I know what it’s like not to comprehend mathematics
easily, and I also know what it’s like not to give up.

Notwithstanding my inability to add a column of figures and come up with the same answer
twice, I found that mathematics was the lion in my path, the invariant obstacle to the realization
of my artistic visions. So it was more out of necessity than facility that I came to study mathe-
matics. The composer Harry Partch constructed an entire orchestra of novel instruments to realize
his artistic vision and once called himself “a composer seduced into carpentry.” By analogy, I
suppose I’m a composer seduced into mathematics.

I considered subtitling this book, “Everything I wanted to know about music when I was
eleven.” At that age I prowled the stacks of a nearby university library in search of answers to my
burning questions, only to discover that they were out of reach because I didn’t understand the jar-
gon in which the answers were written. At that age we are still intellectually fearless. In my expe-
rience as a child and as a father and teacher, I’ve come to believe that there is nothing an
eleven-year-old can’t understand given the right explanation. But by the time most of us have
reached adulthood, this inquisitive quality is in eclipse, in large part because the right explanations
are very hard to come by. This book is my gift to myself all those years ago, of all the best expla-
nations I’ve been able to find or invent for many of the questions I had. And this book is my gift
to you; may it help throw open the doors to the mathematics of music, one of the crown jewels
of our civilization.

C. G. Jung (1962) wrote, “The decisive question for man is: Is he related to something infinite
or not? In the final analysis, we count for something only because of the essential we embody, and
if we do not embody that, life is wasted.”

In the storm called life, mathematics and music are two sure guides to that essential that we all
embody.

Acknowledgments

This work was supported in part by a generous grant of love and encouragement from my wife,
Lisa, and my children, Morgan, Greta, and Tutti.

Thanks to all those whose passion for the subject has helped inflame my own, including my
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there is anything to praise in this work, it is because it reflects the wisdom of these antecedents;
if there is fault, it is mine alone.
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tion: Charles Seagrave, Stan Green, Dana Massie, Mark Kahrs, Richard Kavinoky, Malcolm
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1 Music and Sound

“How did you know how to do that?” he asks.
“You just have to figure it out.”
“I wouldn’t know where to start,” he says.
I think to myself, That’s the problem, all right, where to start. To reach him you have to back up and back up,
and the further back you go, the further back you see you have to go, until what looked like a small problem
of communication turns into a major philosophic enquiry.”
—Robert M. Pirsig, Zen and the Art of Motorcycle Maintenance

The problem of finding the right place to begin an explanation is rather like finding the right fulcrum
point to move a stone with a lever. Putting the fulcrum point too close to the stone provides great lever-
age but little range of movement (figure 1.1a). Putting it too far from the stone provides great range
of movement but no leverage (figure 1.1b). The fulcrum point of an explanation is the knowledge and
assumptions the reader must already have in order to make sense of the explanation. The assumptions
are like the axioms in geometry: a short list of simple, self-evident facts from which the entire subject
can ultimately be derived.

This chapter is such a fulcrum for the rest of this book, and it therefore runs the greatest risk of
overwhelm or underwhelm. Given the choice, I’ve decided to err on the side of underwhelm. The
rest of this chapter introduces some basic properties of sound that will become immediately useful
in chapter 2. If it looks like there are no surprises here, skip this chapter.

And if this subject is new to you, I have a suggestion: if any of the material seems beyond you at
times, just read it like a mystery novel. Seriously! I recommend this approach based on years of per-
sonal experience reading things I didn’t at first understand. You don’t have to speak fluent French
in order to enjoy Paris, but you’ll certainly get more out of it if you pick some up along the way.

1.1 Basic Properties of Sound

If you were to strike a tuning fork and hold it next to your ear, you would hear one of nature’s purest,
simplest sounds. What you hear is a result of the periodic changes in air pressure at your ear drum
caused by the vibration of the air set in motion by the tines of the fork (figure 1.2a). Figure 1.2b is
a representation of the air molecules in the vicinity of the fork, showing areas of greater and lesser
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2 Chapter 1

air pressure radiating away from the fork as it vibrates, similar in some respects to the way water
waves radiate away from a stone thrown into a pond. 

1.1.1 Physical Properties

The rate of periodic pressure change is frequency, and the strength of pressure fluctuations is inten-
sity. The onset is the time when the sound begins, and its duration is the length of time we can hear
it. The characteristic way in which the intensity of a sound changes through time is its envelope.

One final attribute, wave shape, completes the basic list of the physical properties of sound. Our
hearing uses the shape of sound waves to characterize sound quality. We use words like “pure,”
“shrill,” and “muffled” to describe wave shapes. We also use wave shape to identify the type of
sound source, for instance, a trumpet or an oboe. 

There are many other important properties of sound, such as the direction it comes from and
what it means to us. But frequency, intensity, onset, duration, envelope and wave shape are enough
to start with.

Figure 1.1
Fulcrum.

Figure 1.2
Sound wave from a vibrating tuning fork.
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Music and Sound 3

Frequency is measured as cycles per second. The unit of one cycle per second is hertz (Hz) (see
section 4.3.1). Humans can hear sound over the range of about 17 Hz to about 17,000 Hz. Sound
intensity is measured in decibels (dB) (see section 4.24.1). From soft to loud, intensity of sound
ranges from the threshold of hearing at about 40 dB in very quiet rooms up to the limit of hearing
at about 120 dB, also called the threshold of pain. Duration is measured in seconds.

1.1.2 Perception of Sound

Even though our senses are connected directly to the world, our inner experience of phenomena
is not identical to the stimuli we receive. Our perception depends upon a multitude of interacting
factors, including the sensitivity of our sense organs and the various ways our brains can be wired;
even the culture of our birth and our location in time and space affect our experience of the world.
So our language has developed terms that relate our inner experience to outer phenomena. 

For simple sounds such as a tuning fork, the principal physical properties of sound are pretty
closely related to what we hear. When the high- and low-pressure waves from the tuning fork have
propagated through the air to the ears, they push and pull on the ear drum at the same rate that the
tuning fork created them (just as the reeds at the edge of a pond rock back and forth from the waves
created by a stone thrown into the water). The ears report the frequency of these air pressure
changes to the brain as pitch. The intensity of the pressure changes is reported to the brain as loud-
ness. If there are no changes in air pressure around the ears (that is, if the atmospheric pressure
remains unchanged), we hear silence. In a musical context, onset and duration of sounds are per-
ceived as elements of rhythm.

Loudness, pitch, onset, and duration seem to be relatively straightforward one-dimensional
measures of our experience. A sound gets louder or softer; higher or lower; faster or slower, much
the same way as a thermometer rises and falls with temperature. Measuring timbre, on the other
hand, is not so simple.

Later I explain that the physical and psychological aspects of sound cannot be compartmental-
ized quite as neatly as I’ve suggested here, and that timbre is not as hard to study as it at first seems.

1.2 Waves

A wave is an organized traveling disturbance in a medium, such as air. The medium itself does not
flow because of the wave; rather, a disturbance in the medium travels through the medium. Waves
transmit energy without transmitting matter. For instance, part of the energy from the vibrating tun-
ing fork is transferred to the ear.

1.2.1 Wave Shape

When I describe a wave as organized, I mean that it has a characteristic shape. Our ears are very
sensitive to the shape of pressure changes in sound waves as they strike our ears. Throughout our
lives we learn to associate particular wave shapes with particular sound sources. We also use this
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4 Chapter 1

information to identify a sound’s relative location and important characteristics about our environ-
ment. The wave shape of a tuning fork is very simple in comparison to most other sounds. If we graph
the average particle density of the tuning fork sound shown in figure 1.2b, we see a shape similar to
figure 1.2c.

The vibration of the tines of a tuning fork is very small and too rapid for the eye to see. But sup-
pose we could view this motion, for example, by attaching a miniscule pen to one of its tines and
then quickly passing a roll of paper underneath while it vibrates. Under magnification the vibration
might be seen to leave a wavy mark on the paper (figure 1.3). The wave shape would be similar
to the one in figure 1.2c.

1.2.2 Simple Harmonic Motion

The back and forth motion of the tuning fork tine shown in figures 1.2 and 1.3 is known as simple
harmonic motion. Understanding this motion is fundamental to understanding all kinds of
vibration, including music, the quantum mechanical motion of an atom, and the celestial music
of the spheres. This motion is easiest to visualize when it is made up of the interplay of inertia
of a mass and the elastic force of a spring. For the tuning fork, the mass and the spring are
just different aspects of the same metallic substance: the metal has both inertia and elastic force.
But we can better visualize simple harmonic motion by suspending a large mass from the end
of a spring (figure 1.4a). This allows us to neglect the mass of the spring and the elasticity of
the mass.

If left undisturbed, the mass will eventually come to rest at its point of equilibrium, where
the downward force of gravity equals the upward-lifting spring force. But if it is disturbed
from its equilibrium position, the mass will vibrate up and down in simple harmonic motion
(figure 1.4b).

1.2.3 Guided Tour of Simple Harmonic Motion

If I pull down on the mass and release it, the force of the stretched spring lifts the mass upward against
gravity and against the inertia of the weight, attempting to restore it to its equilibrium position. As
its velocity increases, momentum tends to keep the mass traveling upward. The spring begins to go

Figure 1.3
The wave shape of a vibrating tuning fork.

Pen

Magnifying
glass
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Music and Sound 5

slack as the mass rises, and when the mass reaches the equilibrium point, the spring no longer lifts
the mass upward. But the mass continues to rise above the equilibrium point in spite of the slack
spring, though its velocity slows. When its momentum is exhausted, the mass stops at a point of max-
imum positive displacement from equilibrium, and its velocity momentarily goes to zero.

The slack spring cannot hold the mass above its equilibrium point, so with its upward momen-
tum spent, the force of gravity takes over and begins to pull the mass downward. Its velocity
increases until it reaches its equilibrium point again. The mass continues to fall below the equi-
librium point, though it slows because it is increasingly opposed by the tightening spring. The mass
stops at a point of maximum negative displacement from equilibrium, and its velocity momentarily
goes to zero. Then the cycle repeats.

Now go back to the initial moment, while I was still holding the mass below its equilibrium
point. At that moment, the mass had zero velocity and zero acceleration. The moment I released
it, it had zero velocity, but maximum acceleration. As the mass rose to approach its equilibrium
point, its acceleration diminished, but its velocity continued to grow. At the equilibrium point,
acceleration was zero, but velocity was maximum. Above equilibrium, the mass decelerated and
velocity diminished, until at maximum positive displacement, velocity was zero.

Then the same process took place in reverse. At the moment it began its downward movement,
acceleration was maximum, velocity was zero. As the mass approached its equilibrium point, its
acceleration diminished, but velocity continued to grow. At the equilibrium point, acceleration
was zero, but velocity was maximum. Below equilibrium, the mass decelerated and velocity
diminished, until at maximum negative displacement, velocity was again zero.

Figure 1.5 shows the motion of the spring/mass system through time. Points marked A, B, and C
in figure 1.4 are shown as lines in figure 1.5 for reference. The mass achieves its maximum velocity

Figure 1.4
Simple harmonic motion.
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6 Chapter 1

in the instant it crosses its equilibrium point (B), and at this point it has zero acceleration. The mass
achieves its maximum acceleration in the instant it reaches its point of maximum displacement
from equilibrium (A and C), and at this point it has zero velocity. When the mass has maximum
velocity (and zero acceleration) we say it has peak kinetic energy, and when the mass has maxi-
mum acceleration (and zero velocity) we say it has peak potential energy.

If we changed the inertia of the mass or the elasticity of the spring, we’d change its characteristic
speed of vibration. If we used a heavier weight, the frequency would go down; if we used a stiffer
spring, the frequency would go up. But the characteristic shape of the motion would remain. If we
stretched the spring farther before letting it go, we’d increase the total potential and kinetic energy
of the vibration, giving it a larger amplitude. But again, the characteristic harmonic motion would
remain.

There are many examples of simple harmonic motion in the universe. The tuning fork and the
spring/mass example and the examples in figure 1.6 are all simple mechanical vibrating systems.
Even the basilar membrane, which is the organ within our hearing system that converts acoustic
energy into nerve impulses, vibrates using the same principle of simple harmonic motion. Simple

Figure 1.5
Displacement, velocity, and acceleration of simple harmonic motion.

Figure 1.6
Other sources of simple harmonic motion.
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Music and Sound 7

harmonic motion can also be studied in electrical, optical, chemical, thermal, atomic, and other
natural systems.

1.2.4 Sine and Sinusoid

Look again at figure 1.3. Tracing the shape made by a body moving in simple harmonic motion
through time, we observe it makes a characteristic curve. Such a curve is a sinusoid. Simple har-
monic motion is sinusoidal motion.

Figure 1.7b shows one period of the sinusoid generated by the spring and weight apparatus
shown in figure 1.7a. Notice that the spring and weight make the pen move fastest when the wave
crosses the centerline. This point is also where its acceleration reverses (going from acceleration
to deceleration). Thus, sinusoidal motion captures all the salient features of simple harmonic
motion through time.

The term sinusoidal means having the shape of a sine wave. Sine motion is a mathematical
abstraction of simple harmonic motion, just as a point is a geometrical abstraction of a location in
space. We can make an ink dot on a piece of paper and say it represents a geometrical point; sim-
ilarly, a particular sinusoidal motion can be said to represent sine motion. But both sine motion and
geometrical point really exist only in our minds, and the sinusoid and ink dot are their real-world
counterparts. 

Here’s the difference: as we will see in chapter 5, sine motion has a precise mathematical def-
inition in terms of circular motion. Because it is based on the circle, sine motion is a timeless
description of motion having no beginning or end. Thus, sine motion is a mathematical ideal,
an infinite, perfect motion that cannot exist outside of our imaginations. On the other hand, any
reasonable approximation of sine motion (such as the one shown in figure 1.7) can be called sinu-
soidal. Because no physical motion can more than approximate ideal sine motion, all such
real-world approximations are by definition sinusoidal.

Figure 1.7
Sinusoid—simple harmonic motion through time.
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8 Chapter 1

1.2.5 Conservative and Nonconservative Forces

Unless we continually supply energy to an object vibrating in simple harmonic motion, it will
eventually come to rest at its equilibrium position because its energy is constantly being dissipated,
radiated away as heat and/or sound. The effect of energy dissipation on a vibrating system is damp-
ing. Figure 1.8 shows how a sinusoid generated by the system in figure 1.7 might look through time
because of the interplay of vibratory forces and dissipative forces.

If all the energy drains away at once, there can be no vibration, because then there’s no energy
left with which to vibrate. But even if the energy drains away slowly, all the energy will eventually
dissipate completely. This suggests that there are conservative and nonconservative forces at work
simultaneously in vibrating systems. The conservative forces operate within the system to perpet-
uate vibration, while the nonconservative forces operate between the system and its surroundings
to dissipate energy through friction, and radiate energy through heat and sound. The balance
between these two kinds of forces determines how the system vibrates.

■ A spring’s elastic force is a conservative force that is constantly transforming the spring’s up and
down movement from potential to kinetic energy and back again as the system vibrates.
■ The external frictional force of air resistance and the internal friction of the spring itself are non-
conservative forces that dissipate the system’s energy into its surroundings, until total energy in
the system has returned to its equilibrium.

Note in figure 1.8 that only the amplitude of the damped waveform changes through time, while
the frequency (here represented as the distance covered by each repeated waveform) remains the
same throughout.

In common usage, the terms “oscillate” and “vibrate” are often interchanged. But they are not
the same: a system vibrates when it moves or swings from side to side regularly; a system oscillates
if it moves or swings from side to side continuously and regularly. Hence, a sinusoid oscillates,
whereas a plucked string vibrates.

Figure 1.8
Damped waveform of a plucked musical instrument.
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Music and Sound 9

1.3 Summary

The physical properties of sound include frequency, intensity, onset, duration, and wave shape.
Frequency, onset, and duration are time-based aspects of sound, and intensity is a measure of the
energy in a sound. These physical properties of frequency and intensity correspond to the percep-
tual cues of pitch and loudness. Onset and duration largely determine musical rhythm.

A wave is an organized traveling disturbance in a medium that transmits vibrating energy with-
out transmitting matter. The simplest wave shape is the sinusoid, generated by simple harmonic
motion. This motion is created by the interplay of elastic forces and inertia. The velocity of an
object moving in simple harmonic motion is greatest near its equilibrium point; acceleration is
greatest near the extremities of its excursion. If we graph simple harmonic motion in time, it makes
a sinusoidal shape.

The forces that sustain vibration are conservative forces; the forces that cause damping are
nonconservative forces.
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2 Representing Music

Both mathematical notation and musical notation point to universes quite different from the one in which
ordinary language functions so well. But, in each too, there is genius in the very notation that has developed
for giving representation to ideas that seem to lie beyond ordinary language. There are times in mathematics
when the similarities in notation is the first clue to a deeper relationship. Similarly musical notation not only
created a structure within which Western music could develop but also shows something other than just the
sounds being made. It indicates how the various elements stand in relation to one another, how sound creates
a space, it shows how different musical voices move against and through each other. The notation in both
subjects can make visible the hidden connections within each subject that reveal hidden connections among
outside phenomena.
—Edward Rothstein, Emblems of the Mind

Just as music comes alive in the performance of it, the same is true of mathematics. The symbols on the page
have no more to do with mathematics than the notes on a page of music. They simply represent the experience.
—Keith Devlin, Mathematics: The Science of Patterns

Our ears are continuously bombarded with a stream of pressure fluctuations from the surrounding
air, not unlike the way ocean waves ceaselessly beat upon the shore. Nonetheless, our ears discern
discrete events in this continuous flow of sound and assign them meaning, such as footsteps, a
baby’s cry, or a musical tone. 

Just as the geometrical point is a mental construct that helps us navigate the underlying conti-
nuity of space, so the musical tone is a free creation of the human mind that we apply to the unbro-
ken ocean of sound to help us organize and make sense of what we hear. Though its definition has
been stretched to the breaking point by recent musical trends, tone is still the fundamental unit of
musical experience. This chapter lays out the basics of music representation from a mathematical
perspective, laying the groundwork for subsequent chapters.

2.1 Notation

The realm of personal musical experience lies entirely within each one of us, and we cannot share
our inner experiences directly with anyone. However, many world cultures have developed sys-
tems for communicating musical experience by representing it in symbolic written and verbal
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12 Chapter 2

forms. As members of a particular culture, we learn from childhood to map our inner experiences
of music onto particular symbols which carry meaning that all members share. This allows us to
speak and write about music, learn and perform the works of others, transcribe and analyze musical
performances, and teach music, among other things. All this is possible because of the innate
human capacity to abstract musical tones from the continuous stream of sound and to represent
these tones symbolically. 

This chapter characterizes one such system: the Western common music notation system
(CMN). Its prevalence today makes it a good entry point to a broader discussion of the mathe-
matical basis of tuning systems (see chapter 3). Understanding CMN will help us to fully appre-
ciate its relationship to other musical traditions as well as to understand the history of tuning
systems and current musical research.

2.2 Tones, Notes, and Scores

In CMN a tone is characterized by three sonic qualities: pitch, musical loudness, and timbre. When
a tone is combined with two additional temporal qualities, onset and duration, the result is a note.
A note is a tone placed in a particular temporal context.

Notes are combined in temporal order to create a musical score, which provides the necessary
context to correctly interpret the performance of the notes. Roughly speaking, when notes are per-
formed in sequence, the result is melody, and when notes are performed simultaneously, the result
is harmony. The context provided by a score includes the sequence order of the notes and their tim-
ing as well as other details of how the notes are to be played on particular musical instruments.

Figure 2.1 shows a complete score written in CMN consisting of a single note. The score is writ-
ten out on a staff of five horizontal lines that serves as a grid indicating pitch range. The relative
pitch and duration of a note are indicated by placing note symbols such as  q (quarter note), e (eighth
note),  h (half note), and w (whole note) on the staff lines. The mapping of pitches to staff lines is
determined by the type and placement of the clef sign, placed at the left of each staff. The clef mark
in figure 2.1 is the G clef, &. The spiral in this symbol encircles the second-to-bottom line, indi-
cating that this staff line corresponds—by ancient convention—to the pitch G. This pitch is
one whole step below A440, the reference pitch used to tune all modern Western instruments.
Another common clef is the F clef, ?. When placed on a staff, its two vertical dots bracket the
second-to-top line, indicating that this staff line corresponds—by the same ancient convention—to
the pitch F, a fifth below middle C. 

Figure 2.1
A score of a single note in Western common music notation. 

Violin
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Representing Music 13

If we were to record a musical instrument performing this score, the waveform might look like
the one in figure 2.2, which shows fluctuating air pressure A as a function of time t. Figures 2.1
and 2.2 are just different views of the same information, the former describing the sound symbol-
ically, the latter describing it physically.

Each view has advantages and disadvantages. The functional view provides a great deal of
information about how a particular performer realized (performed) the note, allowing us to ana-
lyze the physical vibration of the instrument. But it is generally not useful to give such a rep-
resentation to another player to describe how to play the same note. For this, the symbolic
approach is superior.

There are many useful representations of tones, each of which has advantages and disadvantages
in different contexts. For instance, although we can easily derive pitch, loudness, and duration
information from either a musical score or from a functional representation like figure 2.2, neither
gives much direct insight into timbre (see chapter 6).

2.3 Pitch

Frequency is a physical measure of vibrations per second. Pitch is the corresponding perceptual
experience of frequency. 

Pitch has been defined as “that auditory attribute of sound according to which sounds can be
ordered on a scale from low to high” (ANSI 1999). Unfortunately, stipulating precisely what “that
auditory attribute” is turns out to be a complex scientific affair that has spanned across centuries
of research. While our sense of pitch is proportional to frequency, it is also influenced by frequency
range, loudness, and the presence of other higher or lower frequencies. Pitch is limited to sounds
within the range of human hearing, but frequency is not. 

There are at least two motivations for developing measurements of pitch: scientific curiosity and
the requirements of music engineering. I take up the scientific interests in chapter 6. Meanwhile,
there is the more pragmatic problem of engineering the pitch range of human hearing for musical
purposes so that we may communicate musically about pitch.

Figure 2.2
Amplitude function of the score in figure 2.1. The waveform has been shortened to make it fit the page.
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14 Chapter 2

2.3.1 Frequency and Pitch

If we restrict ourselves to simple tones such as might come from a flute or tuning fork, then for some
tone with frequency f we hear some corresponding pitch p. For instance, if the frequency of a tuning
fork is f = 440 Hz, then the pitch p that we hear is conventionally called A440, the pitch commonly
used by modern Western orchestras to tune all instruments together. The reference pitch used by
orchestras has not always been set at 440 Hz but has varied through the ages. It became standardized
at 440 vibrations per second in the early part of the twentieth century (see section 3.2.3).

2.3.2 Intervals and Frequency

An interval is the difference in pitch between two tones. The sensitivity of our ears to intervals is
the basis of melody and harmony.

If a reference tone has frequency , then a tone with frequency  is said to be one octave
higher. If the frequency is , then it is two octaves higher. Generalizing, the frequency 
of any octave x of the reference frequency  is

, . Octaves (2.1)

This equation says, “The frequency x octaves above reference frequency  is equal to the ref-
erence frequency times 2 raised to the power of x.” The expression  means that x is an element
of the set of all integers—all possible positive and negative whole numbers. Here it suffices to say
that  means that x can be any integer. The significance of requiring x to be an integer is that
frequency  will only be an octave of  if x is an integer value.

If , the frequency of  is in unison with  because . If , the
frequency of  is an octave below  because then . If we allow x to be any
integer, all octaves of  can be realized. 

2.3.3 Character of Intervals

Our ears are extremely sensitive to the intervals of unison and octave, and virtually all cultures
organize their music primarily around these intervals. The unison has the musical quality of iden-
tity. For example, if two flutes intone A440, we say their pitch is identical.

Octaves have a musical quality of equivalence. If identity means that two pitches sound the
same, equivalence means that we can tell them apart but each can serve the same musical purpose
equivalently. In virtually every musical culture, pitches in any octave can perform the same musical
function, a principle known as octave equivalence.

If the range of x in equation (2.1) is expanded to include all real numbers, then we can obtain
the frequency  of any arbitrary interval x of reference frequency :

, . Interval (2.2)

The expression  means  x is an element of the set of real numbers (in other words, x can
be any real number). Real numbers include all integers and all possible fractional values between
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Representing Music 15

the integers as well. Real values in the range 0 ≤ x < 1 select frequencies within the first octave
above . Values  select frequencies below , values  select frequencies beyond the
first octave above , and so forth. 

An exponent appears in equations (2.1) and (2.2) as the independent variable; it seems that our
neural anatomy is wired to perceive an exponential relation between pitch and frequency. Fre-
quency f goes up exponentially as pitch  p goes up linearly: to double pitch, we must quadruple
frequency.1

2.3.4 Interval Ratios

The frequencies of tones that make up an interval can be compared by making a ratio of their
frequencies. For instance,

The interval of a unison is 1/1.

The interval corresponding to one octave up is 2/1.

The interval corresponding to one octave down is 1/2.

Consider the interval formed by the frequencies 880 Hz and 440 Hz. This ratio can be reduced
to the lowest common denominator:

.

The same is true of 132/66, 34/17, and so on. The advantage of expressing intervals as ratios in
the lowest common denominator is that the kind of interval can be seen directly without the com-
plication of the actual frequencies involved.

2.3.5 Categorizing Intervals

If the unison expresses identity and the octave expresses equivalence, the rest of the intervals
signify individuality. Each of the intervals has a unique character to its sound—like a unique
personality—that the ear can readily detect regardless of wide variations in frequency, amplitude,
duration, or timbre. Our hearing seems to organize intervals by a subjective sense of distance that
can be characterized as height or width: the interval of a fifth (3/2 = 1 ) is experienced as “higher”
or “wider” than a fourth (4/3 = 1 ). In chapter 6 this quality is called chroma. Intervals figure
prominently in music because they are so readily distinguished by our hearing.

2.3.6 Organizing Pitch Space

Equation (2.1) shows that there are an infinite number of pitches because we can assign any values
to reference frequency  or octave x. But to engineer a practical scale system requires that we take
into account the realistic limits imposed by our hearing.

Determining the Range of Pitch Space First, we can only hear frequencies between about
17 Hz and about 17,000 Hz (higher generally for youths and women, lower for rock concert

fR x 0< fR x 1≥
fR
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440
--------- 2

1
---:

1/2
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aficionados, people who listen to music over headphones at elevated levels, people who drove
Volkswagens in the 1960s, and the aged—especially the aged who drove Volkswagens to rock
concerts while wearing headphones). 

Even within this frequency range, pitches above about 4000 Hz are difficult to tell apart. Rec-
ognizing this, the musical engineers of the world’s musical traditions have historically set realistic
limits on the frequency range used by musical instruments to represent distinct musical pitches.
The piano has one of the widest pitch ranges of traditional instruments. Its lowest pitch is about
27 Hz, and its highest is a little less than 4000 Hz.

Determining the Density of Pitch Space If pitches are crowded too closely together in fre-
quency, we have a hard time telling them apart. Because of this, the world’s musical engineers have
limited the total number of pitches that cover the range of pitch space so that each can be easily iden-
tified. In some traditions there are as few as a dozen pitches altogether. The Western orchestra provides
only about 90 total pitches to work with. So even though there are thousands of potentially identifiable
pitches in the range of human hearing, relatively few are actually selected for use in musical scales.

Assigning Pitches To communicate about music, we must be able to name the pitches and asso-
ciate them with frequencies. This is not an engineering problem so much as a design question, and
each culture has answered it in a manner that speaks to what is important to that culture. In the West
the choices have been profoundly influenced by the ideas of Pythagoras (see chapter 3).

2.4 Scales

A musical scale is an ordered set of pitches, together with a formula for specifying their frequen-
cies. Each individual pitch of a scale is called a degree. The degrees are an ordered set of names
and positions for the scale pitches. 

Most musical traditions have acknowledged the importance of the unison and octave intervals
by organizing their scales around them like anchor points. Most scales associate names of the
degrees with their frequencies in one octave only, with the understanding that because of octave
equivalence, degrees of the scale can be played in any other octave yet still perform the same
musical function in the scale. 

In an unfortunate twist of terminology, the degrees of the scale are also sometimes called pitch
classes. (I’d rather they’d been called something like degree classes.) In any event, each degree is a
member of a class that it shares with the same degree in all other octaves because of octave equivalence. 

2.4.1 Gamut

A term related to scale is gamut, the entire range of notes reachable by an instrument or voice.
Whereas a scale theoretically has no limits in frequency, a gamut does, as it is always tied to a par-
ticular instrument that can play only so high or so low.

“Gamut” is actually a compound of two other terms: the Greek letter gamma, Γ, used as a symbol
for the lowest tone of the medieval musical scale, and “ut,” the first syllable of a then-well-known
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hymn to St. John, the melody of which has the peculiarity of beginning one degree higher with each
successive phrase. “Gamut” thus represents “all the tones from gamma onward” (Apel 1944).

2.4.2 Diatonic Scale

The prototype of all scale systems in the West is the diatonic scale. It has seven pitches per octave,
named with the seven letters C, D, E, F, G, A, and B corresponding to the seven degrees of this
scale.2 The degrees of the diatonic scale are named tonic (1), supertonic (2), mediant (3), subdom-
inant (4), dominant (5), submediant or superdominant (6), and subtonic (7). They are represented
in CMN as shown in figure 2.3. This scale may also be familiar as the scale that goes with the
solmization syllables do, re, mi, fa, sol, la, ti.3

The diatonic scale contains two interval sizes, the half step and the whole step. A whole step con-
tains exactly two half steps. The whole step and the half step are also called whole tone and semi-
tone. Chapter 3 details the frequencies that go with each diatonic scale degree and the frequency
size of the half and whole steps. Here I focus only on the order of the interval sizes. The interval
order of the diatonic scale is the sequence of whole and half steps in the scale.

The interval order and the starting degree are the two primary identifying characteristics of the
diatonic scale that hold regardless of the pitch the scale starts on.

Figure 2.4 shows the interval order of the diatonic scale. Note the characteristic order of interval
sizes: {2, 2, 1, 2, 2, 2, 1}, and observe that the scale starts on the first degree. For our purposes,
these two characteristics completely define the diatonic scale. Note the asymmetrical structure of
the interval order: there’s a group {2, 2, 1} followed by {2, 2, 2, 1}. The unique order of whole
and half steps provides a crucial asymmetry that our hearing exploits in order to orient ourselves

Figure 2.3
Diatonic scale.

Figure 2.4
Interval order of the diatonic scale.

C E F G A B (C)

do re mi fa sol la ti (do)

1 3 4 5 6 7Degree:
Letter:

Note:

Syllable:

Whole step: Half step:

D
2

Degree:

Interval size: 2 2 2 2 2 11

Starting
degree

1 2 3 4 5 6 7
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18 Chapter 2

to the music we’re hearing. If the interval pattern were not asymmetrical, it would be impossible
for us to orient ourselves in the scale. 

2.4.3 Staff Lines and the Piano Keyboard

Look at figure 2.3 again and notice that the staff lines hide the asymmetry of the diatonic interval
order visually. Each successive degree of the scale moves vertically up the staff by the same
distance regardless of whether the interval between the successive degrees is a semitone or
a whole tone. However, the asymmetry can’t be hidden in the layout of the piano keyboard
(figure 2.5). When starting from C, the interval pattern of the keyboard is the same as the diatonic
interval order. 

2.5 Interval Sonorities

Groups of intervals share sonorities, common traits that allow us to group them together (table 2.1).
The sonorities correspond to the sonic character of the intervals. Perfect intervals have a quality
that has been described as clear, pristine, structural, or astringent. Major intervals and minor inter-
vals supply a warmth or feelingful character. Augmented intervals and diminished intervals pro-
vide a piquancy or strangeness that can be disturbing. Table 2.1 shows the classification of the
intervals. Intervals can also be classified as consonant or dissonant (see section 3.10). 

2.5.1 Major and Minor Scales

Another name for the diatonic scale is the major scale. The minor scale uses the standard diatonic
interval order but starts on degree 6. Table 2.2 shows three octaves of the diatonic scale from left
to right. The diatonic interval order is highlighted in the middle row, and the minor interval order
is shown below it.

If we project one octave of the diatonic scale clockwise on a circle, as in figure 2.6, we see that
the minor scale is the same as the major scale started two diatonic degrees counterclockwise around
the circle. So the major and minor scales are related by the underlying diatonic order and are dis-
tinguished only by their starting degrees.  

Figure 2.5
Piano keyboard.
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Table 2.1 
Interval Classification by Sonority

Class Name Semitones Description

Perfect 

Major

Minor

Diminished 

Augmented 

Unison
Octave
Fourth 
Fifth 

Third
Sixth
Seventh
Second

Third
Sixth
Seventh
Second

 0 
12
 5
7

4
9

11
2

3
8

10
1

6

6

Provides harmonic anchoring and framework.

Provides expansive emotional color.

Upper pitch is one semitone smaller than major intervals. 
Minor intervals provide a contractive emotional color.

Upper pitch is one half step less than a minor or a perfect 
interval. A diminished fifth is called a tritone.

Upper pitch is one half step greater than a major or a 
perfect interval. An augmented fourth is also called a 
tritone.

Table 2.2 
Diatonic and Minor Scale Interval Order

Diatonic Degree . . . 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 . . .

Diatonic interval order . . . 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 2 1 . . .

Minor interval order . . . 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 2 1 . . .

Figure 2.6
Major and minor scales.
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2.5.2 Modes

Starting a scale from other than degree 1 or 6 produces scales that are other than major or minor
but that share the diatonic interval order. Called modes, these variations of the diatonic scale order
are shown in figure 2.7. The initial degree of a mode is its final because typically music in a mode
would end on that note. So the final of Ionian mode is 1 and the final of Aeolian is 6. 

The names derive, evidently, from seventeenth-century French music theorists, who named the
modes arbitrarily after regions of Greece (Apel 1944). (The music theory of the ancient Greeks
bears no resemblance to these modes.) The diatonic modes are the tonal basis of Gregorian chant
and of early Western music (until about 1600 C.E.).

Notice that the major and minor scales are synonyms for Ionian and Aeolian modes, respec-
tively. The various modes can be played on the white keys of a piano simply by starting the mode
on the degree indicated in the figure. For example, starting on degree 4 produces the Lydian mode.
The Lochrian mode is purely a theoretical mode, considered unusable by conventional music the-
ory because of the tritone that exists between its final (7) and its fourth degree.

The listener may notice that some of the modes, especially Phrygian and Mixolydian, have
a kind of antique quality to their sound. Before the advent of tempered tunings (see chapter 3),
composers exploited the modes as an important source of tonal contrast. Shifting between modes
was a way to add structure and shape to a composition. However, with the arrival of transposable
instruments in the Baroque period, interest in modes declined, as key transposition took over the
role of the modes to structure music. This left only the major and minor scales in common use.
Hence, music built upon modal scales can sometimes suggest an ancient quality to the Western ear. 

2.5.3 Chromatic Scale

The chromatic scale extends the diatonic scale by breaking up the whole steps into half steps and
adding these new half steps to the scale. It uses the standard diatonic letter names A–G but adds
symbols that raise or lower each diatonic degree by a semitone to indicate these in-between half

Figure 2.7
Starting the diatonic scale on other degrees to create modes.

2  Dorian

4  Lydian

3  Phrygian

1  Ionian (Major)
Lochrian  7

Aeolian  6
(Minor)
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Representing Music 21

steps. The symbol # (sharp) raises a diatonic degree by a semitone, and the symbol b (flat) lowers
it a semitone. The symbol n  (natural) restores a previously sharped or flatted pitch to its diatonic
degree. Sharp, flat, and natural are accidentals. Given the order of half and whole steps in the dia-
tonic scale from which it is constructed, there are thus 12 semitones in the chromatic scale:

{A, (A # | B b), B, C, (C # | D b), D, (D # | E b), E, F, (F # | G b), G, (G # | A b)},

where the symbol |  means or. Thus, one may write either A# or Bb, since they are enharmonic
equivalents—they sound the same pitch. On the piano, for example, A# and Bb are the same phys-
ical key (see figure 2.5).

The musical representation of all 12 pitches of the chromatic scale in CMN is given in figure 2.8.
This scale can equivalently be written using flats instead of sharps (or any mixture). The fact that
the degrees of the chromatic scale are named by their position with respect to the degrees of the
diatonic scale shows again that the chromatic scale was derived from it. 

In addition to the standard chromatic enharmonic spelling using sharps and flats, degrees can
also be represented using double sharps (×) and double flats (bb), which raise or lower their respec-
tive degrees by two semitones (figure 2.9). The degree names in each column are enharmonic
equivalents, thus C× = D = Ebb.  

Figure 2.8
Chromatic scale in common Western notation.

Figure 2.9
Diatonic scale names with chromatic and enharmonic inflections.
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2.5.4 Transposing

If a scale is started on any chromatic degree but C, it is said to be transposed. The diatonic scale
can be transposed to any chromatic degree so long as the diatonic interval order of whole and half
steps is preserved. For instance, if we begin the diatonic scale on G, then F must be sharped to
preserve diatonic interval order; similarly, if we start it on F, then B must be flatted. Figure 2.10a
shows the diatonic scale transposed to G, and figure 2.10b shows it transposed to F.4 The degree
to which the diatonic scale is transposed is called the key. For example, the diatonic scale trans-
posed to G by the introduction of F # is the key of G. The untransposed diatonic scale is the key
of C.

2.5.5 Key Signature

Notice that F is a fifth below C, while G is a fifth above C. Transposing the diatonic scale to begin
on F requires one flat: Bb. Transposing to G requires one sharp: F#. As we go down by fifths from
C, the scale built on each subsequent transposed degree requires the introduction of one more flat
in order to preserve the interval order of the diatonic scale. Correspondingly, as we go up by fifths
from C, the scale built on each subsequent pitch requires the introduction of another sharp. This
result is shown pictorially in figure 2.11.

A major or minor scale can be erected on any of the chromatic degrees by appropriate appli-
cation of accidentals to establish the correct major or minor interval order. The accidentals
required to start a major or minor scale on each chromatic degree are shown in figure 2.12. These
are called key signatures because they stipulate the association between the key (the chromatic
degree that the scale starts on) and the accidentals required for the corresponding diatonic
scale.

Figure 2.10
Diatonic scale in keys of G and F.

Figure 2.11
Transposition versus accidentals required for the diatonic scale.
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Figure 2.12 allows us to infer from a score what the key should be. For example, if we observe three
sharps in a score, we can infer that its corresponding major scale must start on A and its corresponding
minor scale must start on F#.5 Since the major and minor keys that share a key signature are related
by the underlying diatonic interval order, they are called the relative major and relative minor. For
example, the relative major of Bb minor is Db major, while the relative minor of A major is F# minor.

2.5.6 Circle of Fifths

As we move farther away from the key of C in figure 2.11, enharmonically equivalent keys start
to crop up. In particular, the key of Db is enharmonically identical to the key of C#, the key of Gb
is the same as the key of F#, and the key of Cb is the same as the key of B. This suggests that there
is a circularity involved in the key structure, which becomes apparent if we twist the key sequence
shown in figure 2.11 into a spiral, as shown in figure 2.13. 

This is the circle of fifths, although it is easier to represent as a spiral, since it could continue into
the double sharps and double flats, and so on. There are only 15 useful mappings of the diatonic
interval order onto the chromatic scale, namely the ones shown in figure 2.11.

2.5.7 Nondiatonic Scale Orders

Of course, the diatonic scale specifies but one of many possible orderings of intervals. While dia-
tonic ordering has had immense influence on music of cultures around the world, we’re free to
choose any ordering that serves our needs. The following is a select sampling of some nondiatonic
scales. More are considered in chapter 3.

Pentatonic Scale If the diatonic scale is the father of scales, the pentatonic scale must be the
grandfather, for it appears in virtually every culture worldwide. Its interval order is {2, 3, 2, 2, 3}.
The black keys on a piano are an instance of the pentatonic scale. Like the diatonic scale, one can
create pentatonic modes by choosing a different starting degree (figure 2.14).

Harmonic Minor Scale This scale (figure 2.15) uses the interval order of the minor scale but
raises the seventh degree by one semitone. Its interval order is {2, 1, 2, 2, 1, 3, 1}. The minor scale

Figure 2.12
Key signatures.

C

C

a)

b)

G D A E B F C

A E B F C G D A

B E A D G CF

A G C F B E AD

Major:

Minor:

Major:

Minor:

loy79076_ch02.fm  Page 23  Wednesday, April 26, 2006  12:13 PM



24 Chapter 2

(see section 2.5.1) is sometimes called the natural minor scale to differentiate it from the harmonic
minor. The seventh degree of the diatonic scale is sometimes called the leading tone because it
seems to lead the ear to the tonic. Raising the seventh degree of the natural minor lends this impor-
tant harmonic function to the minor scale.

Melodic Minor Scale This scale (figure 2.16) varies its order depending upon the melodic func-
tion of the music—hence its name. It has an ascending order, which is used when the music rises
up the scale, and a descending order, which is used when the music goes down the scale. The

Figure 2.13
Spiral (circle) of fifths.

Figure 2.14
Pentatonic scale.

Figure 2.15
Harmonic minor scale.
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ascending order of this scale is like the harmonic minor but with the sixth degree also raised by
a semitone. The descending form is identical to the natural minor.

Hungarian Minor This minor scale (figure 2.17) has an augmented second between the third
and fourth degrees, and an augmented fourth (tritone) from first to fourth, lending it a spicy, rakish
quality.

Whole-Tone Scale As there are 12 chromatic degrees per octave, picking every other semitone
yields a scale containing only six degrees (excluding the octave), all of them whole tones. Its inter-
val order is symmetrical: {2, 2, 2, 2, 2, 2}. Since we pick every other degree, there are necessarily
two kinds of whole-tone scale (figure 2.18). The chromatic degrees of the first kind are 2n,
n = 0, 1, . . ., 5, and the degrees of the second kind are 2n + 1 over the same range (counting the
first degree of the chromatic scale as 0).

Because the whole-tone scale interval order is symmetrical, it does not provide the ear with the
anchoring asymmetry supplied by, for example, the diatonic interval order, leaving listeners har-
monically “at sea.” An obvious compositional device is to alternate between the two whole-tone
scales for contrast. A falling whole-tone scale gives a particularly vulnerable and “slippery” feel-
ing to the fall. Composers as various as Claude Debussy6 and Thelonious Monk7 have featured this
scale in their compositions.

Figure 2.16
Melodic minor scale.

Figure 2.17
Hungarian minor.

Figure 2.18
Whole-tone scales.
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2.6 Onset and Duration

The duration of a note is the number of beats it lasts. The beat is the fundamental unit of time mea-
surement and corresponds to the pulse of the music—in other words, what you tap your foot to.
Beats are grouped into measures, set off from other measures in a score by bar lines. 

The onset of a note is the moment stipulated by the score for it to begin, counted in beats from the
beginning of the score. The onset time of a note is the same moment counted in seconds from
the beginning of the score. Onset time can be calculated by multiplying the number of beats
from the beginning times the duration of a beat.

2.6.1 Relative Duration

Musical symbols for relative note duration are given in the upper row of table 2.3. The symbols
in the lower row indicate the duration of rests, the silences between notes. In table 2.3, each symbol
indicates a duration one half as long as the symbol to its left. Shorter durations, such as one
thirty-second can be created by adding more flags (j ) to the stem of the note.

Additional relative durations can be derived from those in table 2.3 as needed by the addition
of dots to the right of notes or rests. A single dot extends the duration of the note or rest by 1/2.
For example, q. = q + e, and g. =  g + ä. A second dot increases the duration of the note or rest by an
additional 1/4. For example, q . . = q + e + x, and g. . = g + ä + Å. In general, n dots after a note or rest of
duration D indicate that the total duration T is 

.

2.6.2 Absolute Duration

The absolute duration of any note is determined by a metronome mark on the score in conjunction
with the duration symbols in table 2.3. The metronome mark indicates which duration symbol gets
the beat and how many beats there are per minute. For example, the metronome mark q  = 60MM

indicates that the quarter note gets the beat and that there are 60 beats per minute. Thus, each quar-
ter note lasts for one second. 

The tempo is the number of beats per minute. Rubato, small perturbations in the tempo, may
be employed by performers informally to emphasize a phrase or delineate a symmetry in the
music.

Table 2.3 
CMN Symbols for Relative Duration

Whole Half Quarter Eighth Sixteenth

Note

Rest

w h q
g

eä xÅ

T D . 1
20
----- + 1

21
----- . . . 1

2n
-----+ + 

 =
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The suffix MM on the metronome mark has an interesting history. It stands for “Mälzel
Metronome.” Johann Nepomuk Mälzel was not the inventor of the metronome, which honor is in
fact due to Diedrich Nikolaus Winkel (1773–1826) of Germany. But Mälzel was a shrewd busi-
nessman who patented Winkel’s invention in England and France before Winkel could do so. So
successful was his marketing effort that only Mälzel’s name remains commonly associated with
the metronome (Tiggelen 1987).

2.6.3 Time Signatures

The rhythm of a score is determined by the time signature in much the same way that the scale is
determined by the key signature. The time signature stipulates how many beats there are per mea-
sure and what beats are stressed to establish the rhythm (table 2.4). Common time groups four quar-
ter notes per measure. It is notated with a capital letter C.

Not all beats have an equal stress when performed. Often the first beat is stressed, while other
beats in a measure receive less stress. A few conventional stress patterns are associated with the
most common time signatures. For example, common time and 4/4 time stress beat 1 the strongest
and beat 3 somewhat less; the other beats are unstressed. For 3/4 time, typically beat 1 is the stron-
gest, beat 3 is stressed less, and beat 2 is unstressed. Like the asymmetrical structure of the diatonic
scale, the asymmetry in stress patterns helps orient the listener in the measure.

2.7 Musical Loudness

The sound intensity of many musical instruments can be adjusted over a certain range, depending
upon their construction. The range from the softest to loudest sound for an instrument is its
dynamic range. Some instruments, such as the harpsichord, are fixed at one loudness level. The
oboe has a small dynamic range, and the pipe organ has quite a wide dynamic range. Loudness
depends upon a number of perceptual and acoustical factors, and is not easy to characterize in gen-
eral terms (see section 6.5). 

Nonetheless, CMN provides a very simple notation for dynamic levels. Part of every musician’s
training is to learn how to translate the CMN symbols for dynamic level to the appropriate loudness

Table 2.4 
Time Signatures

Two quarters
per measure

Common timea 
c

Three quarters 
per measure

Six eighths
per measure

Four quarters 
per measure

Nine 32ds
per measure

Note: a. Same as 4/4 time.

24 34
68

44
932
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level for his or her instrument, depending upon musical context. The nuances of this context are
quite subtle and extensive, usually requiring years to master.

The CMN indications for dynamic range are shown in table 2.5. The Italian names are univer-
sally used, I suppose because they invented the usages, which were subsequently adopted by other
European countries. The dynamic range indications in table 2.5 are entirely subjective. I describe
how to relate them to objective measurements in section 4.24. 

For instruments that can change dynamic level over the course of time, the “hairpin” symbol
 indicates a gradual increase in loudness, while  indicates a gradual decrease. Bowed

and blown instruments can usually effect a change in dynamic level during the course of a single
note. Struck instruments including pianos generally can’t change the dynamic level of a note after
it is sounded but can change dynamic levels over the course of several notes. The proper inter-
pretation of these cues is part of every musician’s training. 

2.8 Timbre

In musical scores, timbre means the type of instrument to be played, such as violin, trumpet, or bas-
soon. But timbre also is used in a general sense to describe an instrument’s sound quality as sharp,
dull, shrill, and so forth. 

How quickly an instrument speaks after the performer starts a note, whether it can be played with
vibrato, and many other instrumental qualities are also lumped together as timbre. Timbre also gets
mixed up with loudness because some instruments, like the trombone, get more shrill as they get
louder. As a consequence, it’s easier to say what timbre isn’t than what it is: timbre is everything
about a tone that is not its pitch, not its duration, and not its loudness. However, negative definitions
are slippery and provide no new information. 

There are other ways of representing tones that shed positive light on timbre. Just as colors can
be shown to consist of mixtures of light at various frequencies and strengths, sounds can be shown
to consist of mixtures of sinusoids at various frequencies and strengths (see volume 2, chapter 3).
For instance, when we hear a note played on a trumpet, even though our ears tell us we are hearing
a single tone, in fact we are hearing simpler tones mixed together in a characteristic way that our
minds—perhaps through long experience, perhaps through some intrinsic capability—fuse into
the perception of a trumpet sound. 

Table 2.5 
CMN Indications for Dynamic Range

Pianississimo

Pianissimo

Piano

Mezzo piano

ppp

pp

p

mp

As soft as possible

Very soft

Soft

Moderately soft

Mezzo forte

Forte

Fortissimo

Fortississimo

mf

f

ff

fff

Moderately loud

Loud

Very loud

As loud as possible
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The individual sinusoids that collectively make up an instrumental tone are called its partials
because each carries a partial characterization of the whole sound. Partials are also known as
components, and I will use these terms interchangeably. The principal properties of the partials are
their frequencies and amplitudes. The way the partials manifest in frequency, amplitude, and time
is what our ears use to determine what kind of instrument made a particular sound. 

2.8.1 Partials, Fundamentals, and Overtones

The lowest pitched partial in a tone is called the fundamental. It is generally what our ears pick out
as the pitch of the tone. Since, by definition, the remaining partials in the tone are pitched higher,
they are called overtones.8 Our ears use the pattern of overtone frequencies as an important cue to
recognize timbres. The overtone frequencies of wind and string instruments are positive integer
multiples of the fundamental, where the positive integers are 1, 2, 3, and so on. For instance, if a
flute or violin has fundamental frequency f, then the frequencies of its overtones will be positive
integer multiples of f (figure 2.19). The partials of such instruments are called harmonics. Note that
because the positive numbers start at 1, and because 1 × f = f, therefore the first harmonic is the
same as the fundamental.

Instruments with harmonic partials are usually chosen to carry the melody and harmony of
music because frequencies of the harmonics tend to agree in frequency with the pitches of the dia-
tonic scale. Instruments with inharmonic partials such as drums and bells are usually not used to
carry melody and harmony because for the most part the frequencies of their partials do not agree
with the diatonic scale.

The amplitudes and frequencies of the partials of musical instruments tend to vary in a charac-
teristic way over the duration of a tone, depending upon the instrument and performance style of
the performer. Though the variation may be slight, the precise amplitude and frequency ballistics
of the partials help our ears to fuse a single percept of an instrument out of its individual partials,
and help identify the type of instrument.

2.8.2 Vibration Modes

Each partial is created by a specific part of the vibrating system of the instrument. Consider a
vibrating string, for example. Its fundamental frequency is created by that portion of the total

Figure 2.19
Harmonic overtone series.
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energy in the string that vibrates coherently along its entire length (mode 1 in figure 2.20). Vibra-
tion along the entire length of a string is called mode 1 vibration. 

Not all the energy in a string vibrates in mode 1; some energy pushes one part of the string
down while the other end counters it by rising (mode 2 in figure 2.20). The frequency of this
vibration is twice the frequency of the fundamental, corresponding to the second harmonic.
Some of the string’s energy causes it to vibrate in three balanced regions (mode 3 in figure 2.20)
corresponding to the third harmonic. For many vibrating systems (but not all), the higher the
mode, the less energy it has. Stringed instruments can have dozens of vibration modes with sig-
nificant energy.

Not all vibrating systems contain all possible modes. The clarinet has energy only at the fun-
damental and odd-numbered harmonics. Some vibrating systems do not divide the vibrating
medium into integer ratios as the string does. The inharmonic partials of instruments such as bells
and drums are not integer multiples of a fundamental.

2.8.3 Spectra

When we project sunlight through a prism, the resulting rainbow of colors, its spectrum, reveals
the individual colors of sunlight. The prism distributes the colors into a linear sequence from low
to high frequencies. The intensity of each color in the rainbow indicates the contribution of that
color to the quality of sunlight.

So, too, the spectrum of a sound shows the intensities and frequencies of the sinusoids that make
up the sound. A spectrum shows the energy distribution of a waveform in frequency.

The spectrum comprises the set of all possible frequencies from − ∞ to ∞ Hz at all possible
intensities from 0 to ∞ dB (measuring up from silence). The spectrum of a particular sound will
be a subset of this infinite two-dimensional space.

For example, figure 2.21 shows four waveforms and their corresponding spectra. The top wave-
form is a single sinusoid. Its spectrum shows a single vertical line. The line’s horizontal position
gives the sinusoid’s frequency, and its height gives the sinusoid’s intensity. The spectrum of
the second waveform shows it contains two sinusoids, the fundamental at frequency f and the third

Figure 2.20
Vibration modes.
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harmonic at frequency 3f. The harmonic has less energy because its line is shorter than the fun-
damental. The last two waveforms show additional odd-numbered harmonics being added, each
with higher frequency and less energy than their predecessors. If we could hear the last waveform,
it would sound somewhat like a clarinet. Since all frequencies are integer multiples of the
fundamental, these are harmonic spectra. Because the components in figure 2.22 are noninteger
multiples of the fundamental, this spectrum is an inharmonic spectrum. Percussion instruments
such as bells, gongs, and drums produce inharmonic spectra.

Static and Dynamic Spectra In the foregoing discussion, I have conveniently neglected time
as a required element. In order to compute the spectrum of a sound, we must have some length
of it to analyze. If we wish to capture all the spectral information available in a waveform, the
mathematics of spectral analysis requires us to observe the sound not just over its full duration
but actually over all of time, from minus infinity to positive infinity. This is clearly a physical
impossibility. Fortunately, there are mathematical techniques that allow us to analyze sounds
with limited length. However, the shorter the waveform, the less precisely we can characterize
its spectrum. So there is some inherent uncertainty between the temporal and spectral views

Figure 2.21
Harmonic waveforms and spectra.
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of waveforms of finite length. This subject is related to Heisenberg’s uncertainty principle (see
volume 2, chapter 3).

The length of sound available for spectral analysis determines the kind of spectrum we can cre-
ate. A static spectrum shows the energy distribution of partials averaged over a fairly long period
of time, such as the duration of an entire note. Figures 2.21 and 2.22 represent static spectra because
they show the average intensities of the partials over the duration of an entire note. Because static
spectra show averages, they cannot show how the energy distribution of a sound changes dynam-
ically over the duration of the note. Static spectra can be useful, for instance, to confirm whether
a sound is harmonic or inharmonic. 

Dynamic Spectra Our ears are highly attuned to the way the spectra of sounds change through
time, and we rely on this information to help us identify the type of instrument making a sound.
The vibrational energy radiated by musical instruments evolves through time in a characteristic
way based on the physical properties of the instrument and how the musician performs it. The
dynamic elements in an instrument’s spectrum that are contributed by the performance include
vibrato, tremolo, glissando, crescendo, and decrescendo. There are also dynamic properties of the
instrument’s vibration that are largely determined by the interaction of the physics of the instru-
ment and the physics of the performer’s touch. Clearly, it would be very useful if we could capture
the way spectra evolve through time.

Suppose we have a musical note lasting a few seconds. We can observe how its energy distri-
bution evolves through time as follows:

1. Break the note down into a sequence of short sound segments each lasting a small fraction of
a second.

2. Take the static spectrum of each sound segment separately.

3. Assemble the spectra in time order.

Imagine printing each static spectrum on a pane of glass, then assembling the panes in time
order. Looking through the panes, we can observe how the spectrum of the sound changes through

Figure 2.22
An inharmonic spectrum.
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time. This three-dimensional result is a dynamic spectrum because it shows spectral evolution
through time. Figure 2.23 shows an idealized dynamic spectrum as a set of static spectra in time
order. The x-axis shows time, the y-axis intensity, and the z-axis frequency. Dashed lines connect
partials at the same frequency in adjacent spectral slices, showing how each partial’s amplitude
changes through time.

Figure 2.24 shows the spectral evolution of a string tone. We can tell a great deal about a sound
by looking at its spectrum through time. For instance, the even spacing of the partials along the
frequency axis suggests a harmonic spectrum. There are relatively few partials with significant
energy. Most energy is concentrated in the lowest partials, and energy drops quickly with increas-
ing partial number. The lower harmonics start sounding rather more quickly than the higher har-
monics, as indicated by the broad grey line across the components at the beginning, and higher
harmonics drop out more quickly, as indicated by the broad grey line across the components at
the end. 

Much of the aliveness we hear in a musical tone is communicated to us by the way the instru-
ment’s timbre changes instant by instant. The scrape of the bow on a violin string before the note
sounds, or the puff of air that precedes an alto saxophone tone, or the characteristic way the over-
tones of a trumpet tone change strength during the course of a note provide important clues about
what we are hearing.

The sonogram is another way to graph dynamic spectra (figure 2.25). Time is shown on the
x-axis and frequency on the y-axis, and the thickness of the line shows the intensity of the spectral

Figure 2.23
Dynamic spectrum.
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components. The result is a two-dimensional image of the sound that has three-dimensional infor-
mation. This sonogram represents four distinct bird chirps.

2.8.4 Amplitude Envelope

A tone’s partials can be represented using just amplitude, frequency, and time.

■  If we look at these three attributes together, we see the tone’s spectral envelope in three dimen-
sions (figure 2.24). But we can reduce this information to two dimensions by averaging.
■ Averaging the amplitude of each partial separately through time, we get the tone’s static spec-
trum in two dimensions: amplitude vs. frequency (figures 2.21 and 2.22).
■ Averaging the amplitude of all partials together through time, we get the tone’s amplitude envelope
in two dimensions: amplitude vs. time (figure 2.26). Figure 2.26 follows the amplitude contour of
the waveform in figure 2.2.

Clearly, these are just three different views of the same information. 

Figure 2.24
Amplitude, frequency, and time plot of a stringed instrument tone. (Adapted from a drawing in Grey 1975.)
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The amplitude envelope of a note reveals in general how an instrument dissipates the energy it
receives from the player through time as sound. Amplitude envelopes are conventionally divided
into four segments: 

■ Attack, the period of time from silence, when exciting energy is first applied to the instrument,
until the instrument is maximally dissipating its energy. Typical attack times are about 10 ms to
50 ms for most instruments. Energy may flood unevenly through the instrument at first, resulting
in vibrational instabilities that produce, for instance, a scratching sound in violins or a warbling
in brass tones. The ear is highly attuned to these instabilities and uses information about how the
sound starts, grows, and stabilizes to identify the source of the tone.

Figure 2.25
Sonogram of four bird calls.

Figure 2.26
Amplitude envelope of waveform shown in figure 2.2.
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■ Decay, which follows the attack. Some instruments (brasses in particular) decline back to a sus-
tainable level based on the amount of exciting energy being applied continuously.
■ Sustain, the period following the decay. The instrument stabilizes so that the amount of energy
being dissipated matches the exciting force.
■ Release, the final portion of the sound from the moment no more energy is injected into the
instrument until all energy is dissipated and it becomes silent.

Together, this classification is denoted ADSR, named for the initial letters of each segment of
the amplitude envelope. These categories are completely arbitrary and by no means fit the ampli-
tude envelopes of most real instruments playing real music. For example, struck instruments such
as the piano have no sustain segments because they receive no sustaining force after the hammer
strikes the string. Legato performance effects, where an instrument plays overlapping notes, are
not well modeled by this system either. Nonetheless, it is sometimes a convenient shorthand and
quite commonly found in sound synthesizers.

2.8.5 Bands and Bandwidth

A band is a range of frequencies within a spectrum. The bandwidth of a sound is the distance
between upper and lower frequency limits of a sound. The band center of a band is its mean fre-
quency. The bandwidth of human hearing is approximately 17 Hz to 17 kHz. 

Sounds vary enormously in bandwidth. The bandwidth of a jet engine or a waterfall exceeds the
audible spectrum. These are called broadband sounds. The tuning fork has a very narrow band-
width and is called narrowband. Most musical instrument tones lie somewhere between.

2.8.6 Resonance

How is it that a musical instrument or a voice can strengthen one partial and attenuate another?
The answer is that musical instruments are not as efficient at producing some frequencies as
others. Where an instrument has a resonance, it is efficient at producing that frequency, but
where it has an antiresonance, it may be inefficient or unable to vibrate at all. When we make
different vowel sounds with our mouths, we are amplifying certain partials of the broadband
waveform generated in the larynx and attenuating others. By some innate capacity or long expe-
rience (or both), our minds associate a certain profile of strong and weak partials with a
particular vowel.

A formant is a group of frequencies of some particular bandwidth that is emphasized by a res-
onant system. Vowels are vocal formants. Formants may be fixed or variable. For example, good
violins often have a fixed formant, sometimes called the singing formant, with a band center of
approximately 1000 Hz. Diphthongs in speech are actually formant ranges that shift up and down
in frequency, emphasizing higher or lower partials of the sound made by the glottis.

Resonance is involved in the production of sound for virtually every musical instrument. A flute
is driven by the breathy broadband noise coming from the player’s mouth through its fipple. The
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air trapped in the body of the flute tends to resonate only at particular frequencies and captures the
energy from the broadband noise only at these frequencies.

To take a nonmusical example, consider a car driving down a corrugated dirt road. There is a
certain speed of travel that makes the car shudder the most violently from the corrugations: this
is the car’s resonant frequency, that is, the frequency at which the most up-and-down energy from
the wheels passing over the corrugations can be transmitted to the rest of the car and its occupants.

2.8.7 Overtones and Octaves

As shown in figure 2.19, the harmonic series is a linear factor n times the fundamental frequency, pro-
ducing a series of harmonics such as f, 2f, 3f, 4f, 5f, 6f, 7f, . . . . The octave series is an exponential factor

 times the fundamental: f, 2f, 4f, 8f, 16f, 32f, . . . . Figure 2.27 Shows the relation between partials
and octaves. Notice that there are many more harmonics within the compass of the higher octaves.

2.9 Summary

Amazingly, we are able to parse discrete notes out of the ocean of sound surrounding us. And in spite
of the fact that we can’t directly share our private experiences, we’ve developed symbolic systems
to communicate about many things, including music. Common music notation represents notes as
pitch, loudness, timbre, onset, and duration. A score is a collection of notes in time order. Notes are
written on a staff, which also provides clef, key signature, time signature, and metronome mark.

Pitch is how our ears register frequency. Loudness is how our ears register intensity. Timbre
describes either the kind of instrument making a sound or the sound’s quality.

Intervals are characterized by the frequency ratio of two pitches. Intervals include the unison,
octave, perfect, and imperfect intervals, and the dissonances. Scales are made up of collections of
intervals in particular patterns. The diatonic scale is the prototype of modern Western music and
also the foundation for many other musical systems in the world. The modes are simply the

Figure 2.27
Harmonic spectrum and octaves.
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diatonic scale started on a different degree of the scale. The chromatic scale has 12 semitones per
octave. Scales can be played on any starting pitch by using sharps or flats to preserve the interval
order. There are many other nondiatonic scales besides the chromatic scale, including pentatonic,
harmonic minor, melodic minor, Hungarian minor, and the whole-tone scale.

Rhythms are written in terms of how many beats they occupy. Tempo is the beat rate. 
Timbre is the spectrum of frequencies in a tone. Harmonic spectra have an integer multiple spac-

ing between components. Partials are generated by the vibration modes of the instrument. Static
spectra average the strengths of the partials through time; dynamic spectra show each partial at each
moment in time. An amplitude envelope shows the average intensity of all partials through time.
The voice and most instruments have resonances that amplify or attenuate certain vibration modes.
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Alterations of pitch in melodies take place by intervals and not by continuous transitions. We consequently
find the most complete agreement among all nations that use music at all, from the earliest to the latest times,
as to the separation of certain determinate degrees of tone from the possible mass of continuous gradations
of sound, all of which are audible, and these degrees form the scale in which the melody moves. But in
selecting the particular degrees of pitch, deviations of national taste become immediately apparent. The
number of scales used by different nations and at different times is by no means small.
—Hermann Helmholtz, On the Sensations of Tone1

Why are musical scales organized the way they are? Why is most Western music based on scales
made up of seven tones when there are twelve tones per octave? What does “equal-tempered”
mean, and why after all these centuries is it still controversial? What choices have other cultures
made about intonation, and why? What can we learn about ourselves, our music, and our culture
by taking a careful look at the underlying mathematics? This chapter examines one of the most
basic issues of music technology: musical scales, tuning, and intonation.

Certainly, tones and intervals are the primary materials of music. Virtually all music depends
upon playing tones in certain intervals to convey musical ideas. A flexible and convenient way of
describing tones and intervals is therefore fundamental, and this constitutes the main focus of this
chapter. However, what starts out like a walk in the park becomes a surprisingly twisty trail with
some deep insights into the choices our culture has made about the music we want to hear. 

3.1 Equal-Tempered Intervals

The modern equal-tempered scale is a good place to begin because it is so ubiquitous and so simple.
We can use it to develop some basic tools and terminology that will lead the way into a wider dis-
cussion of intonation.

As described in chapter 2, modern Western instruments divide the octave into 12 equal-sized
semitones. This system of tuning is called equal temperament because the frequencies of all inter-
vals are based on one uniform semitone interval.
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We can use equation (2.2), , , to compute the frequencies of the equal-tempered
scale. For some reference frequency fR, we obtain the frequency fk of any equal-tempered interval k
(k = 0, 1, . . ., 11) within the first octave by computing

. Equal-Tempered Intervals (3.1)

For example, the pitch one semitone above fR = 440 Hz is  Hz. The size
of the tempered semitone itself can be expressed as the ratio

. Semitone Interval (3.2)

The nomenclature  means the xth root of z, so  is the twelfth root of 2.

3.2 Equal-Tempered Scale

Table 3.1 shows the conventional assignment of alphabetic letters to the frequencies of the
equal-tempered scale. The table was generated by setting fR = 440 Hz in equation (3.1) and cal-
culating the frequencies of all 12 values of k.

A slight modification of equation (3.1) enables us to create equal-tempered intervals outside of
an octave. In this version,

fk,v = fR ⋅ 2v+k/12, (3.3)

fk,v is the frequency of equal-tempered interval k in octave v. The values of k are the integers
between 0 and 11, and the value of v is any integer. Note that the octaves that v selects are relative
to the reference pitch, fR. That is, v = 0 selects the same octave as fR, while v > 0 selects octaves
above fR and v < 0 selects octaves below fR.

This is unfortunately at odds with the common Western practice of naming octaves after the
order of their appearance on a standard 88-key piano keyboard. In this practice, A440 is in
the fourth piano octave and hence can also be called A4. C4 is called middle C in this system. The

Table 3.1
Frequencies of the Equal-Tempered Scale

k Name Frequency (Hz) k Name Frequency (Hz)

0

1

2

3

4

5

6

A

A#, Bb
B

C

C#, Db
D

D#, Eb

440.000

466.163

493.883

523.251

554.365

587.329

622.253

7

8

9

10

11

12

E

F

F#, Gb
G

G#, Ab
A

659.255

698.456

739.988

783.990

830.609

880.000

fx = fR
.2x x R∈

fk fR=  . 2k/12

f1 fR
. 2 1/12( ) 466.16≅=

21/12

1
----------- 212

1
--------- 1.05946≅=

zx 212

loy79076_ch03.fm  Page 40  Wednesday, April 26, 2006  12:36 PM



Musical Scales, Tuning, and Intonation 41

88-key keyboard ranges from A0 to C8. All we have to do to adopt this practice is to subtract 4
from the exponent of equation (3.3):

fk,v = fR ⋅ 2(v−4)+k /12. (3.4)

For example, given fR = 440 Hz, the frequency of the pitch A4 is 440 ⋅ 2(4−4)+0/12, and the pitch
an octave and a semitone above is Bb5, and its frequency is 440 ⋅ 2(5−4)+1/12.

3.2.1 Constructing an Equal-Tempered Scale

To construct an equal-tempered scale, we must

1. Tie it to a reference frequency like A440

2. Name the intervals of the scale

3. Calculate the frequencies of the intervals from the reference

Choosing the Reference Frequency Piano keys are named by combining their pitch class and
their octave. The octaves start at 0 at the bottom of the keyboard, and the lowest pitch is called A0.
Counting octaves up from A0, middle C corresponds to C4. By convention, we use A440 as the
reference and assign it to the piano key A4.

The Reference Octave Now we must establish a reference octave. Here there is a small diffi-
culty. If the first pitch class in an octave were named A, the first letter in the alphabet, we could
use the A440 reference as both the pitch A4 and the pitch of the start of each octave. But histor-
ically, new octaves begin with the pitch class C. Why the pitch class A was not chosen for this honor
is a mystery shrouded in an enigma, but we’re stuck with it.

The solution is to use equation (3.3) to compute the frequency of C4 based on the pitch of A4.
Then we can use C4 as the reference frequency to deduce all the rest of the frequencies of the
equal-tempered scale.

We can figure out the frequency of middle C this way: if A4 is 440 Hz, then by equation (2.2),
A3 will be 220 Hz. Middle C is three semitones above A3 on the piano. So by (3.3), the frequency
of middle C is

, Middle C (3.5)

which is about 261.626 Hz. To make the following equations a little simpler, let’s define R = C4 =
261.6 Hz. The purpose of introducing R is to let it stand for the reference frequency no matter what
actual frequency it is. For the following examples, we set the reference R to C4, but it could just as
easily be any other frequency, and we’ll choose different values for R when we study other scales.

Defining Scale Intervals Using reference frequency R, we can construct all other equal-tempered
pitches in any octave. To make this slightly more convenient, let’s define the function

, (3.6)

C4 440 . 23 12/

2
-------------------------=

f k v,( ) fk ,v=
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where fk,v is as defined in (3.4). This function takes two arguments:

■ k is an integer signifying one of the 12 pitch classes from C to B numbered 0 to 11.
■ v is the desired octave; octave number 4 corresponds to the fourth piano octave.

We can define a set of symbols for all equal-tempered pitches in all octaves using equation (3.6)
to specify their proper frequencies. For example, we can define the chromatic pitches playable on
a piano as follows:

A0 = f(0, 9), As0 = f(0, 10), B0 = f(0, 11), C1 = f(1, 0), Cs1 = f(1, 1), . . .

C4 = f(4, 0), Cs4 = f(4, 1), D4 = f(4, 2), E4 = f(4, 3), F4 = f(4, 4), . . . B7 = f(7, 11), C8 = f(8, 0).

3.2.2 Equal-Tempered Semitone as a Ratio

In discussing equation (3.1), we saw that in the equal-tempered scale the number 1.05946 . . ., which
corresponds to , is the factor by which the frequency of a tone must be raised in order to obtain
a frequency one semitone higher. Another way to say this is that the interval of a semitone is the ratio
1.05946:1. The advantage of this representation is that it is independent of any particular frequency.
When any frequency is multiplied by the factor 1.05946 . . ., the next semitone in sequence is auto-
matically produced. For example, if A = 440 Hz, then A# = 440 . 1.0595 . . . and so on.

3.2.3 Nonstandard Reference Frequencies

Using the equal-tempered semitone as a ratio allows for construction of scales on nonstandard ref-
erence frequencies as well. For example, we can find a semitone above 450 Hz by multiplying
450 . 1.0595. This can be used to construct equal-tempered scales for antique and nonstandard
instruments that used this reference frequency.

The use of A440 as a standard pitch is a comparatively recent development. Agreement is still
so fragile among musicians that in 1986 the Piano Technicians Guild, an international nonprofit
organization of more than 3500 piano technicians, felt compelled to adopt a resolution calling for
continued worldwide acceptance of A440 as the standard pitch. The Guild summarized the situ-
ation as follows:

The history of musical pitch over the last three centuries has been one of confusion and misunderstanding.
The pitch of  A  has ranged from 312 hertz used in a seventeenth-century church organ to a high of 464 used
by some British military bands at the end of the nineteenth century.

As early as 1834, a congress in Stuttgart, Germany, unsuccessfully attempted to standardize pitch at A-440.
In the early years of this century, a number of groups in the United States formally adopted A-440 as a standard
pitch.

The United States Bureau of Weights and Measures adopted A-440 in 1920, and it was adopted as the world-
wide standard in a treaty signed during an International Standards Association meeting in London in 1939.

Nonetheless, instrumentalists and orchestras continue to demand alternative pitch references,
either to perform antique music or to satisfy the vanity of a particular virtuoso.

212
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3.3 Just Intervals and Scales

Just intervals are intervals made from the ratio of small whole numbers. The only interval that
is just in the equal-tempered scale is the octave, 2/1. But the just scales are based entirely
on such small whole-number ratios. While the creation of scales from small integer ratios is a
very ancient practice,2 the equal-tempered scale emerged from the just scales only in recent
centuries.

3.3.1 Origins of the Just Intervals

Ordinarily, when we hear a musical instrument, our ears fuse its many harmonics into a single
percept that we identify with the source of the sound. However, if we treat the harmonics not as
elements of a composite tone but as simple individual tones, we can view the harmonic series as
a set of intervals. Figure 3.1 shows a harmonic spectrum containing a fundamental at frequency f
and five overtones at integer multiples. The intervals between adjacent harmonics are simply the
ratios of their frequencies, as shown in the figure.

I think it’s amazing that the most important musical intervals are embodied in just the first six
components of the harmonic series. The octave, fifth, and fourth are perfect intervals, and the
major and minor thirds are imperfect intervals (see section 3.8.2).

3.3.2 Adding and Subtracting Intervals

We can use equation (3.1) to add and subtract intervals. If x = 2 in that equation, then frequency fx
will be two octaves above frequency fR. By the distributive law, we can rewrite this as

.

Figure 3.1
Intervals of the harmonic series.
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So to add two octaves to fR, we multiply it by the octave ratio 2/1 twice. This suggests that

Intervals are added by multiplying their ratios.

Let’s test it. The sum of a fifth plus a fourth should be an octave. If we multiply the ratios of the
fifth and fourth:

,

the result is indeed an octave. 
If multiplying ratios corresponds to adding intervals, then dividing ratios should correspond to

subtracting them. From the example we’d expect that subtracting a fifth from an octave should
yield a fourth, and indeed

.

So it follows that

Intervals are subtracted by dividing their ratios.

These rules are a consequence of the exponential relationship between pitch and frequency.
Subtracting an interval from an octave produces its inversion. Thus, in the previous example,

the fifth and the fourth intervals are each other’s inversions.
We can add or subtract an interval to or from itself n times simply by raising its ratio to the power

of n (where n is an integer). For example, (2/1)2 = 4 ascends two octaves, and (1/2)2 = 1/4 descends
two octaves. Similarly, (3/2)n ascends by n fifths, and (2/3)n descends by the same amount.

If we add or subtract an interval to every pitch in a score, we transpose that score. For example,
to raise a melody by a fifth, multiply the ratios of all its pitches by 3/2. To lower it by a fifth, mul-
tiply the ratios of all its pitches by 2/3 = (3/2)–1.

3.3.3 Just Pentatonic Scale

The simplest just scale—one that seems to exist in every human culture—is the just pentatonic
scale. It is very consonant because it has no minor second. We can get a reasonably good idea of
what this scale sounds like by playing only the black keys of a piano. However, the original just
pentatonic scales were based on ratios of small integers, not on the homogenized divisions of the
octave given by the equal-tempered scale as used in pianos. 

The just pentatonic scale can be constructed entirely from the interval of the fifth (3/2). However, there
is a more intuitive way of constructing this scale, involving the fifth and its inversion the fourth (4/3):

1. Start with some pitch, such as C. 

2. Multiply the frequency of C by 4/3 to find the frequency for F. 

3. Mutiply C by 3/2 to find the frequency for G.

3
2
--- . 4

3
--- 2

1
---=

2
1
--- 3

2
---÷  = 4

3
---
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So far we have three pitches, C, F, and G (figure 3.2). We create the remaining two pitches of the
scale, D and A, from the ones we have so far. 

4. To get D, go down a fourth from G. If the upward-going fourth is 4/3, the downward-going
fourth is 3/4. Expressed in ratios, , which simplifies to .

5. To get A, go up a fifth from D: , which equals . Notice that
the interval  is a major sixth up from C.

The full pentatonic scale is shown in figure 3.3 with the octave added. 

3.4 The Cent Scale

The cent scale is a simple means for comparing the size of intervals.3 Where the equal-tempered
chromatic scale divides the octave into 12 degrees, the cent scale divides the octave into 1200
degrees, supplying 100 times the pitch resolution of the equal-tempered chromatic scale. Recalling
the definition of the semitone given in equation (3.2), we can define the interval of 1 cent as

. Cent (3.7)

As a consequence, one semitone is exactly 100 cents. The pitch distance between adjacent cent
intervals is not noticeable to the ear (see sections 6.4.3 and 6.4.5). So, the cent scale serves as a
pragmatic way to compare any musical intervals regardless of how the intervals are derived.

If r is an interval, then the cent size c of that interval is

, Cent Interval (3.8)

Figure 3.2
Pentatonic scale, first step.

Figure 3.3
Just pentatonic scale.
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where log10 x is the logarithm base 10 of x (see appendix A). For example, consider r = 2/1, the
octave. Then we have 

.

Let’s use this to compare the ratios of the just fifth, 3/2, and the tempered fifth, 27/12. The tempered
fifth is exactly 700 cents. By (3.8) the just fifth is 701.955 cents. So the tempered fifth is almost
2 cents flat of a perfect fifth.

To go the other direction from an interval in cent to a ratio,

 Inverse Cent (3.9)

Trivially, if c = 1200, r = 2/1, the octave.

3.5 A Taxonomy of Scales

In order to talk sensibly about all kinds of scales, let’s define the dodecaphonic scale as any scale
with 12 degrees. Dodeca is Greek for “twelve.” Then the equal-tempered scale, also known as the
chromatic scale, is just a kind of dodecaphonic scale.

Similarly, let the heptatonic scale be any scale with seven degrees. By this definition, the scale
made by the white keys of the piano is the equal-tempered heptatonic scale. The diatonic scale
(see section 2.4.2) is a heptatonic scale with a particular order of scale degrees.4 Similarly, the
pentatonic scale is any scale with five degrees, and the black notes on the piano are
the equal-tempered pentatonic scale. Any pentatonic scale built on just ratios is an instance of the
just pentatonic scale.

With these definitions in place, a simple taxonomy of scales can be based on the number of
degrees and whether the scale system is tempered or just (table 3.2).

Table 3.2
Simple Taxonomy of Scales

Intonation

No. of Degrees Just Equal-Tempered

Pentatonic

Heptatonic

Dodecaphonic

Just pentatonic

Just heptatonic

Just dodecaphonic

Equal-tempered pentatonic

Equal-tempered heptatonic

Equal-tempered dodecaphonic

c = 1200 . log10 2

log10 2
---------------- 1200=

r 10

c
1200/log10 2
-------------------------------- 

 

=

. . .

. . .

. . .

loy79076_ch03.fm  Page 46  Wednesday, April 26, 2006  12:36 PM



Musical Scales, Tuning, and Intonation 47

3.6 Do Scales Come from Timbre or Proportion?

In section 3.3.1, we saw how the perfect intervals and the major and minor thirds are all present
in the first six partials. This is such a striking coincidence that it has led some to wonder if perhaps
the goal of the early music engineers might have been to fashion scales from these ratios. I call this
the deductive scale conjecture—that scales were deduced from the nature of the harmonics. This
conjecture is disputed by some. In his book Genesis of a Music (1947, 87), Harry Partch states,
“Long experience . . . convinces me that it is preferable to ignore partials as a source of musical
materials. The ear is not impressed by partials as such. The faculty—the prime faculty—of the ear
is the perception of small-number intervals, 2/1, 3/2, 4/3, etc. and the ear cares not a whit whether
these intervals are in or out of the overtone series.”

The earliest known research in the West on musical scales was conducted by Pythagoras
(ca. 580–500 B.C.E.) and his followers. We know that the Pythagoreans viewed music as a branch
of science and believed that the construction of musical scales should proceed out of an analogical
process that related, for example, the periodic movements of a string to the periodic movements
of the planets. They weighed the distances between planets the same way they weighed the divi-
sions of a musical string, namely by the study of ratio and proportion. Figure 3.4 shows an inter-
pretation by Robert Fludd (a contemporary of Johannes Kepler) of the relation between the
harmony of the spheres and the proportional divisions of a string.5 

Figure 3.4
The cosmic monochord of Robert Fludd.
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From the Pythagorean perspective (shared by Partch), the important thing about a musical scale
is its proportionality—how it divides up the unity of a string—not the relationship between that
proportionality and any physical artifact such as the overtone series. 

From this evidence, one might argue that scales developed out of the mathematics of proportion.
I call this the inductive scale conjecture—that scales are a free creation of the human mind, based
on ratio and proportion. According to this conjecture, the scales are Platonic archetypes, and phys-
ical musical instruments are imperfect instances of these archetypes that are manifested in the
world by way of human creativity. 

Of course, these are only conjectures. The truth of how the scales actually developed is lost in the mists
of time. Are the scales derivative of the overtone series or derivative of mental constructions of propor-
tionality? Is the prime faculty of the ear the perception of small-number intervals or the perception of
harmonics? I argue it both ways in this chapter because there is plenty of evidence for both perspectives. 

It is evident that musical scales are free creations of the human mind because they do not occur
in nature. It is at least a striking coincidence that they align in their principal dimensions with the
harmonic sequence. Perhaps it was the very numinosity of this coincidence that compelled the
Pythagoreans to study this subject in the first place.

3.7 Harmonic Proportion

Pythagoras is credited by ancient Greek writers with having discovered the intervals of the octave,
fifth, fourth, and double octave (4/1). Pythagoras and his followers attached great numerological
significance to the fact that these most harmonious intervals were constructed strictly from ratios
of the consecutive integers 1, 2, 3, and 4. They were also impressed by the fact that these intervals
formed a sequence of superparticular ratios, that is, ratios of the form (n + 1)/n :2/1 (octave),
3/2 (fifth), and 4/3 (fourth). They found mystical significance in the fact that by their nature super-
particular ratios pair an even and an odd number. They also noted that small integer superparticular
ratios seemed to be the most harmonious. These observations became permanent fixtures in the
minds of music theorists for the next two thousand years.

The means Pythagoras used to construct his scale can be stated as follows. He started with a divi-
sion of the string into 12 equal parts. 

1. The octave is the ratio 12:6.

2. The fifth is found by taking the arithmetic mean of the octave, defined as x = (a + b)/2. Thus,
(12 + 6)/2 = 9, and the ratio 12:9 = 3:2 is the fifth.

3. The fourth is found via the harmonic mean, defined as x = 2ab/(a + b). Thus, (2 ⋅ 12 ⋅ 6)/
(12 + 6) = 8, and the ratio 8:6 = 4:3 is the fourth. 

Pythagoras combined these results into what he called the harmonic proportion, 

12:9::8:6, (3.10)

which he took to be the foundation of all music.
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3.8 Pythagorean Diatonic Scale

The scale that eventually came to be associated with Pythagoras adds two more pitches, E and B,
to the just pentatonic scale to produce the Pythagorean diatonic scale. Although it can be built
entirely from fifths, using its inversion the fourth helps keep its construction simple.

1. Construct a pentatonic scale.

2. Add pitch E by going down a fourth from A: 

.

3. Add pitch B by going up a fifth from E:

.

The Pythagorean scale is shown in figure 3.5.
We can create a set of functions to produce the frequencies of the Pythagorean diatonic scale just

as we did for the equal-tempered scale (see section 3.2.1). As before, we need a reference fre-
quency, a reference octave, and the intervals.

1. Start from A440. The reference frequency R = 440 Hz. 

2. Build the scale so that when v = 4 frequencies are in the fourth piano octave. We want to create
a function that takes the octave v as its argument and gives Pythagorean C in any octave. How do
we go from A440 to Pythagorean C? The answer is in figure 3.5. We subtract the interval of a major
sixth, the distance from A down to C, by multiplying A by 16/27:

. (3.11)

Because we are using integer ratios, we end up with a different frequency for middle C than the
equal-tempered scale (260.741 Hz). I introduce the notation Cπ to distinguish the “πthagorean” C
from the equal-tempered C. Pythagorean middle C is Cπ4.

Figure 3.5
Pythagorean scale.

E 27
16
------ . 3

4
--- 81

64
------= =

B 81
64
------ . 3

2
--- 243

128
---------= =

Cπ v( ) R . 16
27
------ . 2v−4=

2
3

1
2
--- 9

8
--- 81

64
------ 4

3
--- 3

2
--- 27

16
------ 243

128
--------- 2

1
---

C D F GE (C)A B
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3. Finally, create interval frequency functions:

, 

, 

, . . .,

where v is the desired octave.
Hearing early music played with just intervals can sound transcendentally beautiful, especially

if the intervals are played accurately. Music in the Middle Ages was mostly written using the
Pythagorean scale, and the just ratios seem to lend this music a refreshing, crisp air.

But there are two significant problems with the Pythagorean scale that musicians have histor-
ically disliked: some of its intervals are not musically pleasing because they do not align with the
harmonic series, and it is awkward to transpose.

3.8.1 Intervals of the Pythagorean Diatonic Scale

Figure 3.6 shows the Pythagorean scale with intervals between the pitches. The top row shows the
intervals built up from Cπ. The bottom row shows the sizes of the intervals, that is, the difference
between adjacent intervals. Recall that intervals are subtracted by dividing their ratios. For exam-
ple, the interval of the whole step C:D is

. 

The whole step D:E is

. 

The half step E:F is

. 

The rest of the intervals follow this pattern.

3.8.2 The Syntonic Comma

The interval of the third in the Pythagorean scale was considered a dissonance in the Middle Ages,
and as a result compositions would typically omit the third in the final chord of a composition so
as to end only with perfect intervals—fourths, fifths, and octaves—an effect that sounds hollow
to modern ears. 

Fπ v( ) Cπ v( ) . 4
3
---=

Gπ v( ) Cπ v( ) . 3
2
---=

Dπ v( ) Cπ v( ) . 9
8
---=

9/8
1/1
-------

81/64
9/8

------------- 9
8
---=

4/3
81/64
------------- 256

243
---------=
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The reason the third was considered dissonant is that all the Pythagorean major thirds (C:E,
F:A, and G:B) use the 81/64 ratio, which is not the same as the 5/4 major third that occurs nat-
urally in the overtone series. The three Pythagorean major thirds are a little sharp of the 5/4 major
third; hence they don’t line up perfectly with the overtones of harmonic instruments, causing a
roughness in the sound because of beats (see section 6.7). This imperfection in the otherwise
beautifully symmetrical edifice of the Pythagorean scale was irritating enough to be given a
name. The ratio of

 

is the Syntonic comma, also known as the comma of Didymus. It is the amount by which
the Pythagorean major thirds are out of tune with the 5/4 major third of the overtone series.
The Pythagorean major third is about 21.5 cents sharp, about a fifth of a semitone, which
is easily noticed. The same problem afflicts the Pythagorean minor third, the major and
minor sixths, and the major seventh and minor second. Only the perfect intervals are exactly
aligned with the overtone series. Perhaps this is where the nomenclature of “perfect/imperfect”
originated.

3.9 The Problem of Transposing Just Scales

Suppose we have a song that was arranged for a high female voice, but we only have a low female
voice available. Unless, trivially, we could just drop the pitch of the song an entire octave to solve
the problem, it is necessary to transpose the music by some interval so that it lies within the avail-
able vocalist’s range. If all we have is the diatonic Pythagorean scale, we have only two less-than-ideal
work-arounds:

■ Retune all accompanying instruments to a new reference frequency R.
■ Transpose to a different key within the Pythagorean scale.

Retuning instruments is at least nontrivial, and for some instruments impossible, and is to be
avoided. So the only realistic alternative is transposition.

Figure 3.6
Pythagorean scale with intervals.

C D E F G A B (C )

1
1
--- 9

8
--- 81

64
------ 4

3
--- 3

2
--- 27
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------ 243
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--------- 2
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---
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8
--- 256

243
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8
--- 9

8
---

9
8
--- 256

243
---------

: : : : : : :

1 2 3 4 5 6 7 8

81
64
------ 5

4
---÷ 81

80
------=
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To achieve a transposable tuning system, one might naively think that all we must do is extend
the Pythagorean scale to 12 degrees using the method of adding and subtracting intervals. Then
one could transpose music to any chromatic degree as we do with the modern equal-tempered
scale. Let us test this idea by constructing the dodecaphonic Pythagorean scale.

3.9.1 Pythagorean Dodecaphonic Scale

All the intervals in the Pythagorean dodecaphonic scale can be generated from the interval of the
fifth (3/2) raised to integer powers. 

1. Beginning with (3/2)0 = 1, labeled C, ascend and descend by six fifths in both directions. The
spelling of the scale degrees (whether they are sharp, flat, or natural) is determined by the direction
of interval movement. Since we start at C, we move up a fifth to G, and so forth. Eventually the
interval of a fifth above B is F#. Similarly, going down by fifths from C, the fifths below F are Bb,
Ab, and so forth. Note that at the extremes we have a low Gb at 64/729 and a high F# at 729/64.

2. Add or subtract octaves from these intervals until they lie within the compass of one octave
(remembering that adding intervals is multiplying their ratios).

3. Arrange the intervals in ascending order of magnitude, and add the unison and octave. 

Observe in figure 3.7 that the dodecaphonic Pythagorean scale contains within it all the intervals of
the just pentatonic scale and the Pythagorean diatonic scale. This shows that the interval of the fifth
underlies all of these scales. This method of generating fifth-based just scales can be extended to any
number of degrees. Interestingly, the magnitude of the ratio for F# (1.42) makes it sharper than Gb (1.40). 

Note that there are actually 13 degrees in this scale as constructed, because we have two kinds
of tritone intervals that are slightly different (F# and Gb). In the equal-tempered scale, the augmented
fourth F# and diminished fifth Gb are equal (see section 2.5), but in the Pythagorean dodecaphonic
scale they are not, and it is ambiguous which should serve as the tritone. On some historical key-
board instruments, the black key between F and G was actually split in two, with F# on one side
and Gb on the other, rather than throwing one of them out. More often, one or the other was simply

Powers:

Ratios:

Degrees: Gb Db Ab Eb Bb F C G D A E B F#

3
2
---

 
 
  6– 3

2
---

 
 
  5– 3

2
---

 
 
  4– 3

2
---

 
 
  3– 3

2
---
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  1– 3

2
---

 
 
  0 3
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  1 3
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  3 3
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  6
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left out. But if F# is left out, the fifth between Gb and B is not a just 3/2 fifth. It is called a wolf fifth
because the beating between the interval and the overtones makes it sound unpleasantly like
wolves howling. And if Gb is left out, some of the thirds and sixths are not harmonious either. 

The tritone was called by medieval music theorists the diabolus en musica, “the devil in music,”
not just because of its dissonant sound but because of the ambiguity of its ratios and the enormous
numeric sizes of those ratios.

4. For the final step, determine the interval sizes by subtracting the lower interval from its upper
neighbor (remembering that subtracting intervals is dividing their ratios). 

Notice in figure 3.8 that there are two semitone intervals, a smaller interval with ratio 256/243,
called the Pythagorean diatonic semitone, or limma, and a larger interval with ratio 2187/2048,
called the Pythagorean chromatic semitone, or apotome. The ratio of these two semitones is

,

Figure 3.7
Pythagorean chromatic scale.

Figure 3.8
Chromatic Pythagorean scale with intervals.
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the Pythagorean comma. The difference between these two semitones is 23.46 cents, about a fifth
of a tempered semitone. Notice that this is also the ratio between Gb and F#, the two tritones. Coin-
cidently, this is also the amount by which the interval of 12 fifths differs from seven octaves as we
will subsequently see.

The intervals from F to F# and from Gb to G both use the 2187/2048 semitone.
Studying figure 3.8, we see that if we could only get rid of that pesky Pythagorean comma and

somehow make Gb = F#, we would have a self-consistent circular scale system built out of just
ratios. Then it would be possible to transpose to any key and remain in tune. This possibility under-
lies the entire motivation for the development of tempered tunings.

3.9.2 Impact of Polyphony on Just Scales

Besides bringing music into a more playable range, transposition has become a powerful organiz-
ing principle in music over time. Throughout the last eight centuries, Western composers have
become increasingly enamored of polyphony, the art of sounding more than one melody line at the
same time. In the process, they have sorted out which combinations of pitches sound good together
and which don’t, and figured out how to harmonize multiple musical lines and chords. Out of this
arose harmony theory, which is the art of arranging multiple concurrent musical lines to reinforce
a feeling of harmonic movement and arrival, suspension and resolution. Most classical music, and
virtually all popular music, still follows rules of harmony first set down centuries ago.

The effective key signature of a musical work can change through the introduction of accidentals
not in the original key signature. This is musical modulation. For example, a melody started in the
key of C major might modulate to the key of G major by introducing F#, and then eventually mod-
ulate back to C major by reintroducing Fn (see section 2.5.5). Modulation became an important
organizing principle for music in the Baroque and later eras. Over time, composers sought to mod-
ulate to remote keys with more sharps and flats. But the irregular interval sizes of the dodecaphonic
Pythagorean scale limited music from being freely transposable to arbitrary keys because playing
music in some keys sounded better than in others. As modulation became increasingly important
to composers, the need for freely transposable tuning systems became urgent. Theorists began
searching for solutions to the problems of the Pythagorean scale.

3.9.3 Natural Chromatic Scale

It has been well known to music theorists from antiquity that if left to their own devices, singers (and
other performers, if their instruments would allow) eschew the Pythagorean thirds and sixths where
possible and prefer intervals that align with the harmonic series to improve the sonority of the perfor-
mance. As early as the second century, the Greek scientist, mathematician, and geographer Claudius
Ptolemy proposed a just intonation system that would reflect what musicians actually played.6

Following Ptolemy’s lead, let’s find out just how far from the 5/4 major third the Pythagorean
major third actually is. The answer is

,  81
64
------ 5

4
---÷ 81

80
------=
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the Syntonic comma.7 Then how far is the Pythagorean minor third from the 6/5 minor third? The
answer is

, 

again the Syntonic comma. In fact, the out-of-tune Pythagorean major and minor sixths as well as
the too-sharp major seventh and too-flat minor second are all exactly one Syntonic comma away
from ratios of much smaller integers that are in the overtone series and have a more agreeable sound.

What if we subtracted a Syntonic comma from all the Pythagorean intervals that are too sharp
and added it to the ones that are too flat? This would rectify all the intonational difficulties of the
Pythagorean scale in one fell swoop. Mathematically, we’d substitute ratios of much smaller inte-
gers, and musically we’d align the scale degrees with the harmonic series. Ptolemy called this the
Syntonic diatonic scale (table 3.3). The Pythagorean diatonic scale and the interval differences
between the two scales are shown in the table.

Ptolemy’s practical concern in designing this scale was to make the intervals agree with musical
practice. But he also noted approvingly that the ratios of the scale are all superparticular ratios (see
section 3.7). Ptolemy combined the best of both worlds: a practical scale that also contains more
superparticular ratios than does the Pythagorean scale (Berkert 1972).

The chromatic version of this scale is shown in table 3.4, together with the dodecaphonic
Pythagorean scale. The third row shows the interval differences between them. I call this the

Table 3.3
Ptolemy’s Syntonic Diatonic Scale

C D E F G A B (C)

Syntonic diatonic

Pythagorean diatonic

Difference

Table 3.4
The Natural Chromatic Scale

Semitone
1
C

2
C# 3

D
4
Eb 5

E
6
F

7
F# 8

G
9
Ab 10

A
11
Bb 12

B
(13)
(C)

Natural chromatic

Pythagorean dodecaphonic

Difference

6
5
--- 32

27
------÷ 81

80
------=

1
1
---

1
1
---

1
1
---

9
8
---

9
8
---

1
1
---

5
4
---

81
64
------

80
81
------

4
3
---

4
3
---

1
1
---

3
2
---

3
2
---

1
1
---

5
3
---

27
16
------

80
81
------

15
8
------

243
128
---------

80
81
------

2
1
---

2
1
---

1
1
---

1
1
--- 16

15
------ 9

8
--- 6

5
--- 5
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--- 4

3
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------ 3
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--- 8

5
--- 5
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9
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1
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--- 256
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3
--- 729

512
--------- 3

2
--- 128
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--------- 27
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------ 16

9
------ 243

128
--------- 2

1
---

1
1
--- 81
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------ 1

1
--- 81
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------ 80
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------ 1

1
--- 32,768
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---------------- 1

1
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------ 80
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--- 80
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natural chromatic scale. It was championed by Bartolomé Ramos (1482). Figure 3.9 provides a
visualization of the differences. 

For various religious and political reasons, Ptolemy’s proposal was ignored and even suppressed
during the next dozen centuries or so. Pope John XXII even issued a papal bull in 1324 that ban-
ished from the church music using such lascivious intervals (see appendix A). 

The natural chromatic scale sounds very consonant. But ultimately it fares no better than the
Pythagorean scale for modulation and transposition. Consider the fifth from D to A, which is 

, 

about 21.5 cents flat of the 3/2 perfect fifth. A triad built on D certainly sets the wolf tones howling.

3.10 Consonance of Intervals

I’ve said that the intervals signify such qualities as identity, equality, and individuality (see sec-
tion 2.3.3). Another important way we characterize the intervals is by how pleasing or disagreeable
their sound is to us. While some intervals are harmonious, others, such as the wolf fifth, set our
teeth on edge. Table 3.5 shows the just intervals ordered from most to least pleasant, based on the
conventions of Western music theory. The musical term for “pleasant” is consonant, which comes
from Latin consonare, “sounding well together.” The intervals toward the top of table 3.5 are con-
sonant; the intervals toward the bottom are dissonant.

3.10.1 Foundations of Consonance

What is the basis for the effect of consonance or dissonance? Is it something inherent in the inter-
vals, or is it in our perception? If we believe consonance is in the intervals, we should examine their
mathematical properties. If we believe that consonance is in our perception, we should examine
how we hear the intervals. I take up the latter approach in chapter 6. Here let’s pursue two ques-
tions: Is there a mathematical basis for the ordering of intervals from consonant to dissonant? Is

Figure 3.9
Pythagorean chromatic and natural chromatic scales compared.
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there a mathematical basis for the categorization of the intervals into perfect, imperfect, and
dissonant?

A successful metric of consonance must

■ Decrease monotonically in proportion to increasing dissonance8

■ Self-evidently partition intervals into the relevant categories, such as perfect, imperfect, and dissonant

Can we discover or invent an analysis of the traditional interval order (table 3.5) that explains the
order and classification numerically?

Concurrence Giovanni Battista Benedetti (1530–1590) is perhaps the first to relate pitch and
consonance to frequencies of vibration. In two letters he wrote around 1563 to composer Cipriano
de Rore, he related interval consonance to the frequency of wave coincidence between two tones.
He observed that an interval consists of a shorter wavelength (higher pitch) and a longer wave-
length (lower pitch), and argued that the wavelengths of more consonant intervals coincide more
often than do those of more dissonant intervals.

Let’s call the time required for the waveforms of an interval to coincide its precession time.
For example, if one bicycle wheel requires two seconds to turn once around and another requires
three seconds, their frequencies form the interval of a fifth, 3/2, and the wheels precess against
each other (that is, the faster one overtakes the slower one) every 2 . 3 = 6 seconds (figure 3.10).
Benedetti’s hypothesis is that consonance decreases as precession time increases. When the

Table 3.5
Just Intervals Ordered by Decreasing Consonance

Name Ratio Sum Prime Factor Limit

Perfect Intervals

3-limit

1

2

3

4

Unison

Octave

Fifth

Fourth

1/1

2/1

3/2

4/3

1 + 1 = 2

2 + 1 = 3

3 + 2 = 5

4 + 3 = 7

1

2

3/2
22/3

Imperfect Intervals

5

6

7

8

Major sixth

Major third

Minor third

Minor sixth

5/3

5/4

6/5

8/5

5 + 3 = 8

5 + 4 = 9

6 + 5 = 11

8 + 5 = 13

5/3
5/22

(2.3)/5
23/5

Dissonant Intervals

5-limit9

10

11

12

13

Major second

Major seventh

Minor seventh

Minor second

Tritone

9/8

15/8

16/9

16/15

64/45

9 + 8 = 17

15 + 8 = 23

16 + 9 = 25

16 + 15 = 31

64 + 45 = 109

32/23

(3.5)/23

24/32

24/(3.5)

26/(32.5)
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intervals are ordered by this criterion, their sequence from consonant to dissonant is 2:1, 3:2, 4:3,
5:3, 5:4, 6:5, 7:5, 8:5, and so on (figure 3.11). Note that these ratios are not strictly superparticular
and that by Benedetti’s metric, the unused interval 7:5 is more consonant than the major sixth. 

Benedetti’s theory challenged two ancient dogmas. First, his theory suggested that consonance
and dissonance are relative, not categorical, terms. Second, his theory implied that superparticular
ratios were not somehow tonally superior to other ratios.

Benedetti’s ideas were later developed by Isaac Beeckman (1588–1637) and by Marin
Mersenne (1588–1648) in Harmonie Universelle (1635). Benedetti’s approach shows an orderly
progression from consonance to dissonance, so it passes our first criterion for consonance. But it
does not suggest a way to partition the intervals into perfect, imperfect, and dissonant; indeed, it
predicts that there is no such criterion.

Additive Dissonance Metric The Sum column in table 3.5 shows the sums of the numerator and
denominator of the ratio of each interval appearing in the Ratio column. For instance, the ratio of
the fifth is 3/2, and 3 + 2 = 5.

This additive dissonance metric is monotonically related to dissonance. Figure 3.12 plots the
interval number ordered by dissonance (in the order given in the first column in table 3.5) from
unison to minor second on the x-axis against the sum of each numerator and denominator on the
y-axis. The curve takes a significant jump upward from the minor second (31) to the tritone (109),
so I indicated the tritone to the side rather than plotting it. The fitted curve in the background is
just an aid to help join the points.9

Because this additive dissonance metric increases monotonically with increasing dissonance, it
meets the first criterion for a dissonance metric. However, because the curve is gradual (until it gets
to the tritone), it does not suggest how to partition the intervals into perfect, imperfect, and dis-
sonant, so it fails the second criterion.

Partitioning Dissonance Metric Any whole number greater than 1 can be factored into a prod-
uct of primes raised to powers, for example, 8 = 23, 47 = 471, , 49 = 72.

Prime numbers are whole numbers greater than 1 that are not divisible by any other number
besides themselves and 1. (By convention, 1 itself is not considered to be prime.) For example, 2,
3, 5, and 7 are primes, but 4, 6, 8, and 9 are not because at least one prime divides them evenly.
Similarly, 47 is prime, but 48 and 49 are not. 

Figure 3.10
Precession of 2 against 3.
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Figure 3.11
Precession time for various intervals.

Figure 3.12
Additive dissonance metric.
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The Prime Factor column in table 3.5 shows each interval as a ratio of the products of prime
numbers raised to powers. For example, the major second ratio is 9/8, therefore the prime factor
of the major second is 32/23. Notice that the more dissonant intervals tend to involve larger primes
and higher powers. The perfect intervals involve only the small prime numbers 2 and 3. The more
dissonant intervals involve 5 as well (with the exception of the major second and minor seventh).
None of the just intervals shown in table 3.5 use 7 or the higher primes.

In spite of its limitations, there seems to be some historical justification for this metric. The per-
fect intervals—those built from primes 2 and 3 only—were the first ones favored by early scale
builders. Ratios of prime factor 5 began appearing around 400 B.C.E. The exclusion of primes
higher than 5 to build musical ratios is called the five-limit by the composer Harry Partch in his
book Genesis of a Music (1947). The five-limit has only been transcended in recent centuries.
Partch used an eleven-limit system of ratios in the construction of his scales. These days, if a scale
is said to be n-limit, this means that the highest prime factor of any interval in the scale is n. 

Attempts to order and classify consonance using strictly numeric rules are fine as far as they go.
But while we generally agree as to the consonance of the perfect intervals, opinions vary widely
as to the relative consonance or dissonance of the others, and no one metric seems to sum it all up. 

Consonance appears to be influenced, but not determined, by underlying psychophysical prin-
ciples we all share. It seems as well to be a matter of taste decided differently by each musical cul-
ture and each age. The harmonies in the chorales of J. S. Bach, for example, do not strike the
modern ear as particularly dissonant; however, listeners of his age sometimes found them shock-
ing. A similar progression has occurred with the music of Mozart, Beethoven, Wagner, Mahler,
Debussy, Stravinsky, Schoenberg, among others. So where intervals are concerned, it seems that
familiarity breeds consonance.

Its highly contextual nature suggests that attempts to classify consonance without regard to the
fundamentals of auditory perception are doomed. So let’s defer further judgment until chapter 6.

3.10.2 Natural Major Scale

Ptolemy’s idea of a natural musical scale, first revived by Ramos, were rediscovered again in the early
Renaissance and championed by medieval theorists, including Lodovico Fogliano in Musica Theo-
retica (1529). Around that time, the famous Renaissance music theoretician Gioseffo Zarlino
(1517–1590), in Institutioni Armoniche (1558), used the same basic ideas to create a scale based on
the ratios 4:5: 6, which form a just major triad. If we take 4/4 as the root of the triad, the major third
above is 5/4, and the fifth above is 6/4. This triad incorporates the major third (5/4), minor third (6/5),
and perfect fifth (6/4 = 3/2). While the Pythagorean scale was built from the integers 1 to 4, this scale
uses integers 1 to 6. Zarlino called this set the numero senario and, like the Pythagoreans, found a
mystical significance in it and sought to establish it as the proper foundation of harmony.

There are three major triads in the just diatonic scale: C:E:G, F:A:C, and G:B:D (figure 3.13).
In Zarlino’s scale, the frequencies of these three triads are perfectly in agreement with the harmonic
overtone series. Notice the presence of the prime number 5 in the 4:5:6 ratio, making this a
five-limit scale.
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To construct the frequencies for the natural major scale, we create new pitches out of ones we’ve
established already:

1. Find E from C:

, or .

2. Find G from C: 

, or .

3. Find F from C2:

, or .

4. Find A from F:

, or .

5. Find B from G: 

, or .

6. Find D2 from B: 

, or .

7. Find D: 

, or .

Figure 3.13
Natural major scale.
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Figure 3.14 shows the natural major scale with intervals between the pitches in the bottom
row.

Although the natural major scale succeeds at making the thirds consonant with the harmonic
series, it does so at the expense of the whole steps, which now are uneven in size. Some whole steps
are 9/8, but others are 10/9. Whereas in the Pythagorean scale the major thirds were “too big,” here
some of the whole steps are “too small.”

3.10.3 Natural Minor Scale

As we saw with the natural major scale, the ratios of the major triad are the ratios 4:5:6. The major
triad consists of a reference frequency R plus a major third up, R . (5/4), plus another minor
third up, 

. 

Figure 3.15 shows the pitch ratios of a major triad plus the octave. Notice that the order of the
intervals is

,

that is, a major third, a minor third, and a perfect fourth. 

Figure 3.14
Natural major scale with interval sizes.

Figure 3.15
Major triad.
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We could create a just minor scale if we could reverse the order of the 5/4 and the 6/5 intervals,
creating a triad in the order minor third, major third, perfect fourth. Then we’d have something like
this:

.
 

But what are the ratios of the pitches in this case? We’re looking for something like the integer ratio
4:5:6 but that produces a minor triad. Suppose we just stack up what we want the order to be, like this:

.

This produces the right sequence of minor third, major third, and perfect fourth, but the ratios don’t
come out as whole numbers:

, 

expressed as decimal fractions is 1:1.2:1.5:2.
Since this is not a ratio of integers, it can’t be the basis of a proper just scale. But we could salvage

this and make it into a ratio of integers just by multiplying all ratios by 10, like this: 10:12:15:20.
With this ratio, we can properly form the just minor scale (figure 3.16).

3.10.4 Mean-Tone Tempered Scale

Another transitional attempt to create a transposable scale based on simple integer ratios was the
mean-tone tempered scale. It is a fascinating exercise in music engineering. 

Temperament represented a radical departure from the just scales of the past. I’ve already used
the term to refer to the equal-tempered scale. In this context, tempering means the practice of
adjusting some of the degrees of the scale to “irrational” values so as to fit within an overarching

Figure 3.16
Just minor scale.
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order that is still based on simple integer ratios. The meaning of temperament is the same for the
equal-tempered scale, but there the application is to all pitches of the scale uniformly.

But what does “irrational” mean? A rational number is a number that can be represented as a
ratio of two integers. The value of π is irrational because there is no ratio of integers that can pre-
cisely represent it. Another example of an irrational number is .

Constructing a Mean-Tone Tempered Scale The mean-tone tempered scale starts with the
same three natural major thirds that were used for the natural major scale. Five whole tones and two
semitones are derived from the thirds. The goal is to use only perfect 5/4 major thirds so as to preserve
consonance across transposition and modulation. The intended improvement over the natural major
scale is to do something about those pesky uneven whole steps by bending, or tempering, them to fit.

We can develop the mean-tone tempered scale in the following way:

1. As with the natural major scale, we want to have three pure 5/4 major thirds between C:E, F:A,
and G:B (figure 3.17). We still need to nail down the relation between D and its neighbors C and
E, and we must do the same for G and its neighbors F and A.

2. We tackle the major seconds between C:D:E, F:G:A, and G:A:B. Here’s where the tempering
comes in. What if we simply cut the interval of the pure 5/4 major third in half to create two whole
steps, that is, if we took the mean value of a pure major third? (This is where the scale gets its name.)
What is its mean value? It wouldn’t be 5/8, the arithmetic mean, because pitch is exponential in
frequency. To add intervals we must multiply their ratios, and we are looking for one ratio that
when multiplied by itself (that’s the clue) adds up to a 5/4 major third. Such a ratio would be a uni-
form division of the major third. What we are looking for is , the geometric mean. This allows
us to fill in the major seconds (figure 3.18).  

3. We must figure out the interval size of the two minor seconds, E:F and B:C. Until we define
them, we have two disconnected islands of tonality, C:D:E and F:G:A:B. We must create
two equal-sized half steps that fill in the difference between the sum of the whole steps and
the octave. Fortunately, the minor seconds yield to the same logic that created the major
seconds.  

There are two gaps in our scale that we want to fill with minor seconds. Let s be the (as yet unde-
fined) size of a minor second. We need two such minor seconds, or s2, because when we add intervals

Figure 3.17
Constructing the mean-tone scale, step 1.

C : D : E : F : G : A : B : C2
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--- 5

4
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5
4
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2

5/4
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we multiply their ratios. We observe that there are five whole steps of size . We want two semi-
tones of size s plus five whole steps of size  to add up to an octave of size 2/1. An informal equa-
tion for this might read, 2 semitones + 5 whole steps = octave. That translates into the equation

. 

Now we solve this for s, as follows. 
Take the square root of both sides:

. 

Isolate s: 

. (3.12)

The entire scale can now be constructed (figure 3.19).

Figure 3.18
Constructing the mean-tone scale, step 2.

Figure 3.19
Mean-tone tempered scale.
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So, after all this mathematical heavy lifting, what does this scale sound like? Was it worth the
effort? Well, the improved uniformity does allow for greater transposition, but in the end (of
course) we still have problems: the fifth is no longer a simple 3/2. The half steps and whole steps
are not simple either, so we’re really no closer to having a scale that can transpose and that also
lines up with musical instrument harmonic overtones.

3.11 The Powers of the Fifth and the Octave Do Not Form a Closed System

If we step back to look at all these efforts over the centuries to build the perfect scale, it’s as though
we were trying to build a bridge but couldn’t ever find a design that was sufficiently proportional.
There’s always a piece that doesn’t fit. My impression of the mean-tone scale is that it’s like a
carpentry project gone awry: the main boards are cut right, but the carpenter had to bend the rest
into place and forcefully nail them down or they would spring loose again.

The problem is, simple integer ratios don’t line up the way we’d like. For instance, as we trans-
pose around the circle of fifths, we logically expect to come back to our starting key. That is, start-
ing on C, if we go up by fifths, we expect to return to C in a higher octave:

But if we use the simple 3/2 ratio to go up by fifths, and use the 2/1 to go up by octaves, the two
series don’t end up on the same frequency for C at the top. As we go through the 12 keys, we’re
adding fifths, which means we multiply their ratios. Twelve fifths would be (3/2)12 = 129.746,
which is just a little over seven octaves. But seven octaves exactly would be (2/1)7 = 128. So they
don’t line up. Stated another way, 

. 

In fact, it can be proven that there are no integers m and n such that

, (3.13)

apart from the trivial solution m = n = 0. Contrary to the wishes of scale builders and musicians from
antiquity to the present, the powers of the integer ratios 3/2 and 2/1 do not form a closed system.

If there is no exact solution to (3.13), then what about approximate solutions? How close to equal
can we get for any possible combination of m and n? The optimal solution appears to be m = 12,
n = 7. The interval corresponding to this choice of m and n is

 cents (3.14)

C, G, D, A, E, B, F#, C#, Ab, Eb, Bb, F, C.

3/2( )12

(2/1)7
----------------- 1≠

3
2
--- 

  m 2
1
--- 

  n
=

(3/2)12

(2/1)7
---------------- = 1.01364 = 23.46
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Recall from section 3.9.1 that the ratio in (3.14) is known from antiquity as the Pythagorean
comma. While the distance by which the interval of 12 fifths misses seven octaves is a mere
23.46 cents, in this case, a miss is as good as a mile.

It seems that simple integer ratios raised to arbitrary powers don’t necessarily form a closed sys-
tem and that the particular case of interest, (3/2)m = (2/1)n, has no solution. The significance of this
is that making a closed cyclic scale system based on multiples of fifths and octaves can’t be done
with simple integer ratios. A closed scale system is required in order to allow music to be trans-
posed to any key and still sound in tune, so a transposable scale based on small integer ratios is
impossible, and a tempered scale must be used if transposing is really that important.

The less the intervals of a scale are tempered the better, because then the tempered intervals will
sound less dissonant against the harmonic overtone series. The Pythagorean comma suggests to
the tempered scale developer where best to close the cycle of fifths and octaves. If 12 fifths are flat-
ted to equal seven octaves, the overall distortion in the fifths will be only 23.46 cents. This is the
rationale for building the equal-tempered scale with 12 semitones.

Is there any other combination of m and n that comes closer to unity than the Pythagorean
comma? Suppose we evaluate

 

for values of m and n over some range, say, 0 to 100 each, looking for scale systems that come as
close or closer to unity than does the scale system for m = 12, n = 7. Some candidate entries are

A positive cents value indicates that the fifths are sharp by that amount, and a negative value indi-
cates they are flat. Perhaps the most interesting result is that 53 fifths are only 3.62 cents sharp of
31 octaves. Both 31 and 53 have been used to build scales.

3.12 Designing Useful Scales Requires Compromise

Given the limitations of the just tuning systems, we find ourselves at a fork in the road: 

■ We can move toward our original goal of transposing while retaining the just ratios—but with
compromises. 
■ We can abandon the goal and choose another.

m n Cents

12
41
53
94

7
24
31
55

23.46
–19.85

3.62
–16.23

Pythagorean comma
All fifths would have to be stretched
Very close to unity
All fifths would have to be stretched

(3/2)m

(2/1)n
--------------
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Although we still want to engineer a scale that meets our needs, now we know it’s just a design
problem, not a quest for a holy grail that we now know doesn’t exist. 

Some common choices that have been made at this juncture include the following:

■ Extend the use of tempering (see section 3.13).
■ Add more degrees to the just scales, allowing musicians to use alternative ratios when transpos-
ing (see section 3.14).
■ Avoid transposing and modulation (see Hindustani Scales in section 3.14.2). 

3.13 Tempered Tuning Systems

Tempering is a compromise that abandons some aims in order to achieve others. If we give up the
goal of just ratios, we’d still like to have a scale that

■ Is transposable to all 24 major and minor keys
■ Sounds close enough to the just diatonic scale
■ Has intervals reasonably close to their small-integer ratio prototypes
■ Has 12 half steps to the octave
■ Can be transposed around the circle of fifths
■ Has no strange differences between supposedly same-sized intervals

To implement this compromise, we use tempering to close the cycle of fifths and octaves. What if we
spread the Pythagorean comma across a number of intervals so that it would become unnoticeable?

3.13.1 Origins of Tempering

The concept of a tempered scale arose in the fourth century B.C.E. with Aristoxenus of Tarentum,
one of Aristotle’s students. Aristoxenus argued empirically that precise ratios should be less impor-
tant to music theory than what musicians actually use, and suggested that the octave be divided on
a subjective basis into an equal number of intervals. To the same effect, the great mathematician
Leonhard Euler (1766) wrote, “The sense of hearing is accustomed to identify with a single ratio,
all the ratios which are only slightly different from it, so that the difference between them be almost
imperceptible.” What Euler is referring to is now called the just noticeable difference (JND) of
pitch (see chapter 6). Another perspective on Euler’s insight is the power of our minds through con-
ditioning and learning to generalize a rule across similar instances (see section 9.22).

Perhaps the first practical tempering system was proposed by Vincenzo Galilei, father of Galileo
and a one-time student of Zarlino. Like many, including the Pythagoreans, Zarlino believed that
certain proportions had a mystical significance that revealed the hand of God. Vincenzo Galilei,
true to his Renaissance culture, believed that all scales were free creations of the human mind and
hence could be anything that pleased their creators (V. Galilei 1581; Strunk 1998). He proposed
solving the conundrum of intonation by using the integer ratio 18/17 as an approximation of the
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semitone. At 98.96 cents, this ratio provides a usable tempered tuning system that has been
employed by fretted instrument makers ever since (see section 3.15).

Between the Renaissance and the modern age, Western music theorists tried many ways to hide
the Pythagorean comma and yet salvage as many just intervals as possible—usually the fifths and
major thirds—while excluding the wolf tones by the use of tempering. There are an unlimited num-
ber of possible temperings, but the available solutions tend to cluster around a few common aims,
depending upon what one wants to optimize:

■ Mean-tone Optimize the thirds and fifths in selected keys, and never mind the rest.
■ Well-tempered Make all keys usable, but make some more purely intoned than others.
■ Equal-tempered Make all keys sound the same.

3.13.2 Well Tempering

The term well tempered covers all tuning systems that temper at least some intervals or that have
reasonably equal-sized semitones. 

Andreas W. Werckmeister (1645–1706) developed a number of tempered tunings, including
Werckmeister temperament III, which he developed in 1691. Roughly speaking, this scale leaves
the black notes in Pythagorean just intonation and tempers the white notes, resulting in various-sized
major and minor intervals and either true or nearly true fifths and fourths. Such irregular tempering
essentially scatters bits of the Pythagorean comma widely, though not evenly, across the scale,
allowing fairly graceful transposition and modulation to remote keys.

Other irregular temperaments of the time included

■ Kirnberger temperament III (1779), by Johann Philip Kirnberger (1721–1783); some fifths are
tempered, some are pure.
■ Valotti temperament (1728), by Francesco Antonio Vallotti (1697–1780); the “front” six fifths
of the circle of fifths (F, C, G, D, A, E, B) are tempered by 1/6 of a Pythagorean comma, whereas
the fifths on the “back” side are tuned pure.10

■ Young temperament II (1800), by Thomas Young (1773–1829); similar to Vallotti’s but starting
on C rather than F.

3.13.3 Tonal Palette

As a consequence of the uneven distribution of the Pythagorean comma in irregular temperaments,
each key was imbued with a unique tonal palette or coloration based on the placement of the
various-sized intervals in its scale. Far from being a problem, this aspect of irregular temperaments
was appreciated by composers and performers of those times as lending character to the different
keys. Modulating around the circle of fifths in irregular temperaments alters the tension in the
triads and dominant seventh chords in characteristic ways that they found musically useful. 

In the literature on tuning systems, the arguments for and against the various tuning systems
sound as though they were referring to wine tasting. Werkmeister III is pure in the best keys
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and excellent for organs because many fourths and fifths are in tune, but it is irregular and quix-
otic in how it handles modulation, and uneven in key color. Vallotti is smooth and regular,
perhaps with too little key contrast. It is clear that the choice of tuning system was a matter
of taste.

A common misconception about J. S. Bach’s famous Das Wohltemperierte Klavier11 is that it
was written as a demonstration piece for equal-tempered tuning. Bach almost certainly did not use
equal temperament, which did not come into practical use until after he died. He undoubtedly used
a mean-tone or irregular temperament of some sort, possibly one of Werckmeister’s or one of his
own devising. Which exact tuning he used is unknown, but it is certain that Bach used this com-
position as a vehicle to systematically explore the tonal palettes of the keys of the temperament
he was using (Barbour 1947; Barnes 1979; Kellner 1979).

3.13.4 Equal Tempering

The attempt with irregular temperaments to include some pure ratios only hides the intonational
problems in remote keys. But as composers developed and extended functional harmonization and
modulation, eventually there were no “remote” keys left in which to hide the wolves. Why then
not try tempering every degree of the scale in the same amount? Perhaps that would spread out
the Pythagorean comma to the extent that it would become unnoticeable because the “out-of-
tune-ness” would be everywhere the same.

What if we shrank the interval of a fifth just a little so that 12 of them would equal seven dou-
blings of the starting pitch? Let’s name the tempered fifth T5. Then we would be looking for a value
of T5 such that (T5)12 = 27. Solving for T5 gives T5 = 27/12 = 1.498, which is pretty close to 3/2 = 1.5
(although the fifths are a little flat). To generate the 12 steps of the scale, all we would have to do
is form successive intervals of T5, and after creating 12 of them, we would be back to where we
started, a few octaves higher.

While the equal-tempered scale takes the approach of tempering the fifth according to 27/12,
another equally valid approach is to shrink the semitone according to , which
is reasonably close to the minor second, 16/15 = 1.0666667. The two approaches are equivalent,
since the result either way is that the octave is divided into 12 equal intervals.

Curiously, this quintessentially Western scale appears to have been first invented in China. In
1596, Prince Chu Tsai-yu (or Zhu Zai-You) apparently calculated the degrees of the equal-tempered
chromatic scale without benefit of logarithms (Barbour 1953; Kuttner 1975; Yasser 1932). How-
ever, it evidently did not catch on in China as it did in the West. The idea was apparently put forward
first in Europe by Simon Stevin (1548–1620).12 The theory became widely known through the
work of Mersenne (1635). But equal temperament did not become generally established in practice
until 1800, first in Germany, later in England and France.

3.13.5 Interval Error of Equal-Tempered Tuning

Astonishingly, the equal-tempered intervals are close enough to the natural major scale that most
Western composers and musicians from the 1800s to the present have been satisfied with the

212 1.0594631=
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equal-tempered chromatic scale, and a very large body of music has been composed using it. Iron-
ically, however, there is not a single small integer ratio left in the scale (apart from the unison and
octave). Thus, one of the principal aims of the early scale builders has been lost. Clearly, the desire
for transposability won out over justness of intonation in Western music after the advent of tem-
pered tunings. 

But just how badly out of tune is equal temperament? Table 3.6 shows the size of the error in
cents between each equal-tempered degree and its natural chromatic scale equivalent. The sign of
each value in the Error column shows the cents by which the equal-tempered scale is sharp (pos-
itive) or flat (negative) with respect to its just equivalent. Note that the worst errors are for the minor
and major thirds and sixths (figure 3.20).

3.13.6 Goodness-of-Fit Metric

We can get a crude quantitative idea of how closely aligned these two scales are by adding the mag-
nitudes of the Error column in table 3.6. Doing so shows that the sum total by which all tempered
intervals miss their natural chromatic scale equivalents is 103.624 cents. Is 103.624 cents
accumulated error good or bad? Are these differences significant? That analysis is postponed until
section 3.14, so that more scales can be evaluated.

Table 3.6
Comparison of Natural and Equal-Tempered Chromatic Intervals

Degree Name Error Degree Name Error

1

2

3

4

5

6

Unison

Minor second

Major second

Minor third

Major third

Perfect fourth

0.0

–11.731

–3.910

–15.641

13.686

1.955

7

8

9

10

11

12

Tritone

Perfect fifth

Minor sixth

Major sixth

Minor seventh

Major seventh

–9.7763

–1.955

–13.686

15.641

3.910

11.730

Figure 3.20
Natural and equal-tempered chromatic intervals.
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------ 2
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---

C C D D E F F G G A A B

Natural
chromatic
scale

Equal-tempered
chromatic
scale

C� � � ��

loy79076_ch03.fm  Page 71  Wednesday, April 26, 2006  12:36 PM



72 Chapter 3

Meanwhile, we can adapt this goodness-of-fit measure to other scales discussed in this chapter
to show in quantitative terms how closely aligned they are with the intervals of the natural chro-
matic scale. For scales with many more degrees than the chromatic scale, the method is to first
pick the degrees that are closest to their natural chromatic equivalents, then sum the magnitude of
the errors.

3.13.7 The Grand Solution

The equal-tempered scale inherits nearly all the important components of the Pythagorean scale
and can also transpose. Now every key sounds as in tune (or out of tune), as every other key, just
as we wanted, but at the expense of the pure integer ratios, which have been virtually banished.
It is somewhat reminiscent of the modern practice where an oak grove is ripped out to build a shop-
ping center and then the shopping center is named Oak Grove. We are left with the impression of
the pure intervals but not with their reality. We get the advantage of the modern conveniences
(transposition) but at the expense of the reason we wanted it. Isn’t it interesting that not even music
is immune to the inevitable downside of technological advance? The moral: nothing is free.

Other cultures have made other choices. For instance, classical Hindustani and Arabic music
is still firmly rooted in small integer ratio scales, and that music scintillates with a pleasurable
harmonicity that has touched a deep longing in the Western ear, as evidenced by their popularity
in the West in recent times. The symmetry between the overtones of their instruments and the
scales they play upon is deeply satisfying. On the other hand, don’t expect an oud or a sitar to
transpose.

3.14 Microtonality

As described in the previous section, the compromise of tempered tunings is to give up the use of
small integer ratios except for the unison and octave. The compromises of microtonality are not
as neatly assessed because of the greater number of directions that can be taken.

One of the main thrusts of early Western microtonal tunings was to increase the number of scale
degrees on keyboards. The original aim was to supply alternative choices of intervals when modulat-
ing or transposing so as to retain as much as possible the simple integer ratios of the just scales. Such
a scale system would then contain microtones, which are scale degrees that are smaller than a semitone.

Once again, however, we confront basic design questions. For instance, are the microtones to
be organized as a set of tempered intervals or as a collection of small integer ratios? Of course, there
are exponents of both approaches, and I consider each in turn.

3.14.1 Tempered Microtonal Scales

What if we simply increased the number of equal divisions of the octave from 12 to a larger num-
ber? As the number of equal divisions of the octave goes up, not only will there be more scale
degrees to choose from but there is also an increased likelihood that some of them will land closer
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to the just intervals than their chromatic tempered cousins do. A trivial modification of equation (3.3)
allows us to create arbitrary tempered divisions of the octave:

, (3.15)

where N is the desired number of degrees per octave, k is the integer degree number, and v is the octave.
A few such tempered scale systems approximate the just intervals better than the chromatic scale.

19-Tone Scale Another relatively close encounter between the series of fifths and octaves occurs
at 19 fifths above 11 octaves, where the fifths exceed the octaves by 137.145 cents. When N in
(3.15) is set to 19, the size of the equitempered scale division is 63.16 cents. 

Why 19? The 19-tone major and minor thirds and major and minor sixths are all closer than the
corresponding equal-tempered intervals. The minor third is quite pure. The major third is flat,
although closer than the equal-tempered major third (see figure 3.21).

To temper using this scale, the fifths must be flatted by a total of 137.145, which is worse than
the tempering required for the chromatic scale. Since there are 19 fifths, each fifth is flat by
7.218 cents, making the fifths far from perfect.

Applying the goodness-of-fit metric to the 19-tone scale results in 109.31 cents accumulated
error, not as good as the chromatic scale’s 103.624 cents. In spite of the improved thirds and sixths,
this scale has not been favored over chromatic equal temperament for good reasons.

Quarter-Tone Scale When N in (3.15) is set to 24, we arrive at the quarter-tone scale, and the
size of the equitempered interval is 50 cents, or exactly one-half of a chromatic tempered semitone.

While all microtonal scales can produce exotic-sounding harmonies, the quarter-tone scale
is special because it is a superset of the equal-tempered scale. Or, we can think of it as two
equal-tempered scales combined, tuned 50 cents apart. A common arrangement for quarter-tone
music is to tune two pianos 50 cents apart. Listen, for example, to Three Quarter-Tone Pieces by
Charles Ives, or the compositions of Alois Hába (1893–1973).

Depending upon how the additional resources are used by a composer, quarter tones can extend
the tonal palette of the equal-tempered scale so that it ranges from strictly harmonic (using either
of the equal-tempered scale subsets) to mixtures that are reminiscent of the irregular tempera-
ments, to highly dissonant when using all the quarter tones together. The composer is given addi-
tional possibilities of harmonic tension.

As one might expect, the goodness-of-fit metric for the quarter-tone scale is the same as for the
equal-tempered scale, 103.624 cents.

53-Tone Scale The next close encounter of the fifths and the octaves occurs at 53 fifths and
31 octaves. Here the cycle of fifths ends up merely 3.615 cents above the octave. Each tempered
fifth is therefore 3.615/53 = 0.068 cents flat. According to Helmholtz (1863), this scale was first
proposed in 1608 by Nicolaus Mercator (1620–1687) as a system for measuring scales.

Even Partch (1947) is impressed with this scale. He says it gives “a degree of falsity that might
really be called—and for the first time I use the word without quotation marks—inconsequential.”

fk ,v fR=  . 2v+k/N
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His estimation agrees with the goodness-of-fit metric, which is 10.402 cents accumulated error for
the 53-tone scale, which far surpasses the chromatic scale’s 103.624 cents.

The Cent Scale as the Ultimate Tempered Microtonal Tuning The cent scale itself is the
logical reductio ad absurdum of this progression of tempered microtonal scales. With its 1200
degrees per octave, it can be thought of as the ultimate tempered microtonal scale. Why not simply
compose directly in cents? Table 3.7 shows which cent degrees correspond most closely to the nat-
ural chromatic scale. As might be expected, the goodness-of-fit metric for the cent scale is by far
the best of the bunch: 2.38 cents accumulated error.

Comparing the Tempered Microtonal Scales Figure 3.21 compares tempered microtonal
tunings to the natural chromatic scale, which is shown as a ruler in the background for comparison
with the other scales. The fairly crude resolution of this visual aid still reveals a lot about the accu-
racy of the approximations these scales make to just ratios. It is evident, for instance, how much
better the 19-tone scale’s thirds and sixths are than those of the equal-tempered scale. It also shows
how much better the 53-tone scale is than all the rest at approximating the just intervals.

Table 3.8 summarizes the goodness-of-fit metric for the tempered scales considered above. As
expected, increasing the number of divisions of the octave makes it possible to approximate ever
more closely the just diatonic scale by judicious choice of tempered microtonal intervals.

Table 3.7
Comparison of Natural Chromatic Scale and Cent Scale

Natural
Chromatic Cent Error

Natural
Chromatic Cent Error

1

2

3

4

5

6

1

113

205

317

387

499

0.0

–0.27

–0.09

–0.36

0.31

0.04

7

8

9

10

11

12

611

703

815

885

997

1089

–0.22

–0.04

–0.31

0.36

0.09

0.27

Figure 3.21
Tempered microtonal tunings compared to the natural chromatic scale.
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8
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1
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The fact that even the cent scale has an accumulated error, however small, is noteworthy.
Human hearing can’t distinguish between adjacent cents (which is one reason it was developed).
So does it matter that the cent scale has a nonzero accumulated error, especially if it is much
smaller than human hearing can detect? Haven’t we provided ourselves with a way to temper
a scale that is for all practical purposes indistinguishable from the just intervals? Remember that
Western musical culture has lived happily with the errors in the equal-tempered scale for cen-
turies. Nonetheless, there are those who criticize the whole approach to tempering intervals on
principle.

3.14.2 Just Microtonal Scales

No matter how close they come to the just intervals, tempered microtonal scales do not meet the
needs of what I call the intonation rationalists like Partch because they are nothing more than
approximations (albeit sometimes pretty good approximations) to the just intervals. From the
perspective of the intonation rationalists, the whole idea of tempered intervals is like the dif-
ference between 3.14 and π. It’s like chopping down a forest and replacing it with telephone
poles. They are not the same as the trees, no matter how close they might stand to where trees
once stood.

Just tuning systems using microtones are quite widespread, including fifteenth-century
European scales, tuning systems from cultures around the world, and systems constructed by con-
temporary theorists and composers. In Europe microtonal just scales were originally developed to
improve transposability. In the classical music of Hindustan and the traditional music of Islamic
countries, microtonal just scales are used without transposition. The American theorist Harry
Partch also developed an elaborate just microtonal scale. This section explores a small sampling
of tuning systems using just microtonal intervals.

Historical European Microtonal Scales According to Murray Barbour, just-intonation micro-
tonal scales manifested in Europe in the late fifteenth century with the introduction of keyboards
with split keys, for instance, for Eb and D #, to avoid the bad effects of transposing on just keyboards.
Barbour (1953) writes,

The theory was simple enough: provide at least four sets of notes, each set being in Pythagorean tuning and
forming just major thirds with the notes in another set; construct a keyboard upon which these notes may be
played with the minimum of inconvenience. Only in the design of the keyboards did the inventors show their
ingenuity, an ingenuity that might better have been devoted to something more practical. (113)

Table 3.8
Goodness of Fit

12-tone

19-tone

Quarter-tone

53-tone

Cent

103.624

109.310

103.624

10.402

2.37599
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Figure 3.22 shows the keyboard developed by Joan Albert Ban (1597–1644) in Haarlem in
1639, based on the theories of Fogliano and Mersenne. Through the addition of floating keys
and split keys, each natural key is provided with all possible justly intoned triads, major and
minor. The floating D# provides the 9/8 above C, while the natural D below it provides the 10/9.
The D-major triad D:F#:A starts on D natural and is spelled 3240 : 2592 : 2160, and the G major
triad starts on G natural and is spelled 2400 : 1920 : 3200 (requiring use of the floating D).

But adding microtones to the keyboard proved to be a dead end. They were difficult and tem-
peramental to build and to play, and no common scheme emerged as a rallying point. Electronic
keyboards that became available in the twentieth century helped revive interest in microtonal
scales. Harry Partch built an entire orchestra of acoustic instruments using various microtonal lay-
outs. However, all have remained idiosyncrasies. With the introduction of the personal computer,
it finally became possible to experiment with these scales without having to construct elaborate
physical keyboards, and there has been a resurgence of research interest. If a new tolerance for
diversity develops, this music may yet get its proper hearing (Keislar 1988).

Partch’s 43-Tone Scale Harry Partch is arguably the father of modern microtonality. His fun-
damental reexamination of the foundations of music theory and his consequent radical departure
from musical conventions are described in minute detail in his book Genesis of a Music (1947).
The direction of his thinking required that he create an entire orchestra of original instruments and
compose a body of musical works for it. He said of himself, “I am a composer seduced into car-
pentry,”13 but he was also a brilliant theorist. Though he took issue with many accepted musical
dogmas of his day, he is principally remembered for his stance on intonation. 

He felt that the approximations that the chromatic equal-tempered tuning system made to the
pure small integer ratios were a travesty to the ear. For instance, he wrote,

After hearing an absolutely true triad one feels that the tempered triad throws its weight around in a strangely
uneasy fashion, which is not at all remarkable, for what it wants to do more than anything else is to go off

Figure 3.22
Just keyboard by Joan Albert Ban.
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and sit down somewhere—it actually requires resolution! Thus has the composition of music for the tempered
scale become one long harried and constipated epic, a veritable and futile pilgrimage in search of that
never-never spot—a place to sit! (179)

He recognized that his vitriol could become excessive. “In attempting to correct an illogical
situation a man tends to become an extremist” (97). But he was a man with a mission.

He considered the pure untempered ratios to be unique individualities, which the tempered tun-
ings could only approximate. He created orders of tonalities out of small integer ratios of various
numerical limits based on scholarship, reasoning, and his own ear. By basing his system on integer
ratios, he necessarily discarded closed, transposable, common tempered tuning for an open system
populated by a plethora of ratios that were as individualistic as himself.

Table 3.9 shows Partch’s 43-tone scale. The table gives the degree number, the ratio, the cents
from unison of the ratio, the ratio of the interval to the previous degree (the size of the step), and
the interval size in cents. Because of the increased intervalic resources, Partch categorized
ranges of his intervals as having various emotional functions roughly analogous to those commonly

Table 3.9
Partch’s 43-Tone Scale

No. Ratio Cents
Step
Size

Step
Cents No. Ratio Cents

Step
Size

Step
Cents

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

1

81/80

33/32

21/20

16/15

12/11

11/10

10/9

9/8

8/7

7/6

32/27

6/5

11/9

5/4

14/11

9/7

21/16

4/3

27/20

11/8

7/5

0

21.50

 53.27

 84.47

 111.73

 150.64

 165.00

 182.40

 203.91

 231.17

 266.87

 294.14

 315.64

 347.40

 386.31

 417.51

 435.08

 470.78

 498.05

 519.55

 551.32

 582.51

81/80

55/54

56/55

64/63

45/44

121/120

100/99

81/80

64/63

49/48

64/63

81/80

55/54

45/44

56/55

99/98

49/48

64/63

81/80

55/54

56/55

21.51

31.77

31.19

27.26

38.91

14.37

17.40

21.51

27.26

35.70

27.26

21.51

31.77

38.91

31.19

17.58

35.70

27.26

21.51

31.77

31.20

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

10/7

16/11

40/27

3/2

32/21

14/9

11/7

8/5

18/11

5/3

27/16

12/7

7/4

16/9

9/5

20/11

11/6

15/8

40/21

64/33

160/81

2/1

 617.49

 648.68

 680.45

 701.96

 729.20

 764.90

 782.49

 813.69

 852.59

 884.36

 905.87

 933.13

 968.83

 996.09

 1017.60

 1035.00

 1049.36

 1088.27

 1115.53

 1146.73

 1178.49

 1200.00

50/49

56/55

55/54

81/80

64/63

49/48

99/98

56/55

45/44

55/54

81/80

64/63

49/48

64/63

81/80

100/99

121/120

45/44

64/63

56/55

55/54

80/81

34.98

31.19

31.77

21.51

27.26

35.70

17.58

31.19

38.91

31.77

21.51

27.26

35.70

27.26

21.51

17.40

14.37

38.91

27.26

31.19

31.77

21.51
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attributed to the just diatonic scale:

■ Intervals of power, the perfect intervals—unison (#1), octave (#44), fourth (#19), and fifth (#26),
shown with heavy outline
■ Intervals of suspense, the intervals in the region of the tritone from the fourth (#19) to the fifth
(#26), shown with light shading
■ Emotional intervals, the intervals in the regions of the thirds (#11 to #18) and sixths (#27 to #34),
shown with heavy shading
■ Intervals of approach, the intervals in the regions of the seconds (#2 to #10) and sevenths (#35
to #43), shown with light outline

It is interesting to observe the symmetric regularity of interval size between steps of this scale (fig-
ure 3.23). The scale is not symmetrical at the fifth, but at three degrees below the fifth, at number
23—the midpoint of the interval order (see table 3.9). Note the plethora of different step sizes in
figure 3.23.

Figure 3.24 compares Partch’s scale and the equal-tempered chromatic scale, with the natural
chromatic scale shown as a background ruler. 

Hindustani Scales Whereas Western music has emphasized harmonic practices requiring trans-
position and modulation, classical Hindustani music has emphasized melodic practices that are
based on just intervals and do not transpose. The degrees of the classical Hindustani scale are called
sruti. The most common scale has 22 sruti per octave. Continuous-pitch instruments such as the
voice or sarod can adapt intonation as needed to play any subset of this scale. Fretted instruments
such as the vina, sitar, and esraj are supplied with adjustable frets that can be shifted to adapt to
different subsets of sruti intervals. The principal playing strings of these fretted instruments can
be pulled sideways across the frets, stretching the string to achieve other sruti as needed, and
for ornamentation.

Figure 3.23
Interval sizes of Partch’s 43-tone scale.
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Barbour (1953, 113) assumes that the Hindustani sruti scale is based on an equal division of the
octave into 22 parts, much as one of the common Arabic scales is an equal division into 17 parts.
He writes, “If these are considered equal, a new system arises with ‘practically perfect’ major
thirds . . . and very sharp fifths” (116). Judging from their music, it seems very unlikely that
Hindustani musicians would settle for sharp fifths, however. Many sources give the sruti scale as
an extended just system. This is a more satisfying explanation because it would give a high degree
of consonance between the scale and the rich harmonic content of many Hindustani instruments.

Table 3.10 shows the intervals commonly given for the 22-sruti scale. Figure 3.25 compares the
22-sruti scale with the natural chromatic scale and the Pythagorean dodecaphonic scale. The
sruti that are in neither of these other scales are shaded in the table and figure. According to
table 3.10 and figure 3.25, the 22-sruti scale contains both the natural chromatic and Pythagorean
chromatic scales as subsets, and contains four additional intervals that are not in either of the

Figure 3.24
Partch’s scale and equal-tempered chromatic scale compared.

Table 3.10
Hindustani 22-Sruti Scale 

Degree Ratio Cents Interval Size Degree Ratio Cents Interval Size

1

2

3

4

5

6

7

8

9

10

11

1/1 

256/243 

16/15 

10/9 

9/8 

32/27 

6/5 

5/4 

81/64 

4/3 

27/20

0

90.23

111.73

182.40

203.91

294.14

315.64

386.31

407.82

498.05

519.55

–

256/243

81/80

25/24

81/80

256/243

81/80

25/24

81/80

256/243

81/80

–

90.23

21.51

70.67

21.51

90.23

21.51

70.67

21.51

90.23

21.51

12

13

14

15

16

17

18

19

20

21

22

45/32 

729/512 

3/2 

128/81 

8/5 

5/3

27/16 

16/9

9/5 

15/8

243/128 

590.22

611.73

701.96

792.18

813.69

884.36

905.87

996.09

1017.60

1088.27

1109.78

25/24

81/80

256/243

256/243

81/80

25/24

81/80

256/243

81/80

25/24

81/80

70.67

21.51

90.23

90.23

21.51

70.67

21.51

90.23

21.51

70.67

21.51
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others. One can select from this any combination of just or Pythagorean scales, plus a variety of
other scales. A prime factor analysis of the 22 sruti ratios shows that this is a five-limit scale.

Figure 3.26 shows the interval structure of the 22-sruti scale. There are three interval sizes:
256/243, 25/24, and 81/80. Pingle (1962, 31) calls the smallest intervals murchanas. Interestingly,
the size of the murchana interval corresponds to the Pythagorean comma.

Why are there 22 srutis? I was told by my Hindu music teachers that the 22-sruti scale is basically
chromatic. It contains both the natural and the Pythagorean chromatic scales.14 The 22 degrees come
from taking all chromatic intervals except the unison and fifth, which are fixed, and splitting them into
a lower and an upper microtonal interval. And, indeed, 2 . (12 − 2) + 2 = 22 degrees altogether. While
this is a good description of what we see in figure 3.25, it is not an explanation. Another conjecture I’ve
heard is that 22 was chosen because the ratio of the 22 sruti to the diatonic scale degrees that anchor it is

.

Although the ratio of 22/7 was indeed used in ancient times as a rational approximation to π, this
is not a particularly compelling musical explanation (Beckman 1976).

Figure 3.25
Natural chromatic and 22-sruti scales compared.

Figure 3.26
Interval structure of the 22-sruti scale.
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The most satisfying explanation I’ve heard so far comes from Lentz (1961), who characterized
the scale as a combination of the cycle of fourths and the cycle of fifths. The process, which is much
like that described for the Pythagorean dodecaphonic scale, goes like this:

1. Create a set of intervals (3/2)m for 0 ≤ m < 12.

2. Create another set of intervals (4/3)n for 0 ≤ n < 12.

3. Subtract as many octaves as necessary to position each interval within the compass of one octave.

This creates a set of 23 unique intervals (not 24 because the unison is repeated in both series). Fig-
ure 3.27 shows the sruti scale of table 3.10 compared to the circle of fifths and circle of fourths. The
interval 262,144/177,147 in the circle of fourths (just below the 3/2) must be discarded, leaving
22 sruti. 

At first glance, Lentz’s combination of fifths and fourths looks very close to the 22-sruti scale.
However, small discrepancies are evident even in this crude graphic: some of the powers of fifths
and fourths do not line up with the intervals given in the literature but are a little sharp or flat. In
fact, the intervals that miss their mark are off by exactly 32,805/32,768, an interval historically
called a schisma. For instance, while the third degree in table 3.10 is given as 16/15, the third degree
by the circle of fifths is 2187/2048, which is a difference of 32,805/32,768. 

Lentz’s method has the advantage of being a simple and elegant construction, but like the Pythagorean
scale, the result may please theorists more than musicians. Who is to say whether an oriental equivalent
of Pareja didn’t argue for a version of the 22-sruti scale made simpler by adjusting the sruti up and down
by schismas to nearby smaller integer ratios, leaving the conventional ratios given in table 3.10?

The 22-sruti scale described here does not by any means exhaust the Hindustani interest in the number
22. An interesting just diatonic scale given by Pingle (1962) consists of the following seven intervals:

22/22, 26/22, 29/22, 31/22, 35/22, 39/22, 42/22, 44/22..

Figure 3.28 compares Pingle’s scale with the 22-sruti scale and the natural just diatonic scale. It
is an 11-limit scale with a most exotic sound, as all of its intervals are quite sharp in comparision
to the just diatonic scale. 

Figure 3.27
22-sruti scale as circle of fifths and circle of fourths.
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3.15 Rule of 18

The rule of 18 has been used by Western stringed instrument builders to construct the scales
their instruments play since it was first proposed as a tempered scale by Vincenzo Galilei (see
section 3.13.1). It highlights a number of interesting mathematical principles.

It so happens that the size of a tempered semitone, the irrational number , is fairly closely
approximated by the rational ratio 18/17, that is, 

≈ ≈ 1.0588.

It is much easier in practice for builders to work with ratios of integers than irrational ratios
when dividing up a linear distance. As shown in figure 3.29, each string of a fretted instrument
is suspended between two points, the bridge and the nut. The frequency of the open string is
determined by a peg or screw arrangement near the nut, which tightens or loosens it, varying
the tension of the string. The performer varies the frequency by stopping off different lengths
of the string against the fingerboard, thereby changing the mass of the part of the string that
can vibrate.

3.15.1 Fret Calculations

Fret wires placed along the fingerboard perpendicular to the string help the performer stop off
exactly the right length to sound intervals in the scale that the instrument is built to play. Unfretted
stringed instruments such as the violin are played similarly but do not have frets to guide the

Figure 3.28
B. A. Pingle’s diatonic scale.

Figure 3.29
Rule of 18 for placing frets.
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212

212 18
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performer’s fingers. Frets are foremost an aid to intonation, but they also make it possible to cor-
rectly stop multiple strings simultaneously, a useful feature for polyphony. Historically, the frets
are placed using the 18/17 tempered scale of Galilei.

To place the frets, the rule of 18 states  

Each subsequent fret should be located 1/18 of the remaining distance to the bridge of the 
instrument. 

Let’s take for an example a string of length x0 = 1 meter from bridge to nut (figure 3.29). Then the
rule of 18 says that the distance x1 from the bridge to the first fret should be

First Fret (3.16)

In order to sound a semitone higher, the rule of 18 says that the length of the string from the bridge
to the first fret must be 17/18 of the length of the entire string x0. 

The distance from the bridge to the second fret, x2, is calculated from the “remaining distance,”
which is x1. So we subtract 1/18 of the string from the length of x1:

 m. Second Fret (3.17)

3.15.2 The Flaw in the Rule of 18

If we continue to apply the rule of 18 twelve times, then the twelfth fret will end up being placed
near the midpoint of the string. However, when the string is stopped at the twelfth fret, although
ideally it should sound exactly an octave higher than the whole string, it will actually sound slightly
flat because . Each fret placed by the rule of 18 will sound slightly flat, and the error
will compound for higher-numbered frets because the position of each subsequent fret is derived
from the previous one. For example, if the length of the open string is x0 = 1 m, then the position
of the twelfth fret is approximately x12 = 0.504 m instead of the desired 0.5 m, which is where it
should be to sound exactly an octave above the open string. 

Happily, another artifact of stringed instruments comes to the rescue to a certain extent. Fretting
a string bends it, decreasing its elasticity slightly, which raises its pitch slightly. By the nature of
their construction, strings must be bent progressively more the higher the fret, which counteracts
the progressive flattening of the rule of 18. The precise amount by which the string’s pitch is raised
by this stretching depends upon the geometry of the instrument and the dimensions and tension of
the string. In practice, many additional factors must be taken into account by a stringed instrument
maker, a process called (appropriately enough) compensation. 

x1 x0
x0

18
------–=

1 1
18
------–=

17
18
------ m.=

x2 x1
x1

18
------– 289

324
---------= =

18/17 212<
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Alternatively, if we shave off a little from the rule of 18 and instead use the “rule of 17.81715,”
we get fret distances that nearly match the equal-tempered scale, and x12 = 0.500.

3.15.3 Recursion

The rule of 18 is an example of recursion, in which the next value in a sequence depends upon the
previous value (or values) in a well-defined way. Suppose we let f0 be the frequency sounded when
the open string in figure 3.29 is played. Then the frequency of the string stopped at the first fret
would be , and the frequency at the second fret would be . Gener-
alizing, we can find the frequency of any fret:

. (3.18)

This means that f3 depends upon the value of f2, which depends on the value of f1, which depends
upon the value of f0. In other words,

.

This means we can compute f3 in terms of f0 just by multiplying f0 by (18/17)3. Now that we see
the pattern, we can compute the frequency at the nth fret in terms only of f0:

. (3.19)

In (3.19) the frequency of the nth fret depends only upon the frequency of the open string instead
of on the frequency of the fret that came before it, so this equation implements a direct calculation,
not a recursive one. If we set f0 = 440 Hz, then by either (3.18) or (3.19) the value of f3 comes out
to be 522.3 Hz.

Where a direct equivalent to a recursive formula can be found, it is generally to be preferred.

■ It avoids the problem of compounding errors in calculation. 
■ It is generally faster because we do not need to calculate all the values between the starting value
and the value of interest. 

This can be important if, for example, we must calculate values of a function that are far from where
we started.

f1 f0
 . 18/17= f2 f1

 . 18/17=

fn fn−1
 . 18

17
------=

f3 f2
 . 18

17
------=

f1
 . 18

17
------ 

   . 18
17
------=

f0
 . 18

17
------ 

   . 18
17
------ 

   . 18
17
------=

fn f0
18
17
------ 

  n
=
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One can often find a way to convert between recursive and direct representations of a formula.
For instance, we can write the rule for generating the equal-tempered scale recursively as
follows:

,

and by similar reasoning, its direct form is

,

which is equivalent to equation (3.1).
The rule of 18 also describes an iterative process. If xn represents the distance of the nth fret from

the bridge, then the rule of 18 can be expressed as

, (3.20)

where k is a constant factor, either 18 or 17.81715, as discussed. Equation (3.20) says, “The dis-
tance from the bridge to the next fret (xn) equals the distance from the bridge to the previous fret
(xn–1) minus that distance divided by k.” Using (3.20) to compute the distance from the bridge to
the third fret, x3, we proceed as follows:

.

(3.21)

Assuming the distance from the bridge to the first fret is x0 = 1 m, and using the modified rule of
18 (k = 17.81715), then x3 = 0.84. Notice the interesting way the terms stack up in (3.21). These
are called continued fractions.

3.16 Deconstructing Tonal Harmony

Back when the Pythagorean scale ruled the day, the degrees each had a unique character and func-
tion, like chess pieces. The asymmetry of the scale oriented the ear as the music unfolded. The tonic
degree was king, and a hierarchy of tones surrounded it like courtiers. The system was called tonal
harmony.

fn fn−1
. 21/12=

fn f0
. 2n/12=

xn xn−1
xn−1

k
----------–=

x3 x2
x2

k
----–=

x1
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k
----–

x1
x1

k
----–

k
----------------–=

x0
x0

k
----–

x0
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k
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k
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k
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x0
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k
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k
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Even after the advent of the chromatic equal-tempered scale, composers persisted (as they still
do today) in exploring functional harmony based on the expectations of listeners trained to hear
the characteristic intervals of the diatonic scale. But the adjustments made over the centuries to
facilitate transposition had the eventual effect of disconnecting the pitches from their harmonic
function. 

By the end of the late Romantic era, functional harmonization had reached its expressive limits
because, as its vocabulary expanded, the listener’s roots in the old diatonic scheme gradually weak-
ened, until all that was left were the 12 pitches, all of which were now equivalent both in function
and in tonal palette.

A century after the equal-tempered tuning system was widely adopted in the West, the composer
Arnold Schoenberg and his associates (the so-called Second Viennese School) were inspired to
extend the idea of pitch equality further. They believed the old functional harmonic practices lin-
gered on only as a historical artifact of the old just scales and should now be discarded. They
devised atonal compositional strategies to remove key-centeredness from their music and so to
thwart the ear’s trained habit of organizing music harmonically. They eventually developed the
12-tone compositional methodology by giving all pitches equal prominence (see section 9.10).
Interestingly, this compositional motivation bears certain resemblances to political experiments in
radical democracy, communism, and socialism that occurred in Europe around the same time.
Alignments between political economy and musical aesthetics have existed throughout the ages,
and transitions in one often presage a transition in the other (Atali 1985). Plato noticed this effect
long ago. He said pessimistically, “A change to a new type of music is something to beware of as
a hazard of all our fortunes. For the modes of music are never disturbed without unsettling the most
fundamental political and social conventions” (Republic 424c).

Here, once again, we arrive at the nexus between society, aesthetics, and technology. It seems
that the deconstruction of tonal harmony at the end of the Romantic era was the inevitable result
of the availability of effective transposable key schemes. This means that advances in musical scale
engineering had profound reflexive consequences on musical aesthetics. Circularly, the desire for
transposable key schemes was originally motivated by aesthetic requirements, but the consequence
of their development was a fundamental transformation in aesthetics. 

Thus music takes its place in the pantheon of human pursuits: no activity is immune from our
reflexive and self-redefining capacities, which is perhaps our most unique characteristic as a species.

3.17 Deconstructing the Octave

Every true revolution encompasses the paradigm it overthrows, even as it supersedes it. The rev-
olution of the Second Viennese School led to the deconstruction of tonal harmony, but the octave
remained sacred. The revolution of the microtonalists led to the deconstruction of the chromatic
scale, but the octave likewise remained sacred. The octave has been an invariant feature of virtually
all historical scales because of octave equivalence, which is our tendency to hear pitches played
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at octaves as functionally identical. The equivalence is felt so strongly that musical scales around
the world are almost invariably organized around the 2:1 ratio of the octave, and pitches related
by octaves are virtually always given the same name. Octave equivalence is deeply rooted in our
perceptual system (see section 6.4.6).

The invariance of the octave is hard-wired in equation (2.2), , , because of
the constant 2 in that equation. If we generalize it,

, , , (3.22)

we can construct scales that are not bound by the octave. (It is customary but not strictly necessary
to limit κ in (3.22) to be an integer.) The value of κ defines what I call the compass interval. Let
the compass interval be κx+1:κx for any real x. For example, when κ = 2, the compass interval is
2:1, the octave. When κ = 3, the compass interval is 3:1, an octave plus a fifth, otherwise known
as a twelfth. The value x is typically a rational fraction indicating a division of the compass interval.
For the equal-tempered scale, x = k/12, where k indexes a particular division of the compass interval.

The inclusion of non-octave-based scales vastly widens the scale possibilities we must consider.
However, there are two important characteristics of octave-based scales that we would do well to
preserve when evaluating the suitability of non-octave-based scales for musical purposes. Candi-
date scales should have

■ A high degree of consonance for as many of the intervals as possible
■ A high degree of internal order, that is, a regular pattern of steps and step sizes

3.17.1 The Bohlen-Pierce Scale

A non-octave-based scale that arguably meets the above criteria and has a number of other inter-
esting features as well was developed by several music researchers in the latter part of the twentieth
century. Heinz Bohlen (1978), an electronics and communications engineer without formal musical
training (which fact was probably an asset to his accomplishment) was the first to consider building
a scale from a triad not based on the familiar 4:5:6 ratios of the natural major scale, but upon the
ratios 3:5:7 and the compass of an octave and a fifth. As the compass interval of 2:1 is called the
octave, the compass interval of the twelfth was dubbed the tritave by John Pierce, who independently
discovered this scale system (Mathews, Roberts, and Pierce 1984; Mathews and Pierce 1980).15

Because the scale is made from simple integer ratios that are harmonic by definition, it meets
the first criterion. But because it does not include an octave and duplicates but two of the
octave-based just intervals, it is completely incompatible with any octave-based scale. As for the
second criterion, it does have a high degree of internal order.

3.17.2 Constructing the Bohlen-Pierce Just Scale

We can construct this scale using the standard method of adding and subtracting intervals, begin-
ning with the 3:5:7 triad. 

fx fR
 . 2x= x R∈

fx fR
 . κx= κ I∈ x R∈
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1. Take as the first degree of the scale the unison 3/3. Positioning the root of the 3:5:7 triad on the
first degree yields scale intervals 3/3 : 5/3 : 7/3. The tritave corresponds to 9/3 = 3/1, giving the
degrees shown in figure 3.30.

2. Starting a new root on the 5/3, we can spell another triad with the ratios 5/3 : 7/3 : 9/3. This 5:7:9
triad is shown in figure 3.31. 

In the next two steps, we extend the scale to seven degrees. 

3. Transpose the 3:5:7 triad in figure 3.30 so that its top pitch equals the 9/3 (figure 3.32). The
top of the figure shows the 3:5:7 triad rooted on the first degree, and beneath it is the transposed
3:5:7  triad with its top pitch aligned with the tritave. To find the new root of the transposed triad,

Figure 3.30
Bohlen-Pierce just scale, 3:5:7 triad and tritave.

Figure 3.31
Bohlen-Pierce just scale, 5:7:9 triad.

Figure 3.32
Bohlen-Pierce just scale, 9/7 and 15/7 intervals.
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we subtract the interval 7/3 from the interval of the tritave:

.

We find the middle pitch by adding the interval 5/3 to the root:

.

The root and middle pitches of the transposed 3:5:7 triad thus add two new scale degrees at
9/7 and 15/7.

4. Take the 5:7:9 triad from figure 3.31 and position its root on the first degree of the scale. To do
so, subtract the interval 5/3 from each interval:

.

We derive two new intervals this way, 7/5 and 9/5. 

Figure 3.33 shows the resulting scale. The largest prime is 7, so this is a seven-limit scale.

3.17.3 Constructing the Bohlen-Pierce Chromatic Scale

Figure 3.34 shows the interval sizes of the Bohlen-Pierce just diatonic scale. Observe the sym-
metrical arrangement around the fourth degree. It is useful to classify the sizes of intervals as small

Figure 3.33
Bohlen-Pierce just diatonic scale.

Figure 3.34
Bohlen-Pierce step sizes.
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(1.08 and 1.09), medium (1.19), and large (1.29), shown in the figure from light to dark grey,
respectively. Remembering that we are comparing ratios, it seems that the medium interval is about
twice as large as the small intervals because 1.092 ≈ 1.19. Also, the sum of a small and a medium
interval is about equal to the large one because1.08 ⋅ 1.19 ≈ 1.29. So these interval sizes are
roughly in the order 1:2:3. We can better visualize their relative sizes if we lay the intervals over
on their sides (figure 3.35).

We could devise a chromatic scale from these ratios as follows. First, we replace the large inter-
vals with the combination of a small and a medium interval. This leaves a scale containing only
small and medium steps, analogous to the half and whole steps of the equal-tempered scale. Then
we replace each medium interval with two small intervals, resulting in a scale containing only
small steps, analogous to the equal-tempered semitone scale.

1. Since (27/25)(25/21) = 9/7, we can exactly replace the two large (9/7) steps with the combination
of a small (27/25) and a medium (25/21) step.

2. The existing small steps (49/45 and 27/25) needn’t change. They constitute semitones in the
scale.

3. Unfortunately, neither size small step exactly divides the medium step into two equal
parts. For instance, subtracting a 49/45 semitone from a 25/21 whole step leaves 375/343.
Similarly, subtracting a 27/25 semitone from a 25/21 whole step leaves 625/567. Altogether
then, we end up with four semitones from smallest to largest: 27/25, 49/45, 375/343, and
625/567.

4. We must choose the order in which we substitute the smaller intervals into larger ones. Shall
we break them up as {small, large} or {large, small}? Recalling the symmetry in the just
Bohlen-Pierce scale in figure 3.34, we can divide the intervals in a correspondingly symmetrical
way.

Applying these principles to the Bohlen-Pierce diatonic scale results in the Bohlen-Pierce
chromatic just scale with ratios and step sizes as shown in figure 3.36. The result is a nicely sym-
metrical scale of 13 degrees spanning the tritave. This is the scale originally worked out by
Bohlen (1978). Figure 3.37 shows the Bohlen-Pierce chromatic scale and the natural chromatic
scale for comparison. The only points of contact between the two scale systems are the 1/1 and
the 5/3 (major sixth).

Figure 3.35
Bohlen-Pierce step sizes on their sides.
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3.17.4 The Bohlen-Pierce Equal-Tempered Scale

There is an equal-tempered version of the Bohlen-Pierce chromatic scale, just as there is an
equal-tempered version of the natural chromatic scale. All we must do to create it is to set κ = 3
and x = k/13 in equation (3.22), yielding

. Bohlen-Pierce Equal-Tempered Scale (3.23)

As shown in figure 3.38, the degrees of the equal-tempered Bohlen-Pierce scale are much closer to their
just counterparts than the octave-based equal-tempered scale degrees are to their just counterparts. The
equal-tempered Bohlen-Pierce scale has a goodness-of-fit metric of 81.56 cents to its chromatic just
counterpart, compared to the 103.624 cents goodness-of-fit metric for the equal-tempered scale.

3.17.5 Evaluating the Bohlen-Pierce Scale

Given the odd-numbered basis of the Bohlen-Pierce scale, Pierce suggested performing the scale
using only timbres with odd harmonics, such as a clarinet, to help emphasize the consonance of

Figure 3.36
Bohlen-Pierce chromatic just scale.

Figure 3.37
Bohlen-Pierce and natural chromatic scales compared.
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the primary chords of the scale, and to help the usual expectation of octave equivalence give over
to the experience of tritave equivalence. Bohlen created an electronic organ with a clarinetlike
square wave timbre to experiment with the scale.

Whether through some combination of neural wiring, or a lifetime of conditioning, or both, it
is hard for most listeners to hear past octave equivalence when listening to non-octave-based
scales. How, then, can we objectively compare the consonance of the Bohlen-Pierce scale with
other scales? Roberts and Mathews (1984) proposed intonation sensitivity as a way of evaluating
the perceptibility of consonance of a chord. They defined intonation sensitivity as the way in which
preference for a chord varies with the tuning or mistuning of the center note of the triad. Their study
determined that the 4:5:6 triad had a high degree of intonation sensitivity (as would be expected)
and that the intonation sensitivities of the 3:5:7 and 5:7:9 triads were very close to the 4:5:6. Indeed,
they are more like diatonic major triads in the way that preference varies with tuning than diatonic
minor triads are.

Mathews and Pierce (1989) investigated the consonance of the various triads available in
the Bohlen-Pierce scale. Musicians and nonmusicians judged the consonance/dissonance of the
78 triads that can be formed in the span of a tritave. Tones used odd harmonics only. They found
that listeners scored the triads over a wide range, indicating that consonance is a salient property
of the scale.

Mathews and Pierce also asked trained musicians and nonmusicians to judge the similarity of
Bohlen-Pierce chords and octave-based just chords. Here, the respondents diverged in their rank-
ings: whereas musicians and nonmusicians alike judged similarity primarily on pitch height, musi-
cians also ranked inversions of octave-based diatonic chords as similar whereas the nonmusicians
did not. Mathews and Pierce concluded from this, “It seems reasonable that training with the
[Bohlen-Pierce] scale would make it possible for listeners to recognize and respond to its structure,
just as trained musicians recognize and respond to the structure of the diatonic scale and diatonic
chords.” Richard Boulanger’s work Solemn Song for Evening is a fine example of the use of this
scale system.

Figure 3.38
Bohlen-Pierce chromatic and equal tempered scales compared.
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3.18 The Prospects for Alternative Tunings

Certainly one liability of non-octave-based scales and of scales with other than 12 degrees per
octave is finding instruments to play them. The quarter-tone scale, for instance, requires two pianos
tuned a quarter tone apart. Interesting and elaborate keyboard constructions have been proposed
or built by various theoreticians over the centuries for different scale systems, both tempered and
rational (Keislar 1988). Perhaps Partch had the most imaginative and ambitious approach with his
orchestra of various instruments of his own design.

But the problems are not just theoretical; they are also economic. In order to construct a living
music one must have instruments, trained players, a body of musical work, and last but not least,
an interested and financially involved public. Although Partch did what he could within the span
of his lifetime to put his music on a sustainable basis, his instruments are now in danger of becom-
ing museum pieces, rarely played in public.

The advent of electronic and computer musical instruments certainly offers a new opportu-
nity for microtonality and non-octave-based scales (Wilkinson 1988). Music synthesizer man-
ufacturers sometimes include a means for microtonal experimentation in their hardware.
Numerous computer music programs are available that allow precise frequencies to be gener-
ated. However, this addresses only the instrument need and does not guarantee players, works,
or audience.

3.19 Summary

Intervals made from the ratios of small whole numbers are called the just intervals. Some believe
that the just intervals arose first from the harmonic series of musical instruments; others, that they
arose from the study of proportion by the Pythagoreans.

Intervals are added by multiplying their ratios and subtracted by dividing their ratios.
The cent scale divides the octave into 1200 equal parts; each cent is one hundredth of a tempered

semitone.
We can classify scales as to how many degrees they have per octave and whether they are tem-

pered or just.
The just pentatonic scale, diffused throughout the world, is perhaps the oldest scale. The

Pythagorean just scale is the prototype for modern Western scales. Though it is highly desirable
for the intervals of the scale to be based on small integer ratios, like the harmonic series, some of
the Pythagorean intervals are harmonically dissonant.

The Pythagorean just scale can be expanded to 12 degrees to facilitate transposition and mod-
ulation, but we end up with two tritones and two sizes of semitone.

Ptolemy suggested modifying the Pythagorean intervals to better suit what musicians actually
played. However, his ideas were suppressed until the Middle Ages. In any event, this did not solve
the fundamental problem of a transposable scale system with small integer ratios.
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Consonance means “to sound well together.” Dissonance is its opposite. Though it is tempting
to look for consonance metrics in the mathematics of their ratios, the subject also depends upon
culture and era as well as psychophysical response.

The natural major scale developed by Zarlino was based on the pure 4:5:6 ratio. It succeeds at
making the thirds perfectly consonant, but it does so at the expense of the whole steps, which now
are uneven in size.

The mean-tone tempered scale regularized the size of the steps in the natural major scale using tem-
pering. But odd-sized intervals made the scale degrees fail to line up exactly with the harmonic series.

The underlying problem with all just scales is that the powers of the integer ratios 3/2 and 2/1 do
not form a closed system. It turns out that 12 fifths above seven octaves is one of the best approxi-
mations to a closed system, yielding a system with 12 degrees per octave, but it is not a closed system.

To close the octave so as to allow arbitrary transposition and modulation, we must use temper-
ing. Or we can throw out modulation and transposition and use a just scale. Or we can continue
to add scale degrees in an effort to throw additional scale degrees at the problem, increasing the
odds that some of them will be less dissonant. Mean-tone temperament optimizes only the thirds
and fifths in selected keys. Well-tempered scales make all keys usable but make some more purely
intoned than others. Equal-tempered scales make all keys sound the same. The idea that different
keys have a unique tonal palette stems from the well-tempered scales, which actually did sound
different in different keys.

The original aim of microtonal tuning was to supply alternative choices of intervals when mod-
ulating or transposing so as to retain as much as possible the simple integer ratios of the just scales.
Examples of tempered microtonal scales include the 19-tone scale, the quarter-tone scale, and the
53-tone scale. Originally developed in the eighteenth century, just microtonal scales didn’t catch
on because of the difficulties of constructing instruments to play them. Many cultures, such as clas-
sical Hindustani music, are satisfied not to transpose but incorporate 22 just microtones called sruti
in the scale to provide a rich tonal palette. In the twentieth century, Harry Partch built an entire
orchestra to play music using his 43-tone just microtonal scale.

The hierarchical system of diatonic harmonicity began to break down after the equal-tempered
scale provided free transposition to any key. All keys were now alike because all intervals were
identical. With identical keys, after a while, composers no longer felt the compulsion to obey
the older tonal hierarchy. Arnold Schoenberg and his school devised a way to remove any
key-centeredness from their music by giving all pitches equal prominence. The result was the
deconstruction of tonal harmony in Western music. This was followed by the deconstruction of the
octave in the late twentieth century, for example, by the Bohlen-Pierce scale.

We live in an unbelievably rich time when all the musical traditions of the world, both current
and historical, are available to us, and we also have the means to construct new scales and build
new instruments to play. However, to construct a living music requires more than just a theory:
instruments, trained players, a body of musical work, and an interested and financially involved
public are also necessary.
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4 Physical Basis of Sound

Music is a science which should have definite rules; these rules should be drawn from an evident principle;
and this principle cannot really be known to us without the aid of mathematics. Notwithstanding all the
experience I may have acquired in music from being associated with it for so long, I must confess that only
with the aid of mathematics did my ideas become clear and did light replace a certain obscurity of which I
was unaware before.
—Jean-Philippe Rameau, Traite de l’Harmonie

This book uses the international system of standard units defined by the Système International
d’Unités, abbreviated SI. It is also known as the MKS system of measurement, which stands for
“meter, kilogram, second.” This system is used almost universally by the scientific community as
well as by most countries of the world except the United States. As an American, I may occasion-
ally slip back into old habits and use the so-called English “foot, pound, second” system. But since
even the English have abandoned it, I’m trying to do so as well. 

4.1 Distance

The fundamental SI unit of distance is the meter. The SI system multiplies the meter by exponents
of 10 to create other named magnitudes (table 4.1). Notice that from the millimeter on down, the
exponent decreases by 3 for each succeeding unit. Units larger than the kilometer, such as the
megameter and gigameter, will not arise much in the study of music and sound.

4.2 Dimension

Vectors convey both a direction and a magnitude. Vectors are usually drawn as an arrow whose
length represents the vector’s magnitude and whose orientation indicates its direction.

A coordinate system is any method of specifying points. A set of vectors set at right angles to
each other defines the cartesian coordinates. A single such vector defines one-dimensional space,
two vectors at right angles define two-dimensional space, and so on.

Two vectors are orthogonal if they maximize the area they delineate. Three vectors are orthog-
onal if they maximize the volume they delineate. 
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An area is the product of two orthogonal distances; the area of a circle is πr2. A volume is the
product of three orthogonal distances. The volume of a sphere is 4πr3/3.

4.3 Time

Sir Isaac Newton (1643–1727) provided the first published mathematical model of time in 1687
in his Philosophiæ Naturalis Principia Mathematica, commonly known as The Principia. He
modeled time as a line that stretched continuously from the infinite past to the infinite future. Time
was thus eternal, having no beginning and no end. This approach to modeling time makes the math-
ematics of music and sound tractable, but it raises a number of problems. For instance, modern
astronomy suggests that time had a beginning and will possibly have an end, depending upon
whether the universe will collapse, reach a steady state, or expand forever. But if time is eternal,
how can it be limited by the duration of our universe? And if time is not eternal, then what was
happening before time began?

Such confusions provide an object lesson on the limitations of mathematical models. They are
useful insofar as they accurately characterize the behavior of real systems. But in science reality
trumps a model’s view of reality. Scientific revolutions come about when the limits of a model are
overcome by a more encompassing model. Newton’s perspective on time has the advantage of sim-
plicity; it can still be used so long as we remain aware of its limitations.

The fundamental SI unit of time is the second. As with distance, the SI system creates other
named magnitudes by multiplying the second by exponents of 10 (table 4.2), but SI time units
greater than 1 second are not in decimal organization. Instead, we have years, weeks, days, hours,
and minutes.

4.3.1 Period and Frequency

There are two ways to use time as a measurement:

■ Period The amount of time T elapsed between the start and end of a single event is the period
of the event. When a train moves past at a constant speed, the time it takes for one car to pass by

Table 4.1
SI Units of Distance 

Kilometer

Meter

Decimeter

Centimeter

Millimeter

Micrometer

Nanometer

km

m

dm

cm

mm

µm

nm

103 m = 1000 m

100 m = 1 m

10–1 m = 0.1 m

10–2 m = 0.01 m

10–3 m = 0.001 m

10–6 m = 0.000001 m

10–9 m = 0.000000001 m

Thousand

(Little used)

Hundredth

Thousandth

Millionth

Billionth
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a stationary observer is the car’s period. Analogously, the period of vibration, periodicity, is the
time it takes one cycle of a wave to return to its starting point.
■ Frequency The number of events f occurring in a single elapsed time interval is the frequency
of the event. The number of trains passing through a train station per day tells how frequently the
trains run.

The two measurement strategies are reciprocal, that is, for some frequency f and period T,

, Frequency (4.1)

and conversely,

. Period (4.2)

Periodicity of sound is typically measured in seconds (s). Frequency is measured in cycles per
second. The SI unit for one cycle per second of vibration is hertz (Hz). The standard reference pitch
for Western orchestras is A440, corresponding to a periodic sound vibration of 440 Hz. The period
of one cycle of A440 is 1/440 = 0.00227 s, or 2.27 ms. It is convenient to express frequencies above
1000 Hz in kilohertz; thus 1000 Hz = 1 kHz.

4.4 Mass

Together with time and distance, a basic measurement in the MKS system is mass, the quantity
of matter contained in an object. Matter is anything that occupies space and exhibits inertia.
Inertia is the tendency of a body to impede acceleration. Your body presses against the seat of
your car as you accelerate from a stop because the inertia of your body resists (impedes) the
acceleration. We can compare one mass to another using, for example, a beam balance. Or we
can measure it by applying a force and measuring the resulting acceleration.

Table 4.2
SI Units of Time

Kilosecond

Second

Decisecond

Centisecond

Millisecond

Microsecond

Nanosecond

ks

s

ds

cs

ms

µs

ns

103 s = 1000 s

100 s = 1 s

10–1 s = 0.1 s

10–2 s = 0.01 s

10–3 s = 0.001 s

10–6 s = 0.000001 s

10–9 s = 0.000000001 s

Thousand

(Little used)

(Little used)

Thousandth

Millionth

Billionth

f 1
T
---=

T 1
f
---=
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Mass and weight are not the same thing. Mass is a quantitative measure of inertia. As such, mass
is an intrinsic quality of matter, unchanged by such things as the location of the object. Weight,
on the other hand, is the force of gravity acting on the object, and it depends upon the position of
the object with respect to other objects around it. For instance, you would weigh less standing on
the moon than you do on the earth because your weight depends upon your position. But the mass
of your body and the force required to accelerate it at a certain rate are the same regardless of
whether you are on the moon or the earth.

The rest of the physical concepts in this section are derived from these three primary
measurements.

4.5 Density

Density measures how tightly packed together the material in a body is. Density comes in one-,
two-, and three-dimensional versions:

■ Linear density describes mass per unit of distance, for example, the density of a rope or guitar
string. For length l and mass m, the linear density µ is

. (4.3)

■ Area density describes mass per unit of area, for example, the density of a drum head. For mass m
and area a, the area density γ is

. (4.4)

■ Cubic density indicates mass per unit of volume. For mass m and volume v, the cubic density ρ is

. (4.5)

Three-dimensional density is measured in kg/m3 for large bodies or g/cm3 for small bodies.

4.6 Displacement

In this book I have many occasions to describe the motion of an object, such as a vibrating string,
air column, particle of air, or loudspeaker cone, so a careful explanation of motion is appropriate.
Displacement, the most basic attribute of motion, indicates distance from a starting point, or origin.
Distance in and of itself has nothing to do with motion, but insofar as displacement relates to a
starting position, it is an attribute of motion. When I use the term “displacement,” it will always
carry this technical sense.

µ = m
l
----

γ = m
a
----

ρ = m
v
----
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Suppose I start taking a movie of a car when it is some distance s0 from an arbitrary point of ori-
gin (figure 4.1). The value of s0 indicates the distance of the car from the origin in the first frame.
Successive frames of the movie show the successive displacement of the car as it moves. The dif-
ference between the car’s position in the second frame and its position in the first frame is its dis-
placement, ∆s. The Greek letter delta (∆) is used to signify that the variable to which it is attached
describes a difference between other values, in this case, the difference between s and s0. We can
also take ∆s to mean “the amount of change in s.” Because ∆ is so commonly used in this way, it
is called the first backward difference operator, so that in general, if we have a measurement xn

and a previous measurement xn–1, then

. First Backward Difference (4.6)

We can describe displacement as a vector. If we say that the entire distance that the car travels
in figure 4.1 is the vector s, we can define the displacement of the car from the origin in the second
frame as s = s0 + ∆s. Rearranging, we get

, Displacement (4.7)

which says that the displacement ∆s is the difference between the final position s and the initial
position s0.

The standard SI unit of displacement is the meter (m), but any SI unit of distance can be used
so long as the appropriate conversion factors are used.

4.7 Speed

The ratio of distance to time is speed. More precisely, we speak of average speed as the distance
traveled divided by the time elapsed. Here’s why we must call it average speed: suppose it takes

Figure 4.1
Displacement.

Origin

s0

t0

t

t

s

s

x∆ xn xn−1–=

s∆ s s0–=
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a jogger five minutes to run three blocks and then walk two more. Although moment-for-moment
her speed is uneven, we can still say that her average speed is one block per minute.

We can express average speed  in terms of distance s and time t as

. Average Speed (4.8)

A bar over a variable indicates that it represents an average.

4.8 Velocity

Velocity, like speed, relates distance to time. But velocity also specifies direction; directionless
velocity is just speed. For example, “the speed of sound” does not stipulate a direction for the
sound to travel. Speed is simply the magnitude component of a velocity vector without respect
to its direction. Velocity and speed are measured as the ratio of distance to time, such as meters
per second: m/s.

Suppose the position of the car at displacement s0 (figure 4.1) corresponds to some time t0. Then
if the car reaches displacement s at time t, we say that the elapsed time ∆t is the difference between
those times:

. Elapsed Time (4.9)

The ratio of distance covered to elapsed time is the average velocity:

. Average Velocity (4.10)

If the displacement , the velocity is positive, otherwise it is negative. (A velocity of zero
is technically a positive value.) Ordinarily, positive velocity is indicated on the page as going to
the right. Note that there is no such thing as negative speed, so speed is always an unsigned value.

4.9 Instantaneous Velocity

Consider again the case of a jogger who runs a few blocks and then walks a few. Her average veloc-
ity clearly does not give a good indication about her speed moment-to-moment. It would be nice
if we could determine the instantaneous velocity of the jogger at any particular moment.

Suppose we have made a movie of the jogger as we did of the car. If we look at a single frame,
the motion is arrested and we can’t get a sense of her movement, but if we take the difference of
her displacement between two adjacent frames, we can. For instance, if she runs past a meter stick,
we can estimate her velocity during the moment between the two frames by measuring the dis-
placement and dividing by the elapsed time. Suppose the camera snaps a picture every 1/24 of a
second and the distance she covered was 0.1 m between frames; then her instantaneous velocity

v

v = s
t
--

t∆ = t t0–

v = s∆
t∆

------ =
s s0–

t t0–
-------------

s s0– 0≥
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is 2.4 m/s. Still, there may be some variation in her speed even during this time interval, however
slight. We can generally reduce variation and improve accuracy by measuring velocity over
smaller and smaller time intervals.1

We can continually refine an estimate of velocity by looking at ever smaller intervals of elapsed
time ∆t by having the camera take successive pictures more rapidly. Since the distance the jogger
covers between frames ∆s will also be correspondingly smaller, we begin to lose the big picture,
but we do get a clearer picture of the jogger’s velocity during the time between measurements.

But at some point we’ll reach the limit of the camera’s fastest shutter speed, faster than which
the camera can’t snap successive images. In the limit when the time elapsed between adjacent
movie frames (∆t = t − t0) is infinitesimally small, the distance the jogger covers (∆s = s − s0)
will also be infinitesimally small. But (and this is important) the ratio ∆s/∆t will not be infin-
itesimally small because it is a ratio of two small but nonzero values.2 As we snap pictures at
a faster and faster rate, and as both the time elapsed and the distance covered decrease, their
ratio, which is distance divided by time, approaches closer and closer to the value of the instan-
taneous velocity.

Suppose we have an unbelievably fast camera. When we have increased the rate at which it takes
pictures so that the elapsed time is infinitely close to zero, we say we have actually reached the
instantaneous velocity. We memorialize this by saying that the instantaneous velocity is

, Instantaneous Velocity (4.11)

which means “in the limit as ∆t approaches infinitely close to zero, the instantaneous velocity v
equals the ratio of ∆s/∆t.” 

It’s worth thinking for a moment about what happens if we go too far with this shrinking process.
Though it is clearly impossible, suppose we had a camera that could take successive snapshots with
zero elapsed time, that is, ∆t = t – t0 = 0. Then the jogger would have covered no distance, and
∆s = s − s0 =  0. Then successive images of the jogger would be identical; it would be like looking
at the same picture. We wouldn’t be able to distinguish any motion, thereby defeating the purpose
of the measurement. So for (4.11) to yield meaningful results, we can’t say t = 0; we must say t → 0,
that is, t approaches zero (it just never quite gets there).

I always found the idea of limits to be a slippery concept to hang onto because the idea of a num-
ber’s approaching zero seems indefinite. A number either is zero or it is not zero, right? As I was
writing this section I remembered a Zen meditation practice where the novice is instructed to med-
itate upon the “middle distance,” that is, to focus on the space that is not too close nor too far away.
I recommend a variation of that perspective here. If we can just let ∆t in equation (4.11) become
infinitely close to zero without reaching it, many otherwise unexpected truths can emerge—a sort
of mathematical satori!

We can define instantaneous speed to mean “magnitude of the instantaneous velocity.” In this
book, when I say “speed,” I mean instantaneous speed, and when I say “velocity,” I mean instan-
taneous velocity.

v = s∆
t∆

------
t∆ 0→
lim
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4.10 Acceleration

When the velocity of an object increases, we say it accelerates. When its velocity decreases, we
say it has negative acceleration, or decelerates. Average acceleration is change in velocity per unit
of time:

. Average Acceleration (4.12)

It is “average” because we are averaging the acceleration over a time interval.
Substituting for  from equation (4.8), we have

so acceleration is

, (4.13)

which means (assuming standard units) average acceleration is measured in meters per second per
second, or m/s2.

We can tie average acceleration to particular velocities as follows. Given a starting velocity v0

and a final velocity v measured over an elapsed time interval ∆t, we obtain average acceleration:

. Average Acceleration (4.14)

The average acceleration  is a vector that points in the same direction as ∆v.
We can define instantaneous acceleration as

. Instantaneous Acceleration (4.15)

Thus, instantaneous acceleration is the limiting case of the average acceleration. In this book, when
I say “acceleration,” I mean instantaneous acceleration.

4.10.1 Acceleration as the Bending of a Curve

Let’s say that the car we filmed (figure 4.1) was accelerating. After filming it, we put the film in
a projector and start viewing it. The projector shows us the frames in the order i = 0, 1, 2, . . ., with
elapsed time ∆t between each one, so we view the motion at the same speed it was filmed.

As we watch the car accelerate away from the origin, suppose I suddenly stop the projector at an
arbitrary frame i so that now we see the car frozen in time at some moment . Now we can
determine the car’s average acceleration from just this frame, the previous one, and the next one.

a = v
t
--

v

a = v
t
-- = s/t

t
-----

a = s
t2
----

a = v∆
t∆

------ =
v v0–

t t0–
-------------

a

a = v∆
t∆

------
t∆ 0→

lim

ti = i . t∆
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Suppose B is the displacement of the car at the moment I stopped the film. The previous frame
was frame i – 1, at time ti–1 = ti – ∆t. Call A the displacement of the car at that moment. The next
frame we would see if we started the projector again is frame i + 1 at time ti+1 = ti + ∆t. Call C the
displacement of the car at that moment. Figure 4.2 shows a graph of the car’s displacements A, B,
and C at the moments ti–1, ti, and ti+1.

If we let ui be the displacement at B, then the displacement of the car at points A and C would be
ui–1 and ui+1, respectively. Now, the differences between these displacements can be named as follows: 

Backward difference Displacement from A to B

Forward difference Displacement from B to C

Central difference Displacement from A to C

If we relate these differences to the elapsed time between the appropriate points, we can figure
out the average velocity of the car during the three frames: 

Backward velocity Average velocity from A to B

Forward velocity Average velocity from B to C

Central velocity Average velocity from A to C

So we have three slopes corresponding to the average velocity between the three points (figure 4.2).3

Figure 4.2 shows that the backward velocity is a shallower slope than the forward velocity: this
shows that the car must be accelerating. In fact, the average acceleration is just the difference
between these two slopes divided by the elapsed time. Recall from equation (4.14) that average

Figure 4.2
Displacement of a car accelerating from a stop.

A B

C

titi�1 ti�1

tt t� t t�

u

t
t t

ui

ui�1

ui�1

Time

D
is

pl
ac

em
en

t

uAB∆ = ui ui−1–

uBC∆ = ui+1 ui–

uAC∆ = ui+1 ui−1–

vAB =
ui ui−1–

ti ti−1–
-------------------

vBC =
ui+1 ui–

ti+1 ti–
-------------------

vAC =
ui+1 ui−1–

ti+1 ti−1–
------------------------

loy79076_ch04.fm  Page 105  Wednesday, April 26, 2006  12:58 PM



106 Chapter 4

acceleration is the difference of two velocities over time, and velocities are slopes on a graph of
displacement vs. time, so acceleration is the amount of change in the slope of a curve over time.

Intuitively, the instantaneous acceleration at point B (figure 4.2) is the amount that the curve bends
at that particular point. The more a curve is bent, the greater must be the acceleration along it. Don’t for-
get this. It’ll come in very handy when we consider the vibration of strings, reeds, bars, and membranes.

4.10.2 Estimating Instantaneous Acceleration

We’ve seen that we need just one observation to measure an object’s displacement from its origin, and
two to measure its average velocity. But it takes three observations to measure its average acceleration. 

We can estimate the instantaneous acceleration of an object where we have three observations
separated by a finite time difference. (By “finite” I mean not infinite and not infinitesimal.) Refer-
ring again to figure 4.2, if we have three displacements ut–∆t, ut, and ut+∆t at points A, B, and C,
separated by the time interval ∆t, then the acceleration at point B is approximately

≈ . Second-Order Central Difference Approximation (4.16)

The origins of (4.16) and why it is an approximation and not an equality, go beyond the scope of this
book. But this approximation will come in very handy when we study the vibration of strings and air.

4.11 Relating Displacement, Velocity, Acceleration, and Time

Having developed the concepts of displacement, velocity, acceleration, and time separately, we
can now combine them to understand all aspects of the motion of an object traveling with constant
acceleration along a straight line. To simplify things a bit, assume that the object starts accelerating
from the origin s0 = 0, so now the displacement ∆s = s − s0 = s. 

Since we’re only considering constant acceleration here, the average acceleration equals the
instantaneous acceleration, that is, .

4.11.1 Velocity under Constant Acceleration

Suppose the car depicted in figure 4.2 has initial velocity v0 and constant acceleration a, and we
want to know its final velocity v after elapsed time t. Since equation (4.14) relates all these vari-
ables, a = (v – v0)/t, we just have to solve (4.14) for v to get the final velocity:

for constant acceleration. (4.17)

4.11.2 Displacement under Constant Acceleration

We can get the displacement of the car by solving (4.10), , for displace-
ment s:

for constant acceleration, (4.18)

aB
ut+ t∆ 2ut– ut− t∆+

t2∆
------------------------------------------

a = a

v = at + v0

v = s s0–( ) / t t0–( ) = s/t

s = tv
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but in order to solve this, we must know what the average velocity  is. Well, we have the final velocity
v and the initial velocity v0, so clearly the average velocity  must be the average of these two velocities:

for constant acceleration. (4.19)

(Note that (4.19) only applies when the acceleration is constant.) Now we can determine the dis-
placement of the car by substituting (4.19) into (4.18) to get

. (4.20)

With equations (4.14), (4.17), and (4.20) we have solutions for acceleration, velocity, and displace-
ment of an object when acceleration is constant. By suitable choice of terms, we can use these directly
or combine them to solve any problem involving constant acceleration. For instance, none of these
equations directly deals with finding displacement when only acceleration, time, and initial velocity are
known. But we can find it easily enough. Start with (4.20) and substitute into it the value of v from (4.17):

(4.21)

for constant acceleration. Using (4.21), we only need initial velocity, acceleration, and time to
determine displacement. Equation (4.21) has the interesting property that it can tell us the dis-
placement even when there is no acceleration. The first term v0t gives the displacement if the accel-
eration is zero and velocity remains constant at v0, and the term at2/2 gives the additional
displacement that results from nonzero acceleration.

One other combination of these variables will prove useful later. First, solving (4.17) for t yields
t = (v – v0)/a, and then using this definition for t in (4.20) yields

(4.22)

This yields displacement if we don’t know time but do know acceleration and the initial and final
velocities. Finally, solving for v2 yields 

. (4.23)

v
v

v =
v v0+

2
--------------

s = tv =
t v v0+( )

2
--------------------

s
t v v0+( )

2
--------------------=

t at v0+( ) v0+[ ]
2

---------------------------------------=

v0t at2

2
-------+=

s = tv =
v v0–

a
------------- . v v0+

2
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v2 v0
2–

2a
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v
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4.12 Newton’s Laws of Motion

Suppose a small rocket plus its propellant has 1 kg of mass. The mass of the rocket’s propellant
is a tiny fraction of the mass of the rocket, so we can neglect the fact that, as it burns, the rocket
contains less mass through time. Now send it into deep space so as to effectively eliminate friction
and the effects of gravity on its movement. When the rocket’s engine is ignited, it supplies a con-
stant force and the rocket moves away in a straight line. As its propellant is expelled, the mass of
the rocket decreases ever so slightly, but it is such a small change that for our purposes the rocket’s
mass remains virtually the same. Since we know the mass of the rocket, we can measure the force
that the engine applies by measuring the rocket’s acceleration per unit of time according to the
equation

, Newton’s Second Law of Motion (4.24)

where force is F, acceleration is a, and mass is m. Equation (4.24) is known as Newton’s second
law of motion.

If a mass weighing 1 kg is accelerated by one meter per second per second (1 m/s2), then the
strength of the force is said to be 1 newton (N).

We can derive additional information about acceleration by rearranging (4.24) as a = F/m. This
says that acceleration increases as F increases and shrinks as m increases. For example, if the pro-
pellant constituted a substantial amount of the mass of the rocket, then as the propellant was
expelled, the rocket’s mass would decrease and its rate of acceleration would correspondingly
increase.

We can relate the concepts of force, mass, and motion as follows. When the rocket engine has
expelled all its propellant, its acceleration will become zero. But because there is virtually no fric-
tion or other force in deep space, the rocket continues traveling indefinitely in the same direction
at its final velocity.

This is known as Newton’s first law of motion, which can be stated as follows:

An object continues in a state of rest or motion at a constant speed along a straight line unless 
compelled to change that state by a net force.

“Net force” means the sum of all forces acting on the object. Now, a greater force is required
to change the direction of an object with greater inertia. Newton’s first law is sometimes also called
the law of inertia when expressed as follows:

Inertia is the natural tendency of an object to remain at rest or in motion at a constant speed 
along a straight line. 

The mass of an object is a quantitative measure of inertia.

Newton’s third law of motion is often stated as follows:

For every action, there is an equal but opposite reaction.

F = ma
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Here “action” means force and “reaction” means force in opposition. For example, suppose an
astronaut suspended in space pushes against the side of a satellite with force F. The satellite pushes
back with a force –F, that is, with a force equal in magnitude but opposite in direction. After the
force is expended and they are no longer touching, the satellite and astronaut move away from each
other at a rate proportional to their relative masses.

4.13 Types of Force

Force is an action in a particular direction upon an object, such as a push or a pull. The net force
on an object is the combination of all forces upon it. The effects of force can be seen when an object
accelerates, decelerates, twists, or deforms. Force is measured in units of newton. Types of force
include gravity, friction, air resistance, turning (as in a screw), pressure, normal force, buoyancy,
and tension.

Forces can be categorized as to whether they are contact forces or noncontact forces. Gravita-
tional, electrical, and magnetic forces are examples of the latter because they can be effective
whether the forcing object and the forced object are touching or not.

4.13.1 Weight

Weight is the force exerted by gravity. The force of gravity Fg on a mass m is

, Force of Gravity (4.25) 

which we know from (4.24) is expressed in terms of acceleration. Acceleration due to gravity at
sea level is about g = 9.8 m/s2. So, according to (4.24), if we have a mass of 1 kg, for example, the
force of gravity exerted on it at sea level will be

.

4.13.2 Normal Force

In mathematics, normal means perpendicular to a plane. So a normal force is one that is perpendicular
to surfaces that are in contact. For example, a weighing scale exerts a force opposite to gravity until
the spring force of the scale and the force of gravity balance, and the scale supports the object. The
normal force is a function of the electrical forces between charged particles within the atoms of the
compressed springs. We measure the weight of a body by observing the strength of the normal force,
indicated by the amount the springs are deformed. If the supporting surface is inclined, or if it is accel-
erating, the normal force will not necessarily correspond to the weight of an object.

4.13.3 Frictional Force

Suppose we must push a heavy wooden box across a rough concrete floor. At first, even if we push
hard, it might not budge because the box is pushing back with an equal but opposite static frictional

Fg mg=

f = m . a

Fg = 1 . 9.8 = 9.8 N
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force. Once in motion, its opposition to movement is called the sliding frictional force, or kinetic
frictional force.

The static frictional force is often greater than the corresponding sliding frictional force. Less
force is needed to keep it moving than is needed to start it moving.

If a car is driven with its emergency brake set, it’s hard to get it rolling because the brakes grab,
but once it attains some speed, the engine seems to have less work to do. If it slows to a stop, at
some point the more powerful static frictional force takes over and the car abruptly halts.

This is a good explanation of how a violin string vibrates under the influence of a bow. If the
bow is stationary, a powerful static frictional force sticks the bow and string together. As the bow
moves, it drags the string with it until the elastic force of the string overcomes the static frictional
force. The lesser sliding frictional force takes over as the string glides back opposite to the direc-
tion of the bow. When the elastic force is spent, the string slows. As it slows, the more powerful
static frictional force kicks in again and entrains the string with the movement of the bow.

Friction is a nonlinear force because it does not vary uniformly with the velocity of the object
but tends to increase at low velocities. The forces of friction are a result of atomic-level interactions
between the sliding surfaces.

4.13.4 Tension

The tension of a guitar string can be thought of as a force that seeks to pull the two ends of the instru-
ment together. Indeed, in older guitars the strings sometimes bend the neck, pulling the nut toward
the bridge in a shallow bow. Alternatively, we can think of tension as the tendency of the string to
be pulled apart. One end of the string applies a force T to the guitar, and as dictated by Newton’s third
law, the guitar applies a reaction force –T to the string. The same is true of the other end of the string;
hence the tension tends to pull the string apart. Tension is also a result of atomic-level forces.

4.14 Work and Energy

If I apply a force F to lift something a distance s off the floor, then I have performed work to coun-
teract gravity. If I depress a string on a guitar in order to pluck it, I have similarly performed work
to counteract the string’s force of tension. 

Work is the force applied to move an object times the distance it is moved.

Mathematically,

. Work (4.26)

If there is no distance covered (s = 0), then no work is done. Thus, if I try to lift a piano and can’t
budge it, I may exhaust myself, but I’ve done no work.

Force and distance are measured in newtons and meters, respectively, and since work is the
product of these two, it is measured in newton-meters. Fortunately, this rather unwieldy unit for

W = Fs

loy79076_ch04.fm  Page 110  Wednesday, April 26, 2006  12:58 PM



Physical Basis of Sound 111

work has been given a simpler name in the SI system: the joule (J), named after James Joule
(1818–1889) for his research on work and energy.

4.14.1 Kinetic Energy

Energy is the ability to do work. When a force performs work on an object, the result is a change
in the kinetic energy of the object. Kinetic energy is energy due to movement. The work done by
the net forces on an object equals the change in the kinetic energy of the object. Indeed, we can
say in general that for kinetic energy Ek and work W,

; (4.27)

for all intents and purposes, work and kinetic energy are identical. The SI unit for energy of all
types is also the joule (J).

If we substitute (4.26) into (4.27), we have E = Fs. Now, if we substitute (4.24), (F = ma), into
this we get E = mas. And by (4.13) we can rewrite this to read

. 

But by (4.8),

.

This means that kinetic energy E is the product of an object’s mass m times the square of its
velocity v, or

. Kinetic Energy (4.28)

From (4.28) we see that  

Kinetic energy is proportional to the square of velocity.

For instance, when a car’s velocity doubles, its kinetic energy quadruples. Suppose it is going
30 miles per hour and takes 30 feet after braking to come to a complete stop (that being the distance
it takes to completely dissipate the motion energy into heat). Then, if its speed doubles to 60 miles
per hour (assuming the same road conditions), it will take four times as long to stop (120 feet)
because the car has four times the amount of kinetic energy to dissipate.4

There are many forms of energy, including electrical, thermal, chemical, radiant, nuclear, and
mechanical. Acoustical energy is a kind of mechanical energy.

4.14.2 Potential Energy

Kinetic energy is measured by its mass and velocity, as in equation (4.28). But an object may also
posses potential energy simply by virtue of its position. Like kinetic energy, potential energy

Ek = W

E = mas = m s
t2
----s = ms2

t2
----

E = ms2

t2
---- = mv2

E = mv2
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represents the ability to do work, but only potentially. Once potential energy is enabled to perform
work, it becomes kinetic energy. For example, an object suspended in the earth’s gravitational field
has gravitational potential energy by virtue of its position with respect to the earth. The greater
the height, the greater its potential to do work if it were to be released and allowed to drop. If it
is allowed to fall, its potential energy changes to kinetic energy in proportion to the height of its
drop. Recalling that the force of gravity Fg = mg, we can say that the potential of an object to do
work because of the force of gravity is

, Gravitational Work (4.29)

where h is the height of the object. Note that whether a ball rolls down a hill or falls vertically, the
work done by gravity would be the same, because only a change in vertical distance can be attrib-
uted to the force of gravity; any other motion would have to be attributed to another force. 

We can define the gravitational potential energy as

. Gravitational Potential Energy (4.30)

There are many other forms of potential energy besides gravity. A stretched or compressed
spring has elastic potential energy. A string under tension has tensile potential energy.

4.15 Internal and External Forces

Forces are either internal or external. External forces can increase or decrease the available energy
in a system because the force comes from outside the system. If the external force is positive, the
system’s energy will increase; if it is negative, its energy will decrease. External forces include
applied force, normal force, tensional force, frictional force, and air resistance. The system expe-
riencing the force may increase or decrease either or both kinetic or potential energy. For instance,
friction always acts as a negative force to reduce the total energy in a system.

Internal forces cannot change the total energy of a system, but they can change kinetic energy
into potential energy, and vice versa. Internal forces include gravitational force, magnetic force,
electrical force, tensile force, and spring force. For instance, when the force of gravity displaces
an object from a high location to a lower one, some of its potential energy is transformed into
kinetic energy, but the total energy remains the same. Its movement under the influence of gravity
will undoubtedly include friction and other external forces, but the change due to the internal force
of gravity (or other internal force) does not itself change the total amount of energy.

4.16 The Work-Energy Theorem

The total mechanical energy E of a system is the sum of its potential and kinetic energy:

. Total Mechanical Energy (4.31)

Wg = mgh

Ep = mgh

E = Ek Ep+
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An external force applied to an object can change the total mechanical energy if work is done (that
is, if there is displacement, and the displacement is directly related to the applied force). If the work
is positive, energy is added to the system; if it is negative, energy is taken away. The gain or loss
in energy may be either kinetic or potential energy, or both. For instance, a rocket traveling upward
gains gravitational potential energy; if it is accelerating, it is also gaining kinetic energy. Work done
in these circumstances equals the change in mechanical energy, both potential and kinetic.

When work is performed on an object only by internal forces (such as springs or gravity) the
total mechanical energy of the system is unchanged. But the energy changes form: some kinetic
energy will be converted to potential energy, or vice versa. For example, a marble rolling down
the inside of a bowl loses potential energy as gravity draws it downward, but its kinetic energy cor-
respondingly increases as it drops. This is reversed when the marble climbs the far side of the bowl.
Similarly, in the moment that a vibrating piano string is at rest at its point of maximum stretch, its
energy is only potential; but when the tension force starts to pull it back, this potential energy is
converted to kinetic energy. Where there is no change in total mechanical energy, the total mechan-
ical energy is said to be conserved.

4.17 Conservative and Nonconservative Forces

Another way to classify kinds of force is whether they dissipate energy or not. Conservative forces,
as the name implies, do not dissipate energy, whereas nonconservative forces do. Conservative
forces store energy that can be retrieved later. For instance, if I roll a ball up a slope, I increase its
potential energy. If later it rolls back down again, it does so by converting the previously stored
potential energy to kinetic energy. Thus, gravity is a conservative force. Other examples of con-
servative forces include the elastic force of springs, momentum, and the electrical force between
charged particles, because these forms of energy can be stored and recovered. A wound spring can
unwind; a charged battery can discharge through a circuit; momentum given to a ball by a toss can
be delivered into the hands of the person catching it; and so on.

Nonconservative forces dissipate or transmit energy. Nonconservative forces include frictional
forces, viscous forces such as air resistance, and propulsive forces. 

As with gravity, potential energy as well as kinetic energy can be associated with all conserva-
tive forces. Kinetic energy of motion can be converted into potential energy of position, for
instance, when a moving object coasts up a hill, and can then be converted back to kinetic energy
when it rolls down again. While kinetic energy Ek and potential energy Ep may be interconverted
or transformed into each other, total energy is preserved, and E = Ek + Ep according to the principle
of conservation of mechanical energy, provided no work is done by nonconservative forces.

Note that when a mass is lifted against gravity, the potential energy increases regardless of the
direction in which the mass is raised (so long as it is upward). And when the stored potential energy
is released by lowering the mass, the path downward does not matter: potential energy due to grav-
ity is measured only by the difference in height. If the work done is independent of the path the
motion takes, the force is conservative.
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Another way to describe conservative forces is to consider a car on a hilly closed loop. Dis-
counting friction, the potential energy gained going up exactly balances the potential energy going
down when the car gets back to the start. Discounting friction, no net work is done by a conservative
force on a closed loop.

Only kinetic energy can be associated with nonconservative forces. For nonconservative forces, the
work done depends on the path the motion takes: the longer the path a sliding object takes, the greater
the force due to friction. Because no work can be stored in such a force, potential energy is not defined
for it. The energy may dissipate, for instance, as heat, or be transmitted, for instance, via sound waves.

The energy a musical instrument receives from a performer, such as when a string is struck on
a piano, is a nonconservative, propelling force because energy leaves the performer. The instru-
ment receiving the energy seeks to return to its original energy level by dissipating it. But not all
energy is immediately dissipated; some energy is stored in conservative forces, which work to
vibrate the string. The energy that dissipates from the string enters the sound board, is transmitted
into the air, and arrives at our eardrums.

As with this musical example, both conservative and nonconservative forces typically combine
in everyday situations to produce a net force on objects. The total work W done by this net force
is the sum of conservative work Wc and nonconservative work Wnc, and

. 

According to the work-energy theorem, the work done by the net forces on an object equals the
change in the kinetic energy of the object, so we can also write

. 

4.18 Power

Power is work done per unit of time. Thus, it also measures the rate at which energy is transferred
or transformed. The average power  is the ratio of work W to time t:

or . Average Power (4.32)

The SI unit of power is J/s = W (joules/second = watt) in honor of James Watt (1736–1819).
For instance, if it takes 1 second to transfer 1 joule of energy to lift a body up 1 m, then the power

expended is 1 watt. A 100 W lightbulb uses in 1 second the same amount of energy as would be
required to lift a mass that is pulled to earth by 1 newton of force 100 m up in the air in 1 second.

4.19 Power of Vibrating Systems

Kinetic energy tends to dissipate from where there is more to where there is less. So to perpetuate
a vibration requires a way to replenish its energy. This fact leads to an important distinction
between different kinds of musical instruments.

W = Wc Wnc+

Ek = Wc Wnc+

P

P = W
t

----- P =
Ek

t
-----
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4.19.1 Classes of Musical Instruments

There are two classes of musical instruments:

■ Sustaining instruments receive energy continuously from the player and produce a continuous
output. The performer of an Australian didgeri-do performs circular breathing, and a pipe organ
has a motorized wind chest to supply a sustaining tone. Wind instruments can sustain for the dura-
tion of a player’s breath, and practiced string players can sustain tones indefinitely by periodically
reversing bow direction.
■ Nonsustaining instruments receive energy from the player only at note onset. Their sound lasts
until the energy is dissipated. Examples include the piano, guitar, banjo, and most percussion. Dis-
sipation by natural frictional forces causes the sound to die away slowly; the player can usually
stop the note more rapidly if desired by increasing the rate of dissipation, for example, by resting
the hand on a vibrating string. 

4.19.2 Efficiency

Efficiency is the ratio of useful power output po to total power input pi. To express efficiency e as
a percentage, we can write

. 

Efficiency determines, among other things, the ease with which a brass or wind instrument can
be made to speak. For example, a trumpet is very efficient when the vibrating frequency of the per-
former’s lips matches one of the trumpet’s natural vibrating modes. It is very inefficient at all other
frequencies, which helps produce a stable tone.

On the other hand, a piano sounding board is designed to have about the same efficiency for
every frequency so that no one frequency is favored over any other. Good loudspeaker systems are
also designed to have the same efficiency at all frequencies so they don’t favor one frequency over
another.

These ideas are developed more fully in volume 2, chapter 6.

4.19.3 Power of Musical Instruments

Most musical instruments are not as powerful as a 100 W lightbulb. Here are some examples: 

Orchestra 75 W

Percussion 1–10 W

Trombone fortissimo 6 W

Piano 1 W

Violin 0.1 W

Violin pianissimo 0.001 W

e = 100 . po

pi

-----
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Why, then, are audio power amplifiers built to generate on the order of 300 to 600 W per channel?
It’s because loudspeakers are very inefficient, on the order of 1–10 percent, so that they will not
color the sound by emphasizing selected frequencies.

4.20 Wave Propagation

Waves propagate in a medium by displacing differences in force or pressure from one place to
another. The crest in the rope in figure 4.3 moves along the rope by displacing the force that shook
it. An acoustical wave such as the one shown in figure 1.2 propagates in air by displacing pressure
differences from one space to another. 

There are three ways that waves can propagate through a medium. The different ways relate the
direction of motion of the particles in the medium to the direction of wave motion through the
medium:

■ Transverse Like surface waves in water, the direction of motion that creates the wave is per-
pendicular to the direction of wave motion. If we tie a rope to a wall at one end and shake the other
end, we might see shapes as shown in figure 4.3.
■ Longitudinal Like sound waves in air and under water, the direction of motion that creates the
wave is the same as the wave motion. Figure 4.4a shows a spring at rest. In 4.4b its left end is given
a momentary shove right, creating a compressed region. In 4.4c it is given a momentary shove left,
creating a stretched region while the compressed region continues to propagate to the right. In 4.4d
the left end of the spring is returned to its initial position while the compressed and stretched
regions continue to move to the right.
■ Torsional The direction of motion that creates the wave rotates about the axis of wave motion.
Putting a medium under twisting stress creates torsional waves. Figure 7.9 shows a Shive wave
machine, which is an example of torsional wave propagation. Torsional wave motion proceeds
down the central wire that connects all the machine’s transverse bars.

Figure 4.3
Transverse waves.

Crest 1

Crest 1

Crest 1Crest 2

Trough 1

Trough 1
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4.21 Amplitude and Pressure

The amplitude of a wave is the distance from its peak height to its point of zero displacement or
equilibrium (figure 4.5). For a sound wave, amplitude is the difference between the wave’s peak
pressure and standard atmospheric pressure. Sound amplitude is usually measured as sound pres-
sure level (SPL), which is the difference between the greatest pressure in a wave and standard
atmospheric pressure.

If you dive deeply into a swimming pool, you experience pressure against your eardrums. Pres-
sure is the force applied by the molecules of water pressing perpendicularly on the surface area of

Figure 4.4
Longitudinal waves.

Figure 4.5
Wave amplitude.

a) No force applied

b) Shoved right

c) Shoved left

d) Returned to starting position
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your eardrum. Physicists would say that the force of the water is applied normal to the surface of
your eardrum. A normal force F is distinguished from other forces by adding the symbol ⊥ as a
subscript. So, in general, pressure p is the amount of force applied normal to a surface F⊥ divided
by the area a over which it is applied:

. Pressure (4.33)

Pressure is measured in newtons per square meter. The SI unit of pressure is the pascal (Pa),
named after the French scientist/mathematician Blaise Pascal (1623–1662). So 1 Pa = 1 N/m2.

4.22 Intensity

Energy from the motion of sound waves flows through the eardrums and into the inner ear, where it reg-
isters as sound. Intensity I is the energy E per unit of time t that is flowing across a surface of unit area a:

. (4.34)

According to equation (4.32), P = E/t. So we can say I = P/a2, that is, intensity I is the power flowing
across the surface of area a. The standard area unit is 1 m2, so intensity is measured in W/m2. We must
also take into account the direction the energy is flowing relative to the surface it is flowing across:

, (4.35)

where I⊥ is intensity flowing normal to the surface.

4.23 Inverse Square Law

In the absence of any barriers, sound has a spherical radiation pattern. To compare sound intensities
at varying distances from a source (figure 4.6), we must make spherical measurements.

Figure 4.6
Comparison of spherical surfaces.
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Let P be the power of a wave at distance r1 propagating along direction V. This means that an
amount of energy P is flowing through surface a1 each second. If no energy is lost, then the same
power will flow through a2 each second as well, and P/a1 = P/a2. Since the areas of surfaces a1 and
a2 are proportional to the squares of their distances from the source S, the intensity I varies
inversely as the square of the distance to the source, and 

. (4.36)

4.24 Measuring Sound Intensity

Just as the range of frequencies we can hear is limited, so is our perception of sound intensity. The
threshold of hearing is the minimum amount of sound intensity required for a sinusoid to be detected
by an average listener in a noiseless environment. The limit of hearing (also called the threshold of
pain) is the intensity above which sound is registered as (possibly damaging) pain by most of us.

Perception of loudness is not as straightforward as perception of pitch. While loudness is pri-
marily affected by intensity, it is affected also by other perceptual and acoustic factors, especially
frequency. We are generally less sensitive to very low and very high frequencies (see section 6.5).
For the ear’s most sensitive frequencies, around 1000 Hz, the range between the threshold of hear-
ing and the limit of hearing is staggeringly large:

■ Sound intensity at the threshold of hearing at a frequency of 1 kHz is approximately th =
 W/m2 for a very sensitive listener.

■ Sound intensity at the limit of hearing at a frequency of 1 kHz is approximately lh =
W/m2.

Thus, the range of sound intensities our ears can register at 1 kHz is on the order of 1012, which
is about 1 trillion to 1. No other sense faculty has this range of sensitivity.

4.24.1 Sound Intensity Scale

To establish a sound intensity scale, we must determine its boundaries and the gradations into
which it is divided. It makes sense to use the threshold of hearing and the limit of hearing as the
lower and upper boundaries of the scale. Expressing the range of hearing as a ratio shows the
extent of the scale:

W/m2. Intensity Range of Hearing (4.37)

But it is awkward to talk meaningfully about ratios with a range of 1 trillion to 1. It would be
easier if we could measure sound intensities using a small set of values that could be mapped
to the wide range of intensities. This is similar to the approach I took to represent pitch, where
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the semitones of the equal-tempered scale provided a simple mapping between linear pitch and
exponential frequency.

Using the exponent of the powers of 10 as the units of the sound intensity scale would allow us
to represent the enormous dynamic range of perceived sound intensity simply with the numbers
0 to 12. 

We can use the log function to extract the exponent of a quantity. For instance, log1010–12 = −12.
So we can extract the exponents in (4.37) by writing

bel. The Bel Scale (4.38)

The sound intensity scale developed this way is called the bel, invented by engineers at Bell Tele-
phone Laboratories in the 1920s and named in honor of Alexander Graham Bell (1847–1922).

Because we are measuring log ratios, the size of the bel increases with increasing differences
in intensity. For example, if I = 10 W/m2 and  = 100 W/m2,

.

If I = 10 W/m2 and  = 1000 W/m2,

.

If I = 10 W/m2 and  = 10,000 W/m2,

. . . .

The bel scale covers the entire audible range of sound intensities with just a dozen integer values,
so we have satisfied an important design criterion. In fact, we have satisfied it a little too well: the
range 0–12 is too coarse-grained for practical work. The preferred unit is the decibel (dB), which
is ten times the resolution of a bel:

dB. The Decibel Scale (4.39)

Perhaps you’ve heard that the intensity range of hearing is 120 dB. Now you know where that num-
ber came from.

We can generalize the decibel scale to compare two arbitrary intensities. The sound intensity
level in decibels of a sound with intensity  is defined as

, The Decibel (4.40)
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for some reference intensity I. We can use (4.40) to make a comparison of two relative intensities.
For instance, if I = 10–2 W/m2 and  = 10–1 W/m2, then the intensity of  is greater than the ref-
erence I by 10 log1010–1–(–2) dB = 10 dB.

We can use (4.40) to make a loudness comparison against either th or lh, depending upon whether
we are measuring up from silence or down from the limit of pain. Sound intensity meters com-
monly measure up from silence by setting I = th in equation (4.40). A very quiet room might have
a sound intensity level of about 40 dB. Continuous exposure to a sound intensity level of over
90 dB can be harmful to hearing. So the useful range of musical intensities is from about 45 dB
to 95 dB, with peaks ranging upward to a maximum of 120 dB.

Why was 10 chosen as the base? Why not pick 2 as the base, as we did for relating pitch to fre-
quency (see equation (2.1))? One reason is that there is no obvious loudness equivalent to the inter-
val of the octave. We don’t always interpret a doubling of intensity as twice as loud. Also, powers
of 10 give a much more compact scale to work with than would powers of 2.

To obtain an absolute intensity level from a decibel level requires reversing the previous process: 

1. Convert decibels to bels.

2. Make the resulting value an exponent of 10.

3. Make it proportional to the reference against which it was originally measured, that is, th or lh.
For example,

. Decibel-to-Intensity Conversion (4.41)

The decibel scale is used to measure sound level and is also used in sound recording and com-
munications. Another scale based on the same logarithmic principle is the Richter scale, used to
measure the intensity of earthquakes. Variants of the decibel are used to measure power, sound
pressure, voltage, or intensity.

4.24.2 Loudness in Recording Equipment

Measurements of ambient sound, such as in a concert hall or factory, are typically measured up from
the threshold of hearing. In contrast, recording engineers usually want to measure down from the
limit of the loudest sound they can record without distortion on their recording equipment. Let lr be
the limit of recording, louder than which the recorder would distort. Now let I = lr be the reference
loudness in (4.40). Then the loudness of the sound we want to compare is . The loudest sound we
could record without distortion is  = lr. The decibel value corresponding to this is 10log(lr/ lr) = 0 dB.
For any softer sound,  < lr, and the corresponding dB value will be negative. For this reason, the
level meters on recorders are measured in negative dB values (figure 4.7). Approximate musical
loudness levels are given for comparison. A value of 0 dB on such a scale means the recorded sound
is very close to saturating the recording medium. Negative dB values indicate softer levels.

It is customary for the designers of recording equipment to leave 10 dB or so for head room at
the top of the scale as insurance against any sound’s being distorted. So, typically the reference

I′ I′

y W/m2 = 10(x  dB)/10

th

-----------------------

I′
I′

I′
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intensity I = lr – 10 dB. This is why level meters on recorders show some positive dB values above
0 dB. The top positive value is where distortion would actually begin. Any sound with loudness
above 0 dB is in danger of being distorted.

Recording equipment typically does not have the same wide dynamic range as human hearing.
Let the threshold of recording tr be the level below which the noise floor of the recorder’s elec-
tronics overshadows the recorded sound. Often, the practical limit is on the order of –90 to
–100 dB. Below that the noise floor of the recorder’s electronics is louder than the recorded sound.
Figure 4.7 reflects these considerations. Figure 4.8 shows an example volume unit (VU) meter with
a scale that goes to –60 dB.

Because the decibel scale is logarithmic times 10, we know we can make a sound ten times
louder by increasing its intensity by 10 dB. We can work out the decibel values corresponding to
doubling or halving the intensity as follows. We know from algebra that log(i/j) = log i −  log j (see
appendix A). So, for instance, log (2/1) = log2 − log1. Now log2 ≈ 0.3 and log1 = 0, and
10 ⋅ (0.3 − 0) = 3 decibels per doubling of intensity.5 Thus, if we double the intensity level of a
sound, we raise its loudness by approximately 3 dB.

4.24.3 Sound Pressure

Unfortunately, measuring energy flow is not always convenient or even possible. Intensity is only
meaningful when energy flows through an area. Yet there are occasions when energy is present
but not flowing. For example, consider a thick steel pipe tightly sealed at both ends with steel caps,

Figure 4.7
Loudness levels, measuring down from the limit of hearing.

Figure 4.8
VU meter.
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containing a battery-operated radio. Virtually all the energy from the radio sound reflects off the
ends of the pipe and virtually no sound escapes. The resulting waveforms inside the pipe are called
standing waves. Since virtually all energy that the radio’s loudspeaker pumps into the air in the
pipe is returned to it by the captured air, virtually no energy flows, and there is virtually no mea-
surable intensity.

However, average pressure variation remains meaningful even with standing waves because we can
still measure the pressure difference inside the pipe between the pressure crests and troughs. Since it
is also generally easier to build equipment to measure pressure differences than it is to measure inten-
sity, it would be very convenient if we could find a way to relate sound pressure to sound intensity. 

Relating Sound Pressure to Intensity The relation of intensity I of a sinusoid to the value of
the average pressure variation ∆p in air is

, (4.42)

where V is the velocity of sound in air and δ is the density of air. The pressure variation ∆p is one
half the pressure difference from peak to trough of the wave (that is, it is the distance from the mean
to the extreme), measured in pascals (N/m2). 

Equation (4.42) says that intensity is proportional to the square of the pressure variation. This is the
most important part of this equation. It also says that increasing the velocity of sound in the medium
or increasing the density of the medium would decrease the intensity. However, since we’re almost
always dealing with air at or near standard atmospheric pressure, these factors can be neglected. The
most important item is the square relationship between pressure variation and intensity.

Using standard values for V and δ, if we take the threshold of hearing as I = 10–12 W/m2 (inten-
sity), then under normal atmospheric conditions, the average pressure variation corresponding to
this intensity will be 2 ⋅ 10−5 N/m. 

So we can relate average pressure variation to intensity. But how can we actually measure the
average pressure variation of a sound? There are a number of approaches we can take.

Measuring Sound Pressure We could measure air particle displacement, that is, the distance
air molecules are pushed aside, but that is difficult to measure because of the random thermal
motion of gas molecules, and we would have to be able to resolve to a distance of 1 micrometer
or less just to observe them. We could measure air particle velocity, but that has the same problem.

By far the easiest way to measure the strength of a sound is to measure the average pressure
change over a large area. Since pressure is force per unit of area, all we have to do is sample a large
enough area to get a force we can register on even relatively crude measuring devices. So we define
sound pressure level (SPL) as the average pressure variation per unit area.

Standard atmospheric pressure A is 105 Pa, roughly 14.7 pounds per square inch. Pressure level
changes caused by sound waves are very small in comparison, ranging from about 0.1 Pa at the
threshold of hearing up to 1 Pa at the limit of hearing. In comparison to atmospheric pressure,
sound pressure is minuscule. 

I = p∆ 2

Vδ
---------
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The Microphone The easiest way to measure sound pressure level is with a microphone. Like
barometers, microphones measure air pressure variation. Whereas a barometer encloses a vacuum
and can therefore measure absolute pressure changes, a microphone encloses a small volume of
air at the prevailing atmospheric pressure level and records the relative pressure changes of passing
sound waves. A small flexible diaphragm on the end of the microphone enclosure is displaced by
high and low pressure wavefronts impinging on it from a passing sound wave. The amount of dis-
placement can be measured electrically by a number of different techniques. Figure 4.9a shows a
simplified barometer, and figure 4.9b shows a simplified microphone.

Given how vanishingly small the pressure fluctuations of sound are, how can a relatively mas-
sive microphone diaphragm be displaced by such tiny forces? The answer is, we make the dia-
phram large so that it encounters more of the sound’s force field. But this poses other design
problems. If we make it too large, the diaphram becomes heavy and unresponsive. So we make
it as thin as possible to reduce its mass. But then it becomes fragile. So we choose materials that
are strong but flexible. This is the domain of mechanical engineering.

4.24.4 Proximity Effect

There’s another important and practical microphone design problem that arises from the geometry
of waveforms. Waves expand from a sound source spherically under normal conditions; what hap-
pens when a curved wave front encounters a flat microphone diaphragm? 

If the diaphragm is near the sound source, and the wavelength is sufficiently short (and therefore
the frequency is high), the diameter of the diaphragm is large in comparison to the diameter of the
spherically expanding wave. As shown in figure 4.10a, the diaphragm cuts across several high and
low pressure areas. The high pressure areas cancel the low pressure areas for a diaphragm in this
position, so it receives little net energy.

The diaphragm in figure 4.10b is relatively far from the source and does not cut across pressure
areas. It experiences uniform high and low pressure across its whole surface at this frequency and
distance, thereby receiving maximum net energy from the passing wave.

Figure 4.9
Simplified barometer and microphone.

a) Barometer b) Microphone

Low
pressure

High
pressure

Vacuum

Flexible diaphragm

Fulcrum point
Restraining spring

Electrical motion detector

Electrical
wires

Diaphragm responds to
air pressure changes

Diaphragm vibrates in and out

Small hole normalizes the
inside to ambient pressure

loy79076_ch04.fm  Page 124  Wednesday, April 26, 2006  12:58 PM



Physical Basis of Sound 125

At a sufficient distance from the source, sound waves tend to flatten out into sheets (plane
waves). The farther the receiver is from the source, for a same-sized receiver, the more plane the
wave front becomes. The region near the source where the curvature of the wave front is significant
to the receiver is the near field, and beyond where the curvature stops being significant is the far
field (see section 7.6).

The significance of this phenomenon, the proximity effect, is that as the distance from micro-
phone to spherically radiating sound source decreases, the high frequency sensitivity of the micro-
phone decreases. As a speaker moves closer to a microphone, the timbre of the speaker’s voice
becomes warmer. That’s the proximity effect in action. The proximity effect can be reduced, if nec-
essary, by choosing a microphone with a smaller diaphragm. It can also be fixed by moving the
microphone farther away, but this can cause it to start picking up undesirable room noise. This is
the domain of audio engineering.

4.25 Summary

The Système International d’Unités (SI) is used to represent basic physical proportions, matter,
distance, dimension, and time. 

Periodicity is the amount of time elapsed between the start and end of a single event. Frequency
is the number of events occurring in a single elapsed time interval. Periodicity and frequency are
each other’s inverses. 

Mass is the quantity of matter contained in an object. Matter is anything that occupies space and
exhibits inertia. Inertia is the tendency of a body to impede acceleration. Mass is an intrinsic quality
of matter, unchanged by such things as location. Weight, the force of gravity acting on an object,
depends upon the object’s location.

Density measures how tightly packed together the material in a body is. We can distinguish lin-
ear distance, area distance, and volumetric distance.

Displacement indicates distance from a starting point or origin.The ratio of distance to time is aver-
age speed.Velocity indicates distance per time interval as well as linear direction. Instantaneous

Figure 4.10
Proximity effect.
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velocity is the ratio of two small but nonzero values of distance and time. We take the limit of the
ratio as the time interval goes toward zero.

Average acceleration is change in velocity measured in meters per second per second. Instan-
taneous acceleration is the ratio of two small but nonzero values of velocity and time. We take the
limit of the ratio as the time interval goes toward zero. When plotted, the instantaneous acceleration
at a point is just the amount that the curve bends at that particular point.

If we know three of the four motion variables—displacement, velocity, acceleration, and
time—we can always find the fourth by algebraic substitution. 

Newton’s first law of motion states that, because of inertia, an object continues in a state of rest
or motion at a constant speed along a straight line unless compelled to change that state by a net
force. The mass of an object is a quantitative measure of inertia. Newton’s second law of motion
equates force to mass times acceleration. Newton’s third law of motion states that for every action,
there is an equal but opposite reaction.

Force is an action in a particular direction upon an object. Contact forces include friction, air
resistance, turning (as in a screw), pressure, normal force, buoyancy, and tension. Noncontact
forces include gravitational, electrical, and magnetic forces.

Work is the force applied to move an object times the distance it is moved. Energy is the ability
to do work. When a force performs work on an object, the result is a change in the kinetic energy
of the object. Kinetic energy of an object is proportional to the square of the object’s velocity. 

Objects may possess potential energy by virtue of position. Forms of potential energy include
gravitational, elastic, and tensile energy.

External forces can increase or decrease the available energy in a system. They include applied
force, normal force, tensional force, frictional force, and air resistance. Internal forces cannot
change the total energy of a system, but they can change kinetic energy into potential energy, and
vice versa. Internal forces include gravitational force, magnetic force, electrical force, tensile
force, and spring force.

The total mechanical energy of a system is the sum of its potential and kinetic energy. When
work is performed on an object only by internal forces, the total mechanical energy of the system
is unchanged but the energy changes form. 

Conservative forces store energy that can be retrieved later. Nonconservative forces dissipate
or transmit energy. Nonconservative forces include frictional forces, viscous forces such as air
resistance, and propulsive forces. No net work is done by a conservative force on a closed loop.
Only kinetic energy can be associated with nonconservative forces. For nonconservative forces,
the work done depends on the path the motion takes. Conservative and nonconservative forces
combine in everyday situations to produce a net force. 

Power is work done per unit of time. Thus, it also measures the rate at which energy is transferred
or transformed. Kinetic energy tends to dissipate from where there is more to where there is less.
To perpetuate a vibration requires constantly replenishing lost energy. There are sustaining and
nonsustaining musical instruments, differentiated by whether there is a constantly renewable
source of energy to drive the instrument’s vibration.
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Efficiency is the ratio of useful power output to total power input.
Waves propagate in a medium by displacing differences in force or pressure from one place to

another. The movement can be transverse, longitudinal, or torsional. 
The amplitude of a wave is the distance from its peak height to its point of zero displacement

or equilibrium. For a sound wave, amplitude is the difference between the wave’s peak pressure
and standard atmospheric pressure. Sound amplitude is usually measured as sound pressure level,
which is the difference between the greatest pressure in a wave and standard atmospheric pressure.
Pressure is the amount of force applied normal to a surface divided by the area over which it
is applied.

Energy from the motion of sound waves flows through the eardrums and into the inner ear,
where it registers as sound. Intensity is the energy per unit of time (power) that is flowing across
a surface of unit area. Sound has a spherical radiation pattern if not blocked. Intensity varies
inversely as the square of the distance from the source.

The ear detects sound intensity between the threshold of hearing and the limit of hearing. The
decibel is 10 times the logarithm base 10 of the ratio of two intensities. The decibel scale covers
the entire audible range of sound intensities with 120 values.

Measurements of ambient sound, such as in a concert hall or factory, are typically measured up
from the threshold of hearing. In contrast, recording engineers usually measure down from the
limit of the loudest sound they can record without distortion.

Sound intensity is typically less useful as a measure than sound pressure because there are pres-
sure differences even in standing waves that we can measure. Although we could measure particle
displacement or velocity, it’s easier to measure average pressure variation per unit area, called
sound pressure level (SPL). A microphone measures relative pressure variation from one side of
a diaphragm to the other.
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5 Geometrical Basis of Sound

Geometry is frozen music.
—Goethe

5.1 Circular Motion and Simple Harmonic Motion

Suppose a pendulum swings back and forth above a turntable. The turntable has a marker, such as a
small cone, placed on its surface (figure 5.1). The cone moves with uniform circular motion because
a motor drives it in a circle at a constant speed. Now adjust the length of the pendulum so that it makes
one full swing in the same time that the turntable makes one complete revolution, and release the pen-
dulum at exactly the same moment the cone moves under it so that the two movements are synchro-
nized. With the two motions so aligned, if we look directly edge-on at the turntable, the pendulum and
the cone seem to have exactly the same left/right motion even though we know that the pendulum
moves in a line while the turntable moves circularly. Intuitively, it looks like circular motion and simple
harmonic motion are in some way equivalent if seen from the right vantage point. This train of thought
suggests that we can use the geometry of circles to study simple harmonic motion and wave behavior.

5.2 Rotational Motion

Circular motion and simple harmonic motion are closely related. In fact, to understand circular
motion is to understand sine waves, which are the basis of all musical sound. This section reviews
information provided by geometry and trigonometry about circular motion.

5.2.1 Angular Displacement

The center of a rigid rotating body, such as a turntable, defines its axis of rotation as a point around
which circular motion revolves. The angle through which the rigid body rotates about its axis of
rotation is its angular displacement. Suppose a turntable rotates from an initial angle θ0 to a final
angle of θf . We say the turntable sweeps out the angle θ, defined as

θ = θf − θ0. Angular Displacement (5.1)
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Rotatable objects can turn either clockwise or counterclockwise.

Counterclockwise angular displacement is taken to be positive, and clockwise angular displacement 
is taken to be negative. 

Thus, θ indicates counterclockwise rotation, and −θ indicates clockwise rotation.

5.2.2 Radians

It is common to use degrees to measure angular displacement or to refer to entire revolutions. One
revolution returns a turntable to its initial position and equals 360°. 

Suppose a turntable sweeps out an angle θ as shown in figure 5.2. As it does so, point Q traces
out an arc of length s. Clearly, the length of s grows if either its radius r or the angle θ grows. In
fact, we can show with elementary geometry that 

. (5.2)

When s/r = 1, that is, when the arc length is the same as the radius, the angle θ is equal to 1 radian
(rad). Since both  s and r are measures of distance, their ratio is a dimensionless number (because

Figure 5.1
Pendulum and turntable.

Figure 5.2
Radian measure.
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the units in the numerator and denominator cancel out). A dimensionless number is a “pure num-
ber” unencumbered with physical significance.

If the point Q sweeps out one entire revolution of radius r, its angular displacement will be θ = 2π
and its arc length s will equal the circumference of the circle, 2πr.

Since one revolution equals 360°, we can equate degrees and radians. If θ = 360°, then s = 2πr
and 

 rad, (5.3)

and 2π rad = 360°. Solving for rad, we see that one radian is

. Radian (5.4)

This constant, the radian measure, allows us to use simple integers and ratios of integers to specify
useful divisions of a circle.1 For example, the circumference of the circle is 2π radians, and a half
circle (180°) is one half of that, exactly π radians. Similarly, one quarter of the circumference is
π/2 radians, which is therefore 90°, the size of a right angle.

When angles are stated in radians, the constant π tends to drop out from equations, greatly sim-
plifying calculations. Radian measure also simplifies calculation of the length of an arc. Solving
(5.2) for s yields

s = rθ, Length of an Arc (5.5)

so we can get the length of s simply by multiplying the radius of its circle by the arc’s angle in radians.2

5.2.3 Angular Velocity

Suppose a turntable starts at angle θ0 and rotates to angle θf (figure 5.3). Then its angular displace-
ment is θ = θf − θ0. Further, suppose the turntable performs this rotation in t seconds. Then its angular
velocity is the angular displacement θ divided by elapsed time t:

Angular Velocity (5.6)

which we measure in SI units of rad/s.

Figure 5.3
Angular rotation.
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Angular velocity is the rate at which angular displacement changes.

Compare (5.6) to linear velocity, which is the rate at which linear displacement changes.
Counterclockwise angular velocities are positive, whereas clockwise angular velocities are neg-
ative. In (5.6) the symbol ≡ means “defined as.” I use it to signify that I am defining ω to have a
particular meaning, namely, θ/t. Later, when I use ω, it will carry this significance.

Here’s another way to calculate angular displacement. Suppose the turntable shown in figure 5.7
is set so that the cone is at its rightmost position, aligned with the x-axis. Then we start the turntable
and start a timer at time t = 0. The turntable rotates counterclockwise at a constant rate of ω rad/s,
moving through angle θ in time t. Since the turntable rotates at a uniform speed, the size of the
angle θ grows at a constant rate. Therefore, the angular displacement θ at time t is the angular
velocity times the elapsed time t:

θ = ωt. Angular Displacement with elapsed time (5.7)

5.2.4 Angular Acceleration

If the turntable shown in figure 5.7 starts rotating with angular velocity ω0 and ends at time t with
angular velocity ωf , the change in angular velocity is ω = ωf − ω0. If the change is not zero, the
turntable exhibits angular acceleration α, which is change in angular velocity ω through time t:

, Angular Acceleration (5.8)

measured in SI units of (rad/s)/s = rad/s2.

Angular acceleration is the rate at which angular velocity changes.

5.2.5 Rotational Speed

If a bicycle’s wheel is turning once per second at a constant rate, and the tire’s radius r = 0.5 m, how
fast is the bicycle going? If the circumference of the wheel is c = 2πr = 3.14 m, then the velocity of the
bicycle must be about 3.14 m/s. Every point on the circumference of the tire is also traveling at 3.14 m/s.
Thus, for some radius r and some period of time T,3 the rotational speed of a point on a circle is

. Rotational Speed (5.9)

5.2.6 Centripetal Acceleration

Speed doesn’t imply direction, but velocity does. As a point on the circle travels, its direction
changes moment by moment. So, even though the speed of a point on the circle remains uniform,
its velocity changes from instant to instant because its direction changes. 

Figure 5.4a shows a circle rotating through points p1 and p2. The velocity at these points can be
drawn as vectors, v1 and v2, representing the linear velocity of each point. The difference of the two
vectors is the change in velocity ∆v = v2 − v1. The difference of two vectors can be shown by putting

α = ω
t
---- = θ/t

t
------- = θ

t
2
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v = 2πr
T

---------
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their bases together and measuring the distance between their tips (figure 5.4b). Similarly, the vec-
tor distance between p1 and p2 is ∆r = r2 − r1 (figure 5.4c). Since the length of v1 = v2 and the length
of r1 = r2, triangle r1r2∆r and triangle v1v2∆v are both isosceles triangles.

Let’s simplify things a bit. Since v1 = v2, let’s define v = v1 = v2, and since r1 = r2, let’s define
r = r1 = r2 (figures 5.4d and 5.4e). Note that the isosceles triangles in 5.4d and 5.4e have the same
angle θ. So they are similar. From geometry we know that for similar triangles, 

. (5.10) 

For the next step, we can make a simplifying assumption. First, let ∆t = t2 − t1, the time it takes for
p1 to get to p2. Now, for small angles θ, 

∆r ≈ v ⋅ ∆t. (5.11)

That is, ∆r is approximately equal to v ⋅ ∆t for small angles θ. Properly speaking, the length we should
use is the arc of the circle between p1 and p2 because that’s the distance the point will actually be trav-
eling. But for small angles, the difference between the length of the arc from p1 and p2 and the length
of the chord from p1 and p2 can be ignored. Being able to ignore this will greatly simplify what follows.

If we substitute (5.11) into (5.10), we derive the acceleration of the point on the circle as follows:

.

Figure 5.4
Uniform circular motion.
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The ratio ∆v/∆t is acceleration because it represents change in velocity over time. This is called
centripetal acceleration because the direction of the bending force is always toward the center of
the circle (see figure 5.5). It is defined as

, Centripetal Acceleration (5.12)

where ac is centripetal acceleration, v is velocity, and t is time.
Suppose we can control a rocket in deep space and want it to turn in a circle around a point with

radius r. To get it to turn, we would have to ignite one rocket on its tail to propel it forward with a force
proportional to v and ignite another pointing sideways with a force proportional to ac. Figure 5.5a shows
that for v = 50 and r = 125, ac must be 502/125 = 20. Figure 5.5b shows that if v is doubled to 100 for
the same r, then ac must quadruple to 80 in order for the rocket to maintain a circle of the same size.

5.2.7 Tangential Velocity

On a merry-go-round the circular motion pushes riders away from the center, and pushes them
harder, the further from the center they are. But is the direction of the push radial, directly away
from the center? Setting an object on a turntable, we can spin it at some angular velocity ω sufficient
to make it fly off. Suppose it flies off at point Q (figure 5.6). We would observe that the object’s
angular velocity is instantly converted into some linear velocity in a direction tangent to the point
where it flew off.4 This is understandable because

Circular motion is linear velocity forward constrained by centripetal force toward a center.

If we suddenly eliminate the centripetal force, the remaining linear velocity is all that is left,
and the object flies off in whatever direction it was last aimed. In figure 5.6 the velocity of the

Figure 5.5
Centripetal acceleration.
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object at point Q is shown by a vector vT anchored on Q and drawn tangent to the circle. The
vector vT indicates the tangential velocity of the object at point Q corresponding to its linear
velocity. 

Clearly, the object is subject to tangential velocity even when it is still on the turntable because
this represents its linear velocity at each moment in time. Velocity implies both speed and direction,
but the vector vT is constantly changing direction as it progresses around the circle. So the mag-
nitude of the vector is just its length (without regard to which direction it points) and corresponds
to its speed. 

Intuitively, we can tell that the tangential speed vT must be related to the turntable’s angular
velocity ω = θ/t as well as to its radius r because an increase in either would tend to give more
velocity to the object. But how can we express this?

Recall that (5.5) relates angular displacement θ and radius r to the arc length s by s = rθ,
and that (5.6) relates angular velocity to angular displacement and time by ω = θ/t. If we introduce
(5.6) into (5.5), the result combines angular velocity and radius, as we require. Dividing both
sides of (5.5) by time t, we obtain

 rad/s. (5.13)

The right-hand side now has a term θ/t in it. Since angular velocity ω = θ/t, (5.13) can be
rewritten as 

 rad/s.

Since s measures arc length, the ratio s/t expresses the speed of a point on the circle. Thus, tangential
speed is defined as

 rad/s. Tangential Speed (5.14)

Figure 5.6
Tangential speed.
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We must use units of rad/s because this equation was derived from (5.5), which defines radian
measure. When an object is thrown off a turntable, its tangential speed is converted into tangential
velocity because then it has a particular direction, namely, tangent to its last point of contact.

5.2.8 Period and Frequency

As the cone on the turntable in figure 5.1 completes one revolution, the corresponding simple har-
monic motion completes one back-and-forth cycle. The period T of this cycle clearly depends upon
the angular velocity ω of the circle. Since by (5.6), ω = θ/t, and the circle completes one revolution
of θ = 2π radians in t = T seconds, we can relate angular velocity to period T as follows:

, 

and so

Period related to angular velocity (5.15)

Since frequency f = 1/T, we can relate the angular velocity to frequency:

.

Relating angular velocity to frequency in this way will be so useful in subsequent chapters that it
deserves being repeated:

ω = 2πf. Radian Velocity (5.16)

In this book, when I write ω, I will almost always mean its definition 2πf. Solving (5.16) for f,
we derive the definition of frequency:

. Frequency related to angular velocity (5.17)

This definition says that frequency is the ratio of the angular velocity, ω = θ/t (see equation (5.6)),
to the arc length of a circle. The greater the angular velocity, the more often it completes a full circle,
hence the higher its frequency.

5.3 Projection of Circular Motion

Figure 5.7 shows a spring/mass system vibrating vertically next to a turntable that has a cone
mounted on its edge. By appropriate choices of rotational speed of the turntable, elasticity of the
spring, and weight of the mass, the motion of the shadows of the cone and mass can be synchro-
nized on a screen behind them. This suggests that the simple harmonic motion of a pendulum or
a weighted spring can be related to uniform circular motion via projection. 

ω = θ
t
--- = 2π

T
------

T = 2π
ω
------

ω = 2π1
T
--- = 2πf

f = ω
2π
------
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Figure 5.8 shows the turntable and screen from figure 5.7 with the cone at point Q. Since light
shines across the circle parallel to the x-axis, point Q′, which is the shadow of Q, appears on the
screen at the same displacement above the x-axis. 

The displacement of points Q and Q′ from the x-axis is y, the projection of the radius A onto the y-axis. 
Elementary trigonometry shows that the radius A, its angle θ, and the value of y are connected

by the sine relation (see appendix A).

. Sine Relation (5.18)

Equation (5.18) relates the height y of the triangle, and hence the height of its projection on the
screen, to the radius A and its angle θ. The sine relation allows us to reconcile circular motion with

Figure 5.7
Simple harmonic motion as the projection of uniform circular motion.

Figure 5.8
Front view of turntable.
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simple harmonic motion. In order to see how the vertical displacement y changes, figure 5.9 adds
a strip of film to record the position of the mass and cone through time, allowing us to see the sinu-
soidal motion of the spring/mass system together with the motion of the turntable. Mathematically
and intuitively, it should be clear now that

Simple harmonic motion and the projection of uniform circular motion are the same.

5.3.1 Relating Displacement of Simple Harmonic Motion to Time

Since, by (5.6), θ = ω t, we can relate the vertical displacement y of the cone’s shadow at time t as
follows:

y = A sin θ = A sin ωt, (5.19)

where A is the radius of the turntable, θ is the turntable’s angular displacement, t is time, and ω is
angular velocity. 

The expression ω t in (5.19) determines the rotational position of the turntable at time t; taking
the sine of that rotational position determines the height of the vertical displacement y; multiplying
the vertical displacement by A scales the displacement for the size of the turntable.

Equation (5.19) shows the identity of simple harmonic motion and circular motion and provides
a way to determine the displacement of a sinusoidal wave at any time t. We see that 

The projection of simple harmonic motion through time generates sinusoidal motion.

The term A in (5.19) can be interpreted either as the radius of a circle or as the amplitude of the
corresponding simple harmonic motion because this value determines both attributes.

Figure 5.9
Simple harmonic, uniform circular, and sinusoidal motion.
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5.4 Constructing a Sinusoid

A simple way to generate a sine wave is to plot a few selected points of (5.18) and connect the points
with a smooth line. Figure 5.10 shows eight values of A sin θ every 45° as θ makes one complete
revolution. The y-axis shows the corresponding values of A ⋅ (y/A) for radius A = 1. A circle of
radius 1 is a unit circle. It is convenient to set A to 1 in order to keep the example simple, but it can
be any value. Notice that y takes on values in the range –1 to 1 as θ varies. 

■ When the angle θ is 0° or 180°, the displacement of y = 0 and sin 0° = sin 180° = y/A = 0/1 = 0.
■ When θ is 90°, y = 1 and sin 90° = y/A = 1/1 = 1. 
■ When θ is 270°, y = −1 and sin 270° = y/A = −1/1 = −1. 

These cardinal points are marked with diamonds in figure 5.10.

■ At 45°, triangle Axy in figure 5.8 becomes an isosceles right triangle, and by elementary geometry, 

.

Plugging this value into the sine relation yields the formula

Figure 5.10
Constructing a sine wave.
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■ Similar reasoning establishes the values at 135°, 225°, and 315° (figure 5.10). 

So as θ goes from 0 to 360°, sin θ exhibits one period of sinusoidal motion.

5.4.1 Anatomy of a Sinusoid

The landmarks of the sinusoidal wave are shown in figure 5.11. The y-axis shows the amplitude, which
is proportional to a corresponding circular radius A. The x-axis shows the phases of the sine wave’s
various notable features, such as where it crosses the x-axis ( zero crossings), and its crests and troughs.
We speak of the “phases of the moon” in the same sense: phase describes the characteristic points
reached periodically each time a wave repeats. The period, or cycle, of a sine wave is one complete
movement through all its phases, corresponding to one complete revolution of a corresponding circle.

It will often be more convenient to show the passage of time on the x-axis rather than the size
of the angle θ. Solving (5.7) for t yields

, (5.20)

which shows that time is directly proportional to angular displacement θ. This means the x-axis
can either measure elapsed time or elapsed phase.

Since frequency is the reciprocal of time, f = 1/t, (5.20) can be rearranged:

, (5.21)

which shows that frequency is directly proportional to angular velocity ω. The greater the angular
velocity, the more rapidly the turntable turns. 

If the x-axis shows elapsed time, we are measuring frequency; if the x-axis shows elapsed phase,
we are measuring periodicity.

Sinusoids, like circles, have no beginning and no end, so the period of a sine wave can start any-
where. Conventionally, sine wave periods are usually regarded as beginning at a positive-going

Figure 5.11
Anatomy of a sine wave.
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zero crossing (figure 5.11) and extending until just before the next positive-going zero crossing.
But we could just as well measure the period from crest to crest, or from trough to trough, by suit-
able choice of phase offset. 

5.4.2 Phase Offset

Equation (5.19) requires that the turntable start at its 0° position, which is when point Q in figure 5.8
is aligned with its positive x-axis. In this position, the vertical displacement y = 0 because sin 0 = 0.
If we wish to be able to start the turntable at any orientation, we must introduce a way to specify
its starting position in (5.19). If we don’t start with θ = 0, y will have a nonzero initial value. 

Let’s define a constant φ , which is the phase angle (or phase offset or phase shift) of the turn-
table’s starting position. The vertical displacement of the cone’s shadow at time t with phase offset φ
can then be written as

y = Asin(ωt + φ), (5.22)

where φ defines a constant offset from 0°. It can take on any positive or negative real value. For
instance, suppose we set φ = π/2. Note in figure 5.10 that sin(π/2) = 1. Then at time t = 0,

y = Asin(ωt + π/2) = Asin(π/2) = A. 

This means that at t = 0 the turntable starts rotating with the cone positioned at the top of the turn-
table, which is rotated 90° counterclockwise from the previous starting position.

5.4.3 Wavelength

The physical length of a waveform period, its wavelength, depends upon the medium through
which the wave is traveling and its frequency. In air, sound waves travel at about 340 m/s (approx-
imately 1100 feet per second) at a temperature of 20°C (see section 7.4).

So a frequency of 1 kHz in air has a wavelength of approximately

 meters per period, 

or

 feet per period. 

Note how these three measurements are interrelated.

is a measure of . . . is measured in . . . unit

Periodicity

Frequency

Wavelength

duration

how rapid or how often

length

seconds/cycle

cycles/second

meters/period

seconds

hertz

meter

1second
1000 periods
------------------------------- . 340 meters

1second
-------------------------- 0.34≅

1second
1000 periods
------------------------------- . 1100 feet

1second
---------------------- 1.1≅
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5.4.4 Velocity of Simple Harmonic Motion

How can we characterize the velocity of an object moving in simple harmonic motion when both
the direction and speed of such an object change through time as the object vibrates back and forth?
Since harmonic motion is the projection of circular motion, we should be able to understand the
velocity of harmonic motion by thinking more about tangential velocity.

Figure 5.12 shows the projection of tangential velocity vT of an object on the edge of a turn-
table. By a combination of geometry and trigonometry (see appendix A), we see that the
velocity v of the shadow that is projected on the screen is just the y-axis component of the vector vT ,
that is,

v = vT cos θ, (5.23)

where θ = ωt.
Recall from (5.14) that the tangential velocity vT is related to the angular velocity ω by vT = rω.

Let’s substitute amplitude A for radius r, so now vT = Aω. Substituting Aω for vT in (5.23), we
obtain the velocity of simple harmonic motion: 

v = Aω cos θ = Aω cos ω t. (5.24)

This tells us that even though an object on a rotating circle moves with uniform circular motion,
the velocity of its corresponding simple harmonic motion is not uniform. The velocity constantly
varies between maximum and minimum values through time sinusoidally. When θ equals exactly
90° or 270°, velocity is exactly 0, and the object in simple harmonic motion is momentarily sta-
tionary. Velocity is positive maximum when θ equals 0, and at that point it equals

v = Aω. Maximum Velocity of Simple Harmonic Motion (5.25)

Velocity is negative maximum when θ equals 180°.

Figure 5.12
Projection of tangential velocity.
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5.5 Energy of Waveforms

Equation (5.25) says that the velocity of an object vibrating in simple harmonic motion is propor-
tional to both the amplitude and the angular velocity of the corresponding unit circle. In other
words, simple harmonic motion—the projection of circular motion—will have higher velocity
either if the corresponding circular motion has a longer radius or if that radius turns faster. This
suggests that a mass moving in simple harmonic motion would have greater momentum if either
its amplitude or its frequency were increased.

In section 4.14, kinetic energy Ek was shown as the product of the mass m of an object times the
square of its velocity v, or Ek = mv2. I used an automotive metaphor to show that doubling a car’s
speed quadruples its energy. Now let’s apply this understanding to a molecule of air zipping in and
out of someone’s ear as part of a sound wave impinging on their eardrum.

If the amplitude of a wave doubles while the frequency remains the same, the particle must cover
twice the distance in the same amount of time (via one period of doubled amplitude). Or, if the fre-
quency of the wave doubles, the particle must cover twice the distance in the same amount of time
(via two periods at the original amplitude). In either case, the energy of the molecule of air has qua-
drupled because the velocity of its simple harmonic motion has doubled. 

If the wave in figure 5.13a is stretched out, it has the length shown in figure 5.13d. The wave
in 5.13b, with twice the amplitude of the wave in 5.13a, has the length shown in 5.13e. Wave 5.13c
has the same amplitude and twice the frequency of wave 5.13a, and its length also equals that
shown in 5.13e. Since the duration T of all three waves (5.13a, 5.13b, and 5.13c) is the same, but
the length of waves 5.13b and 5.13c is twice that of wave 5.13a, clearly waves 5.13b and 5.13c have
twice the speed of wave 5.13a. So we see that a wave’s energy depends on both its amplitude and
its frequency.

Consider a point on the turntable in figure 5.12. If the turntable’s radius is A, it has circumference
d = 2πA. Since, by equation (4.8), velocity is v = d/t, the circular velocity of the point is v = 2πA/t,

Figure 5.13
Path lengths.
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which also can be written as v = 2πA ⋅ (1/t). Since, by equation (4.1), the frequency of rotation
is f = 1/t, we can also write

v = 2πAf. Rotational Velocity (5.26)

Taking E = mv2 from equation (4.28) and substituting v from (5.26) yields

E = m(2πAf )2, Rotational Energy (5.27)

which confirms that wave energy depends upon both frequency and amplitude.

5.5.1 Measuring the Energy of Waveforms

Peak Pressure Level Perhaps the easiest way to measure the strength of a waveform is to examine
how its maxima and minima—its highest and lowest points—relate to the ambient pressure level.
Peak pressure level of a sound wave is the difference between the ambient pressure level and the mag-
nitude of either the maximum or minimum pressure level of the sound wave, whichever is greater: 

, Peak Pressure Level (5.28)

where lp is peak pressure level, la is ambient pressure level, l+ is the highest peak, and l– is the deepest
trough. The operator  gives the magnitude of the enclosed expression, and the function
max(a, b, . . .) chooses the greatest value of its arguments. Figure 5.14 shows the peak pressure
level.

Peak-to-Peak Pressure Level Every sound recording device has some limit beyond which it
can no longer accurately represent the strength of the waveform being recorded, and waveforms
with peaks greater than the limit are distorted (see section 4.24.2). Modern recorders often contain
volume level meters that measure the strength of the recorded waveform based on (5.28) to help
the recordist prevent distortion. The peak-to-peak pressure level of a waveform is the magnitude
of the distance between l+ and l–:

Peak-to-Peak Pressure Level (5.29)

Why Average Pressure Level Doesn’t Work Peak-to-peak level shows the limits of a wave-
form’s amplitude, but it does not always provide the best information about a waveform’s strength.
For example, a recording that is mostly silence except for a brief tone burst may have a large peak

Figure 5.14
Peak pressure level.
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amplitude if the tone burst is loud, but there is little energy in the waveform over its total duration
because it is mostly silent. 

One might try to get a clear picture of a waveform’s strength by averaging the waveform’s pres-
sure over time, hoping to smooth out the peaks. But sound waveforms are usually evenly balanced
above and below ambient pressure, so in general . Therefore, the mean value of most
sounds is typically close to zero, and so average pressure is not a useful way to measure the strength
of a waveform. 

RMS Level Ideally, it would be useful to observe the power contained in the waveform because
power is the energy in the waveform through time. But all we can easily measure with a micro-
phone is the waveform’s pressure fluctuations. How can we derive a measure of energy from pres-
sure? The key lies in recalling that there is a square relation between amplitude and energy. 

The average value of cos t over one full period is 0.0. The peak amplitude  of the
cosine is 1.0. The peak-to-peak amplitude is lpp = 2.0 (figure 5.15). 

Let s(t) = cos t. There is a trigonometric identity (see volume 2, appendix A.4.1) that says

.

If we square s(t), then 

s2(t) = cos2t

= cost cost

. (5.30)

So, by (5.30), s2(t) is a cosine wave at twice the frequency, offset by 1, and then divided by 2
(figure 5.16). This is what the original cosine waveform, shown in figure 5.15, looks like when
squared. Note that all values are now positive. The peak value is still 1.0. Its mean value is 0.5. 

Now let’s take the mean value for this squared waveform (0.5) and undo the effects of the squaring
operation. The square root of the mean value is . This is the root mean squared

Figure 5.15
RMS level.
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(RMS) value of the waveform. So the RMS amplitude of . This allows us to say some-
thing useful about the average energy of a sinusoid knowing only its amplitude. The relation of the
amplitudes is as follows:

Average 0

RMS 0.71

Peak 1

Peak-to-peak 2

In general, if s(t) is a sinusoid with peak amplitude A, then its RMS amplitude is A/ .
Because we used a sinusoid to derive RMS amplitude, this measure is only valid for sinusoids.

In particular, it is not valid for time-varying waveforms. This, of course, leaves out all the inter-
esting real-world audio waveforms we’d like to measure with it. Nonetheless, this definition of
RMS is widely used in practice5 because, I suppose, it’s better than nothing. But there are more
sophisticated techniques to overcome this difficulty and find the true RMS value of arbitrary
waveforms (see volume 2, chapter 1).

Sound Pressure Level Although the decibel scale was developed for sound intensity, we can adapt
it to measure sound pressure level. Equation (4.40) defined decibels of sound intensity level (dBSIL) as

y dB SIL = 10 log10 , dB SIL (5.31)

where I is a reference intensity, and  I′ is the intensity being measured. Recalling that intensity is
proportional to the square of amplitude, we can define decibels of sound pressure level (dB SPL) as

10 ⋅ log10

2 ⋅ 10 ⋅ log10

and

y dB SPL = 20 log10 , dB SPL (5.32)

where A is a reference amplitude, and A′ is the amplitude being measured.

Figure 5.16
RMS cosine.

s2(t) �

1.0
0.5

s t( ) 0.707≅

2

I′
I
---

A′
A
----- 

  2

A′
A
-----

A′
A
-----

loy79076_ch05.fm  Page 146  Wednesday, April 26, 2006  1:11 PM



Geometrical Basis of Sound 147

Decibels of sound pressure level (SPL) correspond to twice the equivalent decibels of sound
intensity level (SIL). Where a doubling of intensity corresponds to an increase of 3 dBSIL, a dou-
bling of pressure corresponds to an increase of 6 dBSPL. An intensity ratio of 10:1 equals
10 dBSIL and 20 dBSPL.

5.6 Summary

Uniform circular motion is circular movement at a constant speed. Simple harmonic motion is the
projection of circular motion. Angular displacement is the angle through which a rigid body rotates
about its axis of rotation. Counterclockwise angular displacement is taken to be positive and clock-
wise angular displacement to be negative. The angle formed by a radius and an arc the length of
the radius is called a radian. Measuring angles with radians simplifies many calculations. Angular
velocity is the rate at which angular displacement changes. Angular acceleration is the rate at which
angular velocity changes.

By Newton’s laws, objects tend to travel in a straight line. To travel in a circular path, an object
must experience centripetal acceleration to overcome the object’s tendency to travel linearly.
Circular motion is linear velocity forward constrained by centripetal force toward a center. There
is no such thing as centrifugal force.

Simple harmonic motion of a pendulum or a weighted spring can be related to uniform circular
motion via projection. Simple harmonic motion is the same as the projection of uniform circular
motion. The projection of simple harmonic motion through time generates sinusoidal motion. 

An object on a rotating circle moves with uniform circular motion, but the velocity of its cor-
responding simple harmonic motion constantly varies between maximum and minimum values
through time sinusoidally. The speed of an object vibrating in simple harmonic motion is propor-
tional to both the amplitude and the angular velocity of the corresponding unit circle. 

Peak pressure level of a sound wave is the difference between the ambient pressure level and the
magnitude of either the maximum or minimum pressure level of the sound wave, whichever is
greater. The peak-to-peak pressure level of a waveform is the magnitude of the distance between
its lowest and highest point. The root mean squared (RMS) value of a waveform is a useful measure
of energy in a sinusoid, calculated by squaring the waveform to derive its mean value and then
taking the square root of the mean value to determine the RMS value. Technically, this operation
is valid only for sinusoids.

Since it’s easier to measure pressure variations in air than sound intensity, we adapt the decibel
of sound intensity level (dBSIL) to the decibel of sound pressure (dBSPL) by doubling the
dBSIL value.

loy79076_ch05.fm  Page 147  Wednesday, April 26, 2006  1:11 PM



loy79076_ch05.fm  Page 148  Wednesday, April 26, 2006  1:11 PM



6 Psychophysical Basis of Sound

Pongileoni’s bowing and the scraping of the anonymous fiddlers had shaken the air in the great hall, had set
the glass of the windows looking on to it vibrating: and this in turn had shaken the air in Lord Edwards’
apartment on the further side. The shaking air rattled Lord Edwards’ membrana typani; the interlocked
malleus, incus, and stirrup bones were set in motion so as to agitate the membrane of the oval window and
raise an infinitesimal storm in the fluid of the labyrinth. The hairy endings of the auditory nerve shuddered
like weeds in a rough sea; a vast number of obscure miracles were performed in the brain, and Lord Edwards
ecstatically whispered ‘Bach!’
—Aldous Huxley, Point Counter Point 

The length of strings is not the direct and immediate reason behind the forms [ratios] of musical intervals,
nor is their tension, nor their thickness, but rather, the ratios of the numbers of vibrations and impacts of air
waves that go to strike our eardrum.
—Galileo Galilei, “Two New Sciences”

We must distinguish carefully the ratios that our ears really perceive from those that the sounds expressed as
numbers include.
—Leonhard Euler, “Conjecture sur la raison de quelques dissonances généralement reçues dans la musique”

What has been said of sonorous bodies should be applied equally to the fibres which carpet the bottom of the
ear; these fibres are so many sonorous bodies, to which the air transmits its vibration, and from which the
perception of sounds and harmony is carried to the soul. 
—Jean-Philippe Rameau, “Generation Harmonique”

6.1 Signaling Systems

Suppose you and I were about to play a duet. In order to start, I might signal you by saying, “Ready?
One, two, three. . . .”

For there to be a signal, there must be a source, a receiver, time, distance, and a medium—in
this case, air—which spans the distance and connects the source to the receiver. Altogether, this
constitutes a signaling system . A signal is a physically detectable quantity such as the pressure of
an acoustical wave that traverses a signaling system. More generally, a signal is a description of
how any one parameter varies with any other parameter. A system is any function that produces
an output signal based on an input signal.
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Acoustics is the study of signals and signaling systems where the medium is air. The full treat-
ment of acoustics covers these elements:

■ Source—how sounds are created, including the mechanics of vibrating systems of all kinds. If
only musical sources are considered, the subject is musical instrument acoustics.
■ Medium—how sound behaves in air, including how sound is transmitted through air (spreading)
and what happens to it along the way if it encounters obstacles such as walls (absorption and scat-
tering) that cause transmission losses. Scattering happens, for example, when a sound strikes a
wall: some is reflected, the rest is transmitted through the wall. Room acoustics is the study of
sound transmission in rooms. Interference from other sources produces an ambient noise level that
may block or degrade the reception of a signal by a receiver.
■ Receiver—how we hear. If this entire subject is acoustics, and what goes on between our ears
is psychology, then the subject of how we hear is psychoacoustics. The question of how objec-
tive measures of sensory stimuli relate to the subjective experience is the concern of psycho-
physics.

The properties of the receiving end of the human sonic signaling system are covered in this chapter,
and the properties of sources and media are covered in chapter 7.

6.2 The Ear

Consider the problems that our hearing helps us to solve. The ears detect, analyze, and classify bio-
logically interesting sounds: they compile spectral and temporal information of incoming signals,
parse them into various sources, localize these sources in time and space, and construct a model
of the auditory scene that surrounds us.1 In a lecture I once heard, Albert Bregman characterized
our hearing faculty as follows: Suppose we scraped out two minor indentations (representing our
ear canals) on the edge of a vast lake (representing our sonic environment) and installed two floats
in them (corresponding to our ear drums). Suppose that by simply observing how the waves moved
the floats up and down, we were somehow able to understand everything that was happening in
the lake—to correctly identify boats going by, to note their position, to distinguish boats from fish,
wind, reflections, and so forth. Our hearing effectively carries out all these functions and others
with little more than this kind of arrangement.

The auditory system is attuned not only to listen to certain sounds but to ignore sounds that are
not biologically relevant. Such sounds include ambient noises and the effects of sound reflection,
refraction, and diffusion, which together can produce ugly distortions of a sound source. If we
notice these secondary signals at all, it is to use them constructively to characterize our acoustic
environment. No information is wasted by the auditory system. If we add to this the fact that our
audition is also capable of carrying us away in transports of rapture when we hear music that moves
us, this is an extraordinary faculty indeed. 
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Figure 6.1 is a simplified drawing of a cross-section of one human ear showing the outer ear,
middle ear, and inner ear.

6.2.1 Outer Ear

The outer ear consists of the pinna (the part that sticks out from your head), the auditory canal
(meatus), and the eardrum (tympanum). 

The funnel-shaped pinna helps collect sound from the environment. Its shape modifies the arriving
frequency information depending on the direction of the sound source, imprinting directional clues
that we use to identify the location of the source. Even the shape of the head and torso and the distance
between the ears influence how we identify direction. Frequencies around 3000 Hz are transferred
most efficiently by the meatus, and this is the frequency range of our greatest hearing sensitivity.

The tympanum is bent by the force of arriving sound and transmits the motion to the middle ear.
Although it vibrates most easily between 1 and 3.5 kHz, it transmits sound to the inner ear over
the entire audible frequency range.2 It has a conical shape, a highly detailed and fibrous structure,
and an angular placement in the ear canal. The function of the eardrum and the middle ear is to pro-
vide mechanical advantage to resolve the mismatch between the density of air in the outer ear and
the fluid of the inner ear. Without this impedance matching, very little acoustical energy would be
absorbed by the inner ear and hearing would be severely limited. It is still largely a mystery how
the tympanum accomplishes this task over such a wide frequency range.

6.2.2 Middle Ear

The middle ear is the chamber immediately behind the tympanum. It is connected to the throat by
the Eustachian tube, which allows air pressure behind the tympanum to normalize to external air

Figure 6.1
Schematic diagram of the human ear.
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pressure. A mechanical linkage system couples vibrations arriving at the tympanum to the inner
ear, consisting of three tiny bones called ossicles, known as the hammer (incus), the anvil
(malleus), and the stirrup (stapes), named for their shapes. The hammer is attached to the tympa-
num, and the stapes is connected to the oval window leading to the inner ear.

Since the outer ear is in air but the inner ear is in fluid, the density difference between them would
allow very little energy from the air to penetrate into the inner ear were it not for the leverage pro-
vided by the ossicles. For instance, go to a swimming pool and have a friend talk to you as you put
your head under water. You might still be able to hear your friend as your head goes under, but the
sound is weak and muffled. Most of the sound from your friend’s voice bounces off the water, back
into the air, because of the difference in density between the two media. The middle ear passes along
sound energy to the inner ear by providing a mechanical leverage of about 25 to 1 using the ossicles
to move the denser inner ear fluid. That is, the middle ear matches the impedance of air to the inner
ear fluid (see volume 2, chapter 8). Most of the mechanical energy present in the tympanum is trans-
mitted efficiently to the inner ear, although the outer ear and middle ear transfer frequencies in the
range of 1–3.5 kHz about 50 times more efficiently than frequencies outside this range.3

Acoustic Reflex and Temporary Threshold Shift The middle ear also has a few small mus-
cles that can temporarily protect the inner ear from intense sounds. The stapedius muscle reduces
the mobility of the ossicles by pulling the stapes to the side. These muscles are activated by the
bilateral acoustic reflex within about 10–20 ms of when sound pressure exceeds 90–100 dB. The
acoustic reflex provides about 20 dB of protection. However, the response time for this reflex is
about 30–40 ms after the sound has started, and full protection takes up to about 150 ms longer.
The route from the auditory nerves to the stapedius is hardwired in the brain, so the acoustic reflex
is ordinarily below cognitive control (although some individuals, including the author, can volun-
tarily activate it). Thus for explosions and gunfire, damage to the ear can take place before these
natural protections come into play. This strongly suggests the use of artificial noise suppression
via ear plugs where explosive sounds are a possibility.

The tensor tympani muscle is attached to the malleus and increases the tension on the eardrum
as part of a more general acoustic reflex to loud sounds that can take as long as 1 or 2 seconds. These
systems are not fail-safe protections. Extended exposure to loud sounds (in excess of 100 dB or
so) fatigues these muscles, reexposing the inner ear to punishing sound levels and risking hearing
damage. However, our ears do not alert us to this condition. Instead, another longer-term protective
mechanism comes into play, the temporary threshold shift (TTS),4 whereby our hearing gradually
adjusts to ongoing elevated intensity levels, and we lose the sense that the sound is too loud. If the
hair cells are not allowed to recover through periods of relative quiet, they gradually lose their abil-
ity to respond, and they die, resulting in permanent hearing loss, or permanent threshold shift.
In addition to damaging the auditory mechanism, noise may contribute to loss of sleep, tension,
headaches, reduced vision, sexual impotence, heart disease, and even mental illness (Cohen,
Anticaglia, and Jones 1970). The moral: 

Too much noise is bad for you! 
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6.2.3 Inner Ear

The stapes connects to the oval window at one end of the cochlea, a fluid-filled tube that connects to
the auditory nerve. The cochlea is a coiled double tube, connected at the center. Figure 6.1 shows it
uncurled. One end of the double tube is the oval window, the other end is a round window, which is
also covered with a membrane. The oval window side of the cochlea is the scala vestibuli. The round
window side of the cochlea is the scala tympani. At the apex of the cochlea, these two scala are con-
nected by a narrow aperture, the helicotrema. The two scala are filled with perilymph, which is similar
to cerebral spinal fluid. As the oval window is vibrated by the stapes, the perilymph moves back and
forth. The membrane over the round window is pushed in and out in a complementary motion.

The scala vestibuli and scala tympani enclose the scala media, filled with endolymph, similar
to intracellular fluid. Within the scala media is the organ of Corti, which is the receptor organ for
hearing. It rests on part of the membranous labyrinth, the basilar membrane.

6.2.4 Basilar Membrane

The basilar membrane runs down the center of the cochlea. About 30,000 hairlike receptor units
called hair cells (cilia), are attached to it along its length. On the other end, the hair cells are
anchored to the more stable tectorial membrane. The hair cells connect the two membranes along
their entire length. There is a row of inner hair cells and several rows of outer hair cells. The inner
hair cells provide most of the afferent information to higher neural centers.

The basilar membrane vibrates under the pressure of the perilymph in response to sound. It is thin-
ner, stiffer, and narrower at the base of the cochlea than at the apex. Imagine a guitar string that is
thicker at one end than the other: the thin end will vibrate more readily at high frequencies than the
thicker end. Thus, for a pure tone of given frequency, only one relatively narrow region on the basi-
lar membrane vibrates sympathetically. Low frequencies vibrate the perilymph most intensely at the
apex of the basilar membrane, and high frequencies vibrate it most intensely near the oval window.
Thus, the position along the basilar membrane encodes frequency for the auditory nerve. In the lan-
guage of psychoacoustics, the basilar membrane transforms frequency to place. According to ideas
originally put forth by G. S. Ohm and Helmholtz, the basilar membrane was thought of as a kind
of spectrum analyzer that maps frequency to position. Figure 6.2 shows a map relating frequency
to position along the basilar membrane. As the basilar membrane is vibrated, the hair cells are
sheared back and forth between the tectorial membrane and the basilar membrane. Hair cells receiv-
ing significant movement trigger an electrical signal that is transmitted to a nerve lying under the
organ of Corti. These neurons transmit signals back along the auditory nerve to the brain stem.

Figure 6.2 shows that about half of the basilar membrane is used to encode frequencies between
25 Hz and about 1.6 kHz. All the remaining frequencies in the range of human hearing—from
1.6 kHz to about 20 kHz—fit into the remaining half of the area. Perhaps not surprisingly, we have
greater difficulty discriminating higher pitches than lower ones.

Place Theory If the frequency of a tone doubles, the position of maximum displacement along
the basilar membrane moves toward the oval window by a constant amount. This suggests that the
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basilar membrane encodes frequency ratios, not frequency differences. Here is physiological evi-
dence of the logarithmic relation between pitch and frequency: the basilar membrane uses a log-
arithmic encoding for pitch. This observation, the place theory of pitch, holds that there is a direct
relation between the frequency presented to the basilar membrane and the place along its length
that is displaced most strongly. More generally, the place theory holds that there is a tonotopic
mapping between the basilar membrane and an associated region of the auditory cortex that per-
forms frequency discrimination based on the topology of the basilar membrane. 

Frequency Sharpening But there is at least one problem with the frequency-to-place theory.
The curves in figure 6.2 suggest that our ability to discriminate between two close frequencies
should be much poorer than it actually is. In fact, our hearing does a much better job than one would
predict from the passive mechanics of the basilar membrane. Kachar et al. (1986) discovered a pos-
sible explanation. They observed through video microscopy that outer hair cells change length in
response to nerve stimulation. Ashmore (1987) stimulated a single outer hair cell and observed its
length change substantially. The effect persisted at frequencies into the kilohertz range. Current
thinking is that outer hair cells help to sharpen the tuning of the basilar membrane by affecting how
it vibrates, directing and focusing the responsiveness of the inner hair cells. It seems that sound
analysis in the cochlea is influenced by a dynamic neurophysiological feedback process.

6.3 Psychoacoustics and Psychophysics

The aim of this section is to develop a simple model of the hearing system. The psychologically
relevant characteristics of music include pitch, loudness, timbre, duration, amplitude envelope,
spectral envelope, consonance, volume, rhythm, vibrato, and sound location information.

Psychoacoustics is the science of how we perceive sound. An interdisciplinary field, it draws
upon physics, biology, psychology, engineering, and music. Psychoacoustics starts with the basic
subjective attributes of sound as we perceive it and seeks to understand the ways these perceptions
relate to each other.

Figure 6.2
Frequency response of the basilar membrane. (Adapted from Békésy 1960.)
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Psychophysics focuses just on the crossover point where physics leaves off and psychology
begins—where the objectively observable stops and the subjective starts. Its aim is to develop met-
rics that relate the external physical variables of sound (the Φ variables) to the internal psychoa-
coustic variables (the Ψ variables).5 For example, the Φ intensity of a sound can be quantified
easily by direct measurement (see section 4.24). The corresponding Ψ variable is loudness. The
idea that the Ψ variables could be quantified was first suggested by G. T. Fechner in the 1860s
(Allen and Neely 1997).

6.3.1 Science and Perception

Several problems exist in developing objective measures of our perceptions of sound and
music.

■ Subjectivity Objective measurement is a cornerstone of the scientific method, but perception
of music and sound is subjective and not directly available to objective measurement. For exam-
ple, it would be nice to have an objective measure that relates Φ sound intensity to Ψ loudness.
But we can no more directly apply objective measurements to subjective states than we can
develop a thermometer for happiness. Subjective states are only indirectly available for objective
observation.
■ Nonlinearity Ψ variables are often not linearly proportional to their corresponding Φ variable.
Pitch and loudness are cases in point. 
■ Nonorthogonality Ψ variables often influence each other in quixotic and counterintuitive
ways. For instance, Φ frequency clearly has a major impact on Ψ pitch perception, but Φ sound
intensity also has an impact on Ψ pitch. In two-dimensional Cartesian space, the x and y dimensions
are orthogonal and x and y can vary independently. Pitch and loudness are nonorthogonal.

6.3.2 Science Is Limited

Psychoacoustic research must rely on experimental methods that externalize the inner experi-
ences of listeners. We can use such information to construct models of how human hearing func-
tions. But there are many problems with this approach. For example, there is the problem of
reconciling differing results due to conflicting experimental methodology. Suppose we conduct
loudness experiments using noise bursts as stimuli; how do we relate our results to another
experiment that used pure tones? How do we relate either of these to an experiment that used
orchestral instruments? This is like surveying the ocean by sampling its depth in only a few
places. What if in one experiment we ask subjects to evaluate how “agreeable” a musical interval
is, but in another we ask how “consonant” the interval is? How shall we reconcile such semantic
differences in experimental design? Psychologists thus face a problem not unlike that described
in the ancient tale of the blind men and the elephant.6 Anyone following the progress of science
must live with the suspense of an unsolved mystery. To those who are not a part of the conver-
sation, scientific discourse can be very much like tuning into a heated talk radio program—in
Greek.

loy79076_ch06.fm  Page 155  Wednesday, April 26, 2006  2:28 PM



156 Chapter 6

6.3.3 Science Is Messy

The ideas developed by science that seem effective usually result in a body of explanatory liter-
ature that describes the mind-set, or paradigm, that these ideas represent. Upheavals in this
mind-set occur at unpredictable intervals when new, more expressive models of the subject
emerge. The valid kernels of truth within the old paradigm (if they exist) are incorporated as a
component of the new paradigm. However, it is not always the case that a new paradigm is simpler
than the old; it may assert the importance of previously ignored or undiscovered elements, thereby
actually complicating matters.

Sometimes the discarded elements of old mind-sets persist long after they are shown to be lim-
ited or erroneous. For whatever reason—social convenience or aesthetics—they linger on. An
example of this phenomenon is the so-called psychophysical law that claims that the relationship
between Φ intensity and Ψ intensity is always logarithmic. By this “law” the multiplication of Φ
intensity by some amount purportedly always produces a corresponding addition to the perceived
Ψ intensity. This concept is often associated with Weber’s law,7 which says that as the intensity
of a stimulus increases, the ability to detect a difference between two levels of the stimulus
decreases. In fact, I tacitly referred to this when I described the motivation for constructing the
decibel scale in chapter 4.

Unfortunately, the rationale behind the decibel scale as a measure of loudness is inadequate at
least in part because it ignores the fact that our hearing varies in its sensitivity to different frequency
and intensity ranges. Decibel measure isn’t used anymore to measure Ψ intensity, but it is still valu-
able as a measure of Φ intensity in engineering disciplines, for instance, in designing and using
recording equipment.

I suppose we could come up with a crude metric of the complexity of a subject by tallying up all the
partial explanations and conflicting theories that are currently extant about it, and then multiplying that
by the number of years scientists have been studying the problem. The development of a scientific
model of human hearing has been under way for at least 140 years, since the early work of Fechner, and
we are still nowhere near having an established body of laws. By this measure alone we can see that the
auditory system is hugely complex, containing redundancies, contradictions, and even deceptions.

Some things, such as the outer limits of loudness and pitch, are by now well established. How-
ever, though I try to restrict this discussion to just the settled facts, there is no mistaking this ter-
ritory for the comforts of home. The best advice I can offer to the interested reader is to buy a radio
and start learning Greek!

6.4 Pitch

Pitch is the subjective Ψ variable corresponding most closely to the objective Φ variable fre-
quency. Pitch is sometimes called the response pattern to frequency. But there’s no simple equal-
ity between them. While our sense of pitch is roughly proportional to frequency, it is also
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influenced by frequency range, loudness, and the presence or absence of other frequencies.
Another difference is that pitch is limited to our range of hearing (17 Hz to 17 kHz) but frequency
is unlimited.

A commonly quoted definition of pitch given by the American National Standards Institute
(ANSI 1999) says, “Pitch is that auditory attribute of sound according to which sounds can be
ordered on a scale from low to high.” Unfortunately, stipulating precisely what “that auditory
attribute” is turns out to be surprisingly complex. 

A sound is pitched if its wave shape is highly redundant through time. Otherwise we hear noise.
Even a pitched tone must have a certain minimum duration for its pitch to be perceived; otherwise
it is heard as a click. Tones with rich harmonic spectra will appear to have a more definite pitch
than sinusoids, simpler harmonic spectra, or inharmonic spectra. Very complex inharmonic spectra
may appear to have several pitches. In the case of large bells, the fundamental, or hum note, is not
the same as the perceived pitch of the instrument, the strike note.

6.4.1 Pitch Perception

G. S. Ohm (1843) first put forward a theory that the ear derives pitch by performing Fourier anal-
ysis on acoustical signals (see volume 2, chapter 3). Ohm’s theory, sometimes called Ohm’s law
of acoustics, which he developed just after Fourier’s original work, was perhaps the first place the-
ory of pitch. One of the predictions of this theory is that the ear should be relatively insensitive to
phase information, which has been shown generally to be true.

But place theory fails to account for how the ear organizes frequency components into tones
instead of hearing all frequencies as unique pitches. Also, because of the nature of the Fourier
transform, place theory implies a one-to-one correspondence between frequencies in the acoustical
signal and pitches that the ear should detect. But we sometimes hear phantom pitches where there
is no energy in the signal. How can that be?

The Missing Fundamental The place theory of Ohm hit a major stumbling block with an exper-
iment performed by August Seebeck (1841). Suppose I play two tones for you: one is a pure sinu-
soid, the other is pitched but complex (having many harmonics). You can adjust the pitch of the
pure tone with a knob. Your job is to adjust the pitch of the pure tone to match the pitch of the com-
plex tone. It is virtually certain that you will adjust the frequency of the pure tone to the funda-
mental frequency of the complex tone even if there is no measurable energy at the fundamental
frequency (see section 2.8.1).

Suppose the partials of the complex tone are 300, 400, and 500 Hz. You will most likely dis-
tinctly hear a “fundamental” at 100 Hz, the greatest common factor of the overtones. You will not
hear an inharmonic tone with fundamental at 300 Hz. So convinced are our ears of the ubiquitous
phenomenon of a fundamental with harmonics at integer multiples that even if there is no funda-
mental, our hearing is hardwired to invent one. This means that Ohm’s theory, which requires a
one-to-one correspondence between frequencies and pitch, runs into the contradiction of a pitch
with no corresponding frequency.
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The phenomenon of the missing fundamental is what enables us to hear satisfying music come
from the tiny speaker of a transistor radio: our hearing invents the fundamentals that the speaker
can’t reproduce.

Periodicity Theory The explanation that Seebeck provided as a substitute for Ohm’s place the-
ory came to be called periodicity theory. It was developed further in the 1940s by Schouten,
Ritsma, and Cardozo (1962). This theory supposes that the neural signals from the cochlea to the
brain encode timing information related to the phase of the acoustical signal and that the brain has
some means of measuring time intervals.

Periodicity theory notes that the combination of several high harmonics can sum to create a
waveform with prominent time domain features whose period is the same as that of their common
fundamental. This way, a pitch period-measuring capability in the brain would get more or less the
same information from a tone with or without a fundamental.

Periodicity theory also explains why amplifying the electrical activity in the auditory nerve
results in an electrical signal similar to the acoustical signal presented to the ear. 

However, it is neurologically impossible for neurons to fire more rapidly than about 1 ms, called
the absolute refractory period. So periodicity theory runs into trouble for pitches above 1000 Hz.
Another difficulty is that periodicity theory would lead us to expect the ear to be quite sensitive
to the phase of the harmonics in complex tones. However, place theory—that the ear largely
ignores phase—agrees very well with experiments. Ohm had suggested that perception of sound
depends only on the distribution of energy among partials and does not depend upon differences
of phase. The physical demonstration of this was considered a major accomplishment of
Helmholtz, and the theory was effectively unchallenged for a century.

Beyond the Peripheral Theories Clearly, place and periodicity theories have merit and also
liabilities. Both suppose that acoustical processing occurs in the periphery of the auditory system:
the basilar membrane and lower nerve centers of the auditory cortex. So these theories are called
jointly the peripheral theories.

The main drawbacks of the peripheral theories are (for periodicity theory) sensitivity to the
phase relationship between partials, and (for place theory) the impossibility of explaining the miss-
ing fundamental in spectral terms. 

Also, experiments with dichotic signals (where different information is sent to each ear sepa-
rately via headphones) have demonstrated a necessary role for the brain in pitch detection.
Houtsma and Goldstein (1972), for example, demonstrated that we still manage to hear a missing
fundamental even if some harmonics are sent to one ear via headphones and different harmonics
of the same fundamental are sent to the other ear. This shows that the brain must be the agent that
combines the harmonics to determine the fundamental, because if this were handled peripherally,
we would hear different pitches in each ear rather than a single fused tone.

Difficulties with peripheral theories and experiments with dichotic signals led researchers to
central processing theories of pitch perception that emphasize central processing conducted in
the brain (Goldstein 1973; Wightman 1973; Terhardt 1974). These theories presume that
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pattern-matching systems in the brain search for order in the components arriving from the periph-
eral auditory system. Pattern matching accounts well for our ability to detect the fundamental of
stretched harmonics of a piano tone, and to dig harmonic information out of intensely noisy signals. 

Assuming higher neural processing for pitch perception also helps explain the fact that we can
learn pitch discrimination. When I taught solfeggio and sight-singing in college, I observed over
the course of the semester that students’ capacity to discriminate and categorize pitch improved,
sometimes dramatically. (See section 9.22 for a discussion of self-learning neural systems.)

Pitch perception remains one of psychoacoustics’ longest-running controversies, with an unbe-
lievable number of competing theories. Perhaps the theoretical difficulties are a consequence of
the importance of pitch perception to survival. A faculty this critical to life can’t be entrusted to
only one adaptation; redundancy and competitive analysis in both the periphery and the brain are
required. 

6.4.2 Range and Quality of Pitch Sensation

When I indicated that the range of hearing is 20 Hz to 20 kHz, that was just to throw out some round
numbers that are easy to remember. In fact, the boundaries are fuzzy and vary enormously with age,
gender, and life experience. 

At the top end, a young person in good health might be able to hear up to 17 kHz or so. Adults
lose the top end until, nearing old age, it might be down to around 12 kHz for women and 5 kHz
for men.

Pitch discrimination drops off above about 5 kHz for all of us, which perhaps explains why few
musical instruments are designed to intone beyond that range. The highest note on the piano is C8,
4186 Hz.

At the low end, sounds below about 30 Hz become progressively harder to hear as having a pitch.
Below that frequency, we start to feel sound as physical impact. The lowest note on the piano is
A0, 27.5 Hz.

The range of finest perception both in terms of pitch and loudness is between 1 kHz and 4 kHz,
which coincidently is where most speech information occurs.

6.4.3 Just Noticeable Difference of Pitch

Two important attributes of a ruler are its length and the fineness or precision of measurements that
can be made with it.8 If the range from lowest to highest frequency the ear can hear corresponds
to the length of some kind of ruler, then to what perceptual quality does the precision of measure-
ment correspond?

If the difference between two pitches is not noticeable, we judge them subjectively to be the
same, whether they are physically the same or not. Recall that Euler wrote, “The sense of hearing
is accustomed to identify with a single ratio, all the ratios which are only slightly different from
it, so that the difference between them be almost imperceptible.”

Effectively, pitches must differ by a minimum threshold for us to distinguish them. This thresh-
old is the just noticeable difference (JND) of pitch. The pitch JND is the measure of sensitivity of
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the ear to changes in pitch. It is sometimes called the pitch difference limen, or pitch DL. How well
the ear can distinguish between adjacent pitches determines the precision of our hearing.

6.4.4 The Weber-Fechner and Stevens Laws

Interestingly, the size of the pitch JND is not constant. The JND of high frequencies covers a larger
span of frequencies than the JND of low frequencies. Attributed to Ernst Weber, the JND is a clas-
sic psychophysical invention that has been applied not just to the senses (e.g., color and taste) but
even to the price of houses. In general, Weber observed that the greater the magnitude of a stimulus,
the greater must be the change in that stimulus before any difference is detected.

Weber’s law correctly predicts that the just noticeable difference of pitch grows with increasing
magnitude (greater magnitude means, in this case, higher frequency). If we call the size of the JND
∆I and the magnitude of a comparison stimulus I, Weber’s law says that

, Just Noticeable Difference (JND) (6.1)

where k is a constant of proportionality. The parameter k takes on different values for different
sensory stimuli.

Gustav T. Fechner (1801–1887) based his work on Weber’s JND but refined it by suggesting that
for many percepts (including pitch and loudness), a geometric increase in Φ magnitude is per-
ceived as an arithmetic increase in Ψ magnitude. Thus, Ψ magnitude increases in proportion to the
logarithm of the Φ magnitude, and large changes in Φ are compressed into smaller changes in Ψ.
Fechner’s law can be expressed as

, Weber-Fechner Law (6.2)

where Ψ is the magnitude of the sensation, Φ is the magnitude of the stimulus, and k is the constant
of proportionality. It was Fechner’s work that led to the theoretical underpinnings of the decibel.

Experiments have shown that the Weber-Fechner law works better for some stimuli than others
and generally works best for stimuli of medium intensity. Stevens (1962) generalized the
Weber-Fechner law so it could be applied more widely. He suggested that Ψ magnitude increases
in proportion to the Φ magnitude raised to a power:

, Stevens Law (6.3)

where Ψ is the magnitude of the sensation, Φ is the magnitude of the stimulus, p is its exponent,
and k is a constant of proportionality.

A logarithm and a power function can be made to resemble each other if the exponent is between
0 and 1. For example, compare curves 1 and 2 in figure 6.3a. Curve 1 is a power law approximation
of the Weber-Fechner log curve 2. Since even in the best of circumstances we can only estimate

I∆
I

----- = k

Ψ
Φlog

------------ = k

Ψ
Φp
------ = k
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the Ψ/Φ relation (because Ψ is subjective and we can’t objectively measure it), the two approaches
are reasonably interchangeable. However, for stimuli such as the apparent length of an event, the
degree of compression between Φ and Ψ domains is less than the Weber-Fechner law would pre-
dict and may be better modeled with a power exponent greater than 1. In these cases, Φ changes
can produce equal or even larger changes in Ψ. In cases like this, the Stevens law, illustrated in
figure 6.3b, provides a richer range of mappings to experimental data and has been widely used.

6.4.5 Determining Pitch JND

How are such metrics established experimentally? For example the pitch JND can be determined
as follows. Suppose I play a sequence of two sinusoids, both with the same loudness. The first tone
has a constant pitch; the second tone has a small vibrato. This allows you to tell the two tones apart.
As the subject of the experiment, you must tell me each time whether the pitch of the second tone
is “above” or “below” the first. (Saying, “the same” is not an option.)

This process is a simplified version of the experimental method called two-alternative
forced-choice (2AFC). If the difference between the tones is large, your judgments will tend to
be categorical. But where the difference is slight, your answers will become increasingly arbi-
trary, and when the frequencies are too close to be distinguished, your answers will be effectively
random (right approximately half the time). The experimenter examines your responses, looking
for the range over which your responses transition from 100 percent correct to random (50 per-
cent correct). The midpoint of this transition zone, around 75 percent, is taken to be the JND at
that frequency.

Such a method could tell us the JND of any frequency, but only for sinusoids (because that’s all
we tested with). What about other sounds—sustained sounds, short sounds, sounds with varying
pitch, sounds with steady pitch or quickly varying pitch, simple sinusoids vs. complex tones? If
complex (read: musically interesting) tones are used, which complex tones shall we compare? All
these parameters (and more) will have an effect on the pitch JND we end up measuring. 

Figure 6.3
Comparison of the Weber-Fechner law and the Stevens law functions.
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Psychophysicists have traditionally taken a bottom-up approach to such questions. If they can
get a theory right for simple steady-state sinusoids, they figure they can use it later to explain more
complex phenomena. I must say, as a musician, I am always disappointed by this approach because
it seems that the elementary results of psychophysics are almost uselessly simplistic in realistic
musical situations. On the other hand, correct but limited knowledge is better than none (and is cer-
tainly a big improvement on erroneous information or superstition).

The JND of pitch has been found experimentally to depend not just upon frequency but also
upon intensity and duration as well as the rapidity of frequency change. The heavy line in fig-
ure 6.4 shows the pitch JND for constant-intensity (80 dB) sinusoids whose frequency was slowly
and continuously modulated up and down. The light lines show several JND thresholds for refer-
ence: 0.5 percent and 0.6 percent, 1 percent and 3 percent. We observe that the heavy line mostly
lies between 0.5 percent and 0.6 percent.

The figure shows frequency f on the x-axis and the corresponding detectable frequency differ-
ence ∆f on the y-axis. The ratio of ∆f/f, sometimes called the frequency resolution of the ear, shows
the pitch JND for frequencies between about 30 and 5000 Hz. The closer this line is to the x-axis,
the smaller is the JND. For example, we don’t seem to notice a difference of less than  Hz around
1 kHz; thus the JND, expressed as a percentage, is 0.5 percent at 1 kHz. We also don’t seem to
notice a difference of less than Hz for tones around 5 kHz, or 0.6 percent. 

Note also that

■ The low and high ends have wider JNDs, and the bottom end is worse than the top end.
■ The most acute region is from 1 to 3 kHz, where the JND is about 0.5 percent of the frequency.
For reference, that’s about one twelfth of a semitone, or 8.3 cents (see section 3.4).
■ Rapidly changing frequency fluctuations can produce JNDs up to 30 times as small.

Figure 6.4
Just noticeable difference for pitch. (Adapted from Roederer 1973.)
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■ Shorter-duration tones produce larger JNDs.
■ Frequency resolution of the ear is relatively independent of sound intensity.

JNDs also depend a great deal upon the individuals tested and their degree of musical training as
well as upon the methods used to measure the JNDs.

6.4.6 Interval Perception

I suggested that we could compare pitch JND to the tick marks on a ruler, but, like all analogies,
this one has its limits. Wouldn’t it be convenient if our ears measured pitch difference as the number
of JNDs between pitches? Alas, it is not so, and it really can’t be if we think about it.

While pitch JND gives us an understanding of pitch similarities, the JND provides no informa-
tion about how we judge pitch differences. The only thing that JND knowledge contributes to this
subject is that pitches lying inside a JND are experienced as the same while pitches lying outside
a JND are experienced as different, but JND says nothing about the quality of that difference. We
must address this question separately.

Suppose I play a pair of sinusoids, one fixed, the other beginning in unison with it but diverging
from it by slowly gliding up in frequency. We might hypothesize that just as the difference between
two points constantly increases as the points diverge in space, so too the ear should experience a
constantly increasing difference in frequency as a constantly increasing difference in pitch.

This hypothesis is partly true. We hear the tone height of the pitch that is gliding up continue
to grow. However, ever more widely separated pitches do not always sound increasingly different,
as one would expect if the only thing the ears paid attention to was the number of JNDs between
pitches. Instead, as the distance reaches a doubling in frequency, the tones begin to sound alike
again, as they did when they were in unison. This perception repeats at each subsequent frequency
doubling, an effect called octave equivalence (see section 2.3.3). The equivalence is felt so
strongly that virtually all musical scales around the world are organized around the 2:1 ratio of the
octave, and pitches related by octaves are virtually always given the same name.

Interestingly, the octave, as a physical frequency ratio of 2:1, always corresponds exactly to
the subjective pitch difference of an octave, making the octave a rare instance where objective
and subjective measurements seem to match exactly. Perhaps this symmetry between object
and subject is why pitch is the element of hearing most heavily relied upon to convey musical
information.

All this suggests that pitch is more than a one-dimensional sense of high and low. Révész (1954)
developed a two-component theory of tone, suggesting that there are at least two principal inter-
locking structures in pitch:

■ The linear span of JND pitch differences from the bottom to the top of our hearing range, which
he called tone height.
■ The circular span of interval differences within the compass of each octave, which he called
chroma. Chroma refers to the position of a tone within an octave.
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We can reconcile the concepts of tone height and chroma in two dimensions (Shepard 1982).
Figure 6.5 represents tone height along the y-axis and chroma as an angle on a circle in the x-axis
and z-axis. The combination results in a helix. The movement of a sinusoid from C4 to C5, for
instance, is represented as a movement upward in tone height but as a return to the starting angle
in chroma.

Octave equivalence is perhaps just a very strong instance of interval affinity. Similar intervals
are highly identifiable—a trait much exploited by musicians. Fourths show “fourthness” and
fifths show “fifthness” regardless of their orientation in pitch space. Understanding the musical
qualities of affine intervals is one of the subjects of harmony theory, which in turn is one of the sub-
disciplines of music theory.

There remains the problem of how to actually construct useful musical scales out of the continuum
of available pitches within the chroma. Ordinarily, musicians select a small subset of intervals from
the chroma, and these become the pitch classes of the scale. When the pitch classes are replicated
across each octave, they become the pitches of the available pitch space, or gamut. In the West, the
scale has 12 chromatic pitches. We can visualize the pitch space of the equal-tempered scale as
shown in figure 6.6, which is a projection of figure 6.5 along the y-axis.9 Because humans can hear
ten or so octaves, the spiral shows ten revolutions, where the outer ones are the lower octaves. The
12 lines radiating out are the 12 chromatic pitch classes of the Western scale. The set of points where
the lines intersect the spiral form the gamut of pitches of the equal-tempered scale (see chapter 3).

To get a feeling for chroma and tone height, perform the following experiment on a piano: start-
ing from a low tone, play a sequence of major seventh intervals (separated by 11 semitones) up
the keyboard. For instance, C1, B1, A#2, A3, G#4, G5, and so on. You may hear an ambiguous

Figure 6.5
Tone height and chroma.
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effect: though the pitch rises by sevenths, you might also be able to hear the sequence as though
it were decreasing by semitones. While the tones of a major seventh interval are relatively far apart
in terms of tone height, they are close together in terms of chroma. Hence, if you focus on tone
height, you hear the sequence ascend. If you focus on chroma, you hear it descend. Roger Shepard
noticed this effect in his early research, which led ultimately to his famous illusion.

6.4.7 Shepard Scale Illusion

Shepard (1964) wanted to test Révész’s theory of tone height and chroma. If he could suppress one
of the two effects and the other effect still persisted, that would demonstrate that they are separate
perceptual attributes of pitch. In particular, if Shepard could suppress the sense of tone height,
chroma should be all that is left. The helix in figure 6.5 would collapse into a circle, and pitch judg-
ments would also become circular. He devised a demonstration of pitch circularity in 1964 that
proved Révész’s theory. It has come to be known as the Shepard scale illusion or Shepard tone
demonstration.

A set of ten sinusoids at octave intervals is played as shown in figure 6.7. The frequencies glide
up smoothly together, rising continuously in pitch (in some versions, they rise by semitone steps).
The intensity of the low and high sinusoids is increasingly diminished, so the ear mostly hears the
sinusoids in the middle frequencies (implemented as a Gaussian-shaped intensity contour). As the
top sinusoid goes off the top end of the hearing range, it gradually drops below the threshold
of hearing and a new sinusoid is introduced from below. The whole effect is rather like the visual
illusion of a barber pole in motion, or the impossible staircase of the visual artist M. C. Escher—
constantly rising, never getting anywhere (figure 6.8).10

The equation for creating the original Shepard tone illusion based on movement by semitones
is given by

, (6.4)

Figure 6.6
Chromatic pitch space.
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where F(t, c) is the frequency of the partial c of tone t, tmax is 12 (because this version of the effect
is based on the chromatic scale), and Fmin is the frequency of the lowest partial of the lowest tone.
The range of t is , and the range of c is , where N is the number of partials
to be generated. Shepard used N = 10. To create the first set of partials, set t = 0 and evaluate (6.4)
for all c. For the next step, increment t by 1, and evaluate for all c again; repeat for all t. It is also
necessary to adjust the loudness of each partial to achieve the contour shown in figure 6.7. This
step and the modification to variables t and tmax in equation (6.4) can be used to effect a smooth
glissando. Note that the Gaussian envelope shape is given in log frequency so that equal pitch inter-
vals occupy a uniform distance along the frequency axis.

6.5 Loudness

Loudness is the subjective Ψ variable corresponding most closely to the objective Φ variable inten-
sity. Loudness is sometimes called the response pattern to intensity. But there is no simple equality
between them. While our sense of loudness is roughly proportional to intensity, it is also influenced

Figure 6.7
Shepard scale illusion.

Figure 6.8
Impossible staircase.
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by frequency range and the presence or absence of other frequencies. Another difference is that
loudness is limited to the distance between our threshold of hearing th (10–12 W/m2) and the limit
of hearing lh (100 W/m2) but intensity is unlimited (see section 4.24).

The loudness JND is the amount by which the intensity of a sound must change in order for the
ear to register a difference in loudness. The size of the loudness JND is approximately proportional
to the intensity of the sound: the louder the sound, the greater must be the change in its loudness
before the change in loudness is registered. (This is a restatement of the Weber-Fechner law for
loudness.) However, the loudness JND varies substantially with frequency and intensity range, so
there is no simple linear relation. Also, there is no loudness equivalent to the octave, that is, judging
a sound to be “twice as loud” shows a much greater deviation among subjects than does judging
a pitch to be “an octave higher.”

6.5.1 Relating Pitch and Loudness

As mentioned, the rationale of the decibel scale assumes our perception of loudness to be inde-
pendent of all other percepts such as frequency, but it is not. Because of the mechanical advantage
the ear gives to frequencies of 1–3.5 kHz, tones in this range are perceived as louder than tones
of equal intensity in other ranges.

Since loudness depends upon both intensity and frequency, a loudness scale properly requires
three dimensions: the independent Φ variables frequency f and intensity I and the dependent Ψ
variable loudness L. Since we’re dealing with perceptual variables here, we must explicitly test for
every relation we want to measure. Thus, if we want to know when loudnesses are equal, we must
develop a metric for the equality of two loudnesses at different frequencies. If we want to compare
loudness differences, we must develop a metric for the difference of two loudnesses at equal fre-
quencies. The first metric is the phon, a measure of equal loudness. The second metric is the sone,
a measure of comparative loudness. Together, they allow us to account for the ear’s varying sen-
sitivity to frequency and intensity.

6.5.2 The Phon Scale

The phon scale identifies equal loudnesses across all perceivable frequencies and intensities. It
consists of a set of equal loudness contours that relate intensity in one region of frequency to the
intensity required to achieve equal loudness in other regions of frequency. By definition, any
frequency at the threshold of hearing is exactly 0 phon. 

The phon is defined as identical to dBSIL at 1000 Hz from the threshold of hearing to the limit
of hearing. Thus, at 1000 Hz the threshold of hearing, th = 10–12 W/m2, is defined as 0 phon, and
a level of 120 phons equals 120 dBSIL above the 0 phon reference (recall that dBSIL expresses
a ratio of two intensities). For example, at 1000 Hz a sinusoid with 10 dBSIL has a loudness of
10 phons, a 20 dBSIL sinusoid has a loudness of 20 phons, and so on.

Having defined the phon scale at 1000 Hz as identical to dB SIL, we now extend the phon scale
to frequencies other than 1000 Hz. We do this by comparing sinusoids at various frequencies and
intensities to a set of reference intensities at 1000 Hz. In general, for a sinusoid with frequency f,
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we want to know what intensity I is required so that it will have the same loudness L as a sinusoid
at 1000 Hz. Let ε be the criterion of equal loudness. Then for some frequency f and loudness L,
we want to solve the relation I = ε(L, f ), which tells us what intensity I is required for a sinusoid
to achieve loudness L at frequency f.

Ordinarily, the phon scale is evaluated at 10 phon increments from 0 to 120 phons. An approxi-
mation to this set of curves is shown in figure 6.9. It shows the contours of equal loudness for sinu-
soids that were first established experimentally by Fletcher and Munson (1933). We see that in
general low frequencies must have greater intensity in order to have the same loudness as frequencies
around 1000 Hz. This is especially true when low frequencies also have low intensity. The same is
also true of high frequencies but with somewhat less exaggeration. The curves in figure 6.9 are
adapted from those recommended by the International Standards Organization (ISO 226, 1987).

The equal loudness curves shown in figure 6.9 are also called equal loudness contours because
they can be thought of as delineating curves of equal elevation above the two-dimensional
frequency/intensity plane. Imagine figure 6.9 as a three-dimensional map that we are looking
straight down on. Greater phon levels rise up toward us like a 3-D relief map.

Figure 6.9
Equal loudness contours. (Fletcher and Munson 1933.)

120 phon

80 phon

90 phon

100 phon

110 phon

70 phon

60 phon

50 phon

40 phon

30 phon

20 phon

10 phon

0 phon

20 50 100 200 500 1000 2000 5000 10,000 20,000
Frequency

0

20

40

60

80

100

120

Threshold of hearing

Level of hearing

In
te

ns
it

y 
le

ve
l (

dB
 S

IL
)

loy79076_ch06.fm  Page 168  Wednesday, April 26, 2006  2:28 PM



Psychophysical Basis of Sound 169

Here’s a practical application for the phon scale. Suppose we record a symphony orchestra per-
forming with intensities between 60 and 95 dBSIL. If we play it back at a lower intensity, say,
40–75 dBSIL, it sounds tinny, lacking in bass and treble. Reproduced at lower intensity, low and
high frequencies of low intensity receive greater attenuation in our perception because of the ear’s
lack of sensitivity at these frequencies. If we compensate by boosting the bass and treble according
to the equal loudness curves, we can restore something like the original balance of intensities.
Some audio amplifiers come equipped with a so-called loudness knob that applies an approxima-
tion of the above curves for different listening levels.

Sound level meters approximate the loudness corresponding to the intensity of sound. They usu-
ally include switchable weighting networks, which are filters applied to the input signal that mimic
the Fletcher-Munson curves, attenuating frequencies where our hearing is less sensitive. In this way
the response of the instrument can be made to provide a rough approximation of the perceived loud-
ness of a sound. The meters typically come with A, B, and C weighting networks, which are sim-
plified inverse functions of the 40, 70, and 100 phon curves, respectively (Stevens 1961; ISO 1975).

6.5.3 Threshold of Hearing

Perhaps the most salient equal loudness curve is the threshold of hearing. An approximation to the
threshold of hearing is given by Terhardt (1979) as

. (6.5)

This complicated-looking function is an approximation of the threshold of hearing for a young
adult with acute hearing. When plotted for f in the range of human hearing, it produces the graph
shown in figure 6.10. This curve can be used to determine the maximum allowable energy level
for noise and distortion that can be added by a recording system before it is noticed as distortion

Figure 6.10
Threshold of hearing.
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by a sensitive listener. This has great relevance for the design of audio systems in general and is
a crucial metric for perceptual audio coders, such as MPEG audio, including the well-known MP3
audio coding format.

A final note on the phon scale: remember that it is a measure of equal loudness. It can only
answer the question: Is the loudness of two frequencies equal? It does not tell us about loudness
differences. For instance, a doubling of loudness in phons does not necessarily result in a sound’s
being heard as twice as loud. To compare proportional loudness requires the sone scale.

6.5.4 The Sone Scale

We can characterize the ratio of two sinusoids with different intensities at the same frequency with
the sone scale. One sone is defined as the loudness of a 1 kHz tone at 40 dBSIL. This is the ref-
erence loudness of the sone scale. This also means that 1 sone = 40 phons. A sound that is judged
to be twice as loud as the reference has a loudness of 2 sones, a sound that is judged to be half as
loud as the reference has a loudness of 0.5 sone, and so on. For example, the average listener hears
a 1 kHz sinusoid at 50 dB as about twice as loud as a 1 kHz sinusoid at 40 dB. Hence, the 50 dB
1 kHz sinusoid has a loudness of 2 sones.

Loudness in sones Ls can be related to loudness in phons Lp as follows:

. Phon/Sone Conversion (6.6)

For 1000 Hz tones, the Ψ variable Ls relates to the Φ variable sound intensity roughly following
a power law:

, Sones and Intensity (6.7)

where p is the pressure in pascals, and k depends on frequency. These two equations, based on the
work of Stevens (1956), indicate that loudness doubles for a 10 dB increase in SPL. The calibration
of the sone scale is controversial because of the difficulty subjects have in identifying loudness
ratios with certainty. For instance, Warren (1970) found a doubling of loudness for a 6 dB increase
in SPL. Thus, (6.7) should not be taken too literally.

It should be clear by now that the relation between the Ψ and Φ domains is anything but simple. What
is especially remarkable to me is that musicians are able to navigate the complexities of all these non-
linear, nonorthogonal relations with ease, balancing intonation and loudness to achieve precisely
calibrated sonic effects. More astonishing yet is that naive listeners are effortlessly able to sort it all out.

6.5.5 Pitch Shift with Loudness Change

Another example of the nonorthogonality of Ψ variables is that loudness has an impact on pitch.
If the intensity of a 100 Hz tone is increased from 40 dB to 100 dBSPL, the pitch decreases by
about 10 percent. At 500 Hz, the pitch changes by about 2 percent for the same increase in SPL.
Try taking headphones on and off while listening to music with the volume as loud as is comfort-
able. You will probably be able to hear the pitch shift as you put them on and off.

Ls = 2
Lp−40( )/10

Ls kp0.6≅
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6.6 Frequency Domain Masking

When two sinusoids are presented simultaneously, the fainter sinusoid can be rendered inaudible,
or masked, by the louder sinusoid if the fainter one lies within a certain frequency range of the
louder one. Figure 6.11 shows a 1 kHz 60 dB sinusoid, called the masker, which has the effect of
raising the threshold of hearing in its vicinity. The skirts to either side of the 1000 Hz tone indicate
the just noticeable level required for a test tone to be audible in that range. The dashed line indicates
the threshold of hearing in the absence of the masker. For example, a 1.5 kHz sinusoid at 35 dB
or a 750 Hz sinusoid at 35 dB would be inaudible in this case. Frequencies above the masker fre-
quency are more strongly masked than those below it (Zwicker and Fastl 1990).

The masker will mask any signal that lies below the masking threshold, not just sinusoids. In
particular, any artifacts of a recording process, background noise, and so on, will all be masked so
long as they are below the threshold. 

6.6.1 Temporal Masking 

Masking also occurs when tones are played in succession. This is called temporal masking. There
are three possibilities: 

■ Forward masking Even after a sound ends, its effect on the threshold of hearing lingers for a
while. The threshold of a test signal following the masker is impaired for a period of time. Forward
masking can last as long as 100 to 200 ms. The relative loudness of the masker and test signal and
their precise timing affect the audibility of the test signal.

Figure 6.11
Frequency domain masking.
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■ Simultaneous masking This occurs when the masker and the test signal are presented at the
same time, and is identical to frequency domain masking.
■ Backward masking This occurs when a masker influences the audibility of a fainter test signal
that precedes it. While this might seem at first to require prescience on the part of the ear, it can
be explained by realizing that sound perception is actually integrated over a time interval preceding
the moment of recognition. The time interval is generally regarded as being on the order of 200 ms.
Fainter sounds lying within this interval are subject to some degree of masking regardless of their
order of arrival. The amount of masking diminishes the more the test signal precedes the masker.
It is also affected by the relative loudness of the two signals.

Approximate durations of forward and backward masking are suggested by figure 6.12 (Zwicker
and Fastl 1990). The curve indicates the level that a short tone burst must have in order to be just
noticeable in the presence of a relatively long masker of 200 ms duration. The y-axis shows inten-
sity level expressed in dB above the just noticeable level of the test signal by itself, that is, 0 dB
is the reference intensity of the just noticeable level of the test signal alone. The x-axis indicates
the onset time of the test signal relative to the masker signal, which begins at time 0.

We can see that the effectiveness of backward masking decreases sharply as the test signal increas-
ingly precedes the masker. Backward masking is generally thought to be effective only up to about 5 ms.

When musicians are supposed to strike a note at the same instant, they rarely manage to do so. But
because of temporal masking, our ears are forgiving, perceiving the onset as simultaneous so long as
the attacks lie within the temporal masking intervals. For instance, if a softer tone attacks up to 5 ms
earlier than a louder one, it is masked by the louder one, so we tend to hear the two tones as simultaneous.

Some modern perceptual coders such as MPEG audio divide the audio stream into packets in order
to transmit it more efficiently. Temporal masking makes it possible for the audio packets to still sound
seamless so long as the temporal masking boundaries are not exceeded. To succeed, encoders like

Figure 6.12
Forward and backward masking.
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MPEG audio must be able to provide temporal resolution under 5 ms to ensure that events that are
supposed to be heard as simultaneous are actually perceived that way (Bosi and Goldberg 2003).

6.7 Beats

When sinusoids of slightly different pitch f1 and f2 are sounded together, the phase difference
changes through time so that they sometimes reinforce and sometimes cancel at a rate of ∆f = f2 – f1
(see volume 2, chapter 2). The amplitude of the sum of the two waves modulates at a rate equal
to the difference between their frequencies. Such slow, periodic fluctuations in amplitude are
called beats. Figure 6.13 shows the beating that results when two sinusoids with a frequency ratio
of 91/100 Hz are added together.

When the ear hears two pure tones of slightly different frequency, the combination produces a
sensation of audible beats at the difference frequency ∆f. This is heard as a kind of fluttering or
wavering of the amplitude of the combined sound. The musical term for this effect is tremolo.
If  is greater than about 10 Hz, the tremolo effect disappears and the tone becomes
rough-sounding and unpleasant, that is, dissonant. If ∆f keeps growing beyond about 20 Hz, the
ear starts hearing two distinct, but still rough, tones. As ∆f keeps growing, the roughness even-
tually goes away somewhere near a major third, and we simply experience two separate tones. This
effect is best described by reference to the theory of critical bands (see section 6.9).

6.7.1 Tonal Fusion

Beats are often used by musicians as an aid in tuning their instruments because these qualitative
changes supply additional information along with the ear’s pitch perception. Figure 6.14 provides
a graphical representation of tonal fusion and perception of beat frequencies.

Figure 6.13
Beats.
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The beat phenomenon arises from pure tones that are very nearly in unison, called first-order
beats. The ear hears the Φ effect created by the amplitude envelope of the two tones and also expe-
riences a Ψ effect from neural processing.

Beats may also be heard between pure tones that are very nearly an octave, fifth, or fourth apart.
These are called second-order beats. However, this beating results only from the effects of neural
processing.

When frequencies of two sinusoids are within 15 Hz of each other, the ear tends to hear just one
pitch. The two sinusoids lose their separate perceptual identity, and we hear a single fused pitch.
Carl Stumpf (1848–1936) studied the circumstances under which tones appear to be fused. He
defined tonal fusion (tonverschmelzung) as the effect of hearing two tones not as a sum but as a
whole, or unity (Stumpf 1883/1890). He found tonal fusion to be most pronounced in the consonant
intervals (unison, octave, and fifth) and less pronounced in the increasingly dissonant intervals.

6.7.2 Tonal Fusion and Music Composition

Tonal fusion was evidently of concern to J. S. Bach. He sought to compose pleasing music by using
consonant intervals, and he wanted to project a polyphonic musical style, where multiple inde-
pendent musical lines are separately discernible. But the most consonant intervals have a tendency
towards tonal fusion, and tonal fusion destroys the sense of polyphony by making separate voices
appear as one. David Huron (1991) conducted a statistical analysis of Bach’s music and concluded
that while Bach preferred consonant intervals, he avoided consonant intervals to the extent that
they promoted tonal fusion so as not to compromise polyphony.

Figure 6.14
Tone fusion and the perception of beat frequencies. (Adapted from Roederer 1993.)
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Tonal fusion was used explicitly by composer Maurice Ravel in his composition Bolero. The
repetitive melody of this work is passed around in the key of C to various instruments over the
course of its 17 minutes’ duration. When it’s the French horn’s turn, Ravel adds a piccolo playing
the melody transposed strictly at the twelfth (up an octave and a fifth), in the key of G, matching
the third French horn harmonic. He also adds another piccolo playing the melody transposed
strictly at the seventeenth (up two octaves and a third), in the key of E, matching the fifth French
horn harmonic. The tone color of the piccolos and French horn fuse into a single unique hybrid
timbre (Slonimsky 1948, 187–188).

Ravel may have been inspired by the design of mutation stops in French organs. Mutation stops
are ranks of organ pipes that sound at a pitch other than the unison or octave. When played with
regular stops, they alter, or mutate, the timbre of the regular stop. Nazard is the French name for
a mutation stop that sounds at the twelfth; the tierce sounds at the seventeenth.

Pitch is only one factor that can cause tones to fuse; spectral content and articulation (such as
tremolo, vibrato depth, and rate) are also factors. John Chowning presented a striking example of
tone fusion based on vibrato in his work on the singing voice (see volume 2, chapter 9).

6.8 Combination Tones

The violinist, theorist, and composer Giuseppe Tartini famously noted in 1754 that when two
loud, pure tones are sounded together, a third is sometimes also heard at the difference frequency,
∆f = fu – fl, where fu and fl are the upper and lower frequencies.11 For example, 2100 Hz and
2000 Hz produce a difference tone of 100 Hz. This effect can be demonstrated easily by having
two pennywhistle players or soprano recorder players stand near each other playing very
high-pitched tones very loudly. The players and anyone sufficiently close to them will hear
low-pitched rough tones at the difference frequency. This phenomenon is called difference tones,
sometimes also Tartini’s tones.

Helmholtz claimed to have discovered a tone at ∆fs = fu + fl that he called sum tones. Mathe-
matical theory strongly suggests sum tones exist, but they are so hard to hear that it is an open ques-
tion as to whether they have ever been perceived experimentally. We know now that the reason
sum tones are hard to hear has to do with masking.

Difference tones and sum tones are called generally combination tones. It is easy, but incorrect,
to suppose that this phenomenon is related to beats. Beats cannot explain sum tones because beats
only arise in the difference of two frequencies. Also, the effect of beats dissappears as the two
frequencies diverge beyond a minor third, whereas for combination tones, ∆f need not be small to
be quite audible. Finally, if the tones are presented one to each ear, beats are still discernible but
combination tones are not.

Helmholtz (1863, app. 12) conjectured that we hear combination tones because of nonlinear pro-
cessing of loud signals in the ear. He supposed that the strength of the tones was forcing the excur-
sion of the tympanum and other elements of the middle ear beyond their region of linear elasticity,
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thereby distorting the sound in the ear. Nonlinear systems can respond to vibration by generating
signals not actually present in the stimuli (see volume 2, chapter 9). The square of the sum of two
signals, sin2(a + b), which is a quadratic nonlinear expression, includes tones at a + b and a – b (see
volume 2, appendix).

Studies by Guinan and Peake (1967) have shown that nonlinear effects in the middle ear cannot
by themselves explain combination tones. Current theory favors an effect within the cochlea for
combination tones, although dynamic feedback paths from the auditory cortex may explain some
other distortion products that have been observed (B. Moore 1997). There is still a high level of
theoretical ambiguity in this subject.

6.9 Critical Bands

Fletcher (1940) unified many of the phenomena described in the sections on frequency domain
masking, temporal masking, and beats with a concept that he called critical bands. These can be
thought of as channels of frequency-selective psychoacoustic processing that affect our perception
of pitch, loudness, and masking of frequency components lying within a critical frequency distance
of one another. This insight eventually led to the psychoacoustic encoding of sound and the intro-
duction of the MPEG audio encoding standard. MPEG takes advantage of the effects that critical
bands have on hearing.

6.9.1 Critical Bands and Loudness

Zwicker and Feldtkeller (1955) provided an elegant demonstration of critical bands based on a
loudness effect. They played a narrowband noise signal containing all frequencies between 980 to
1020 Hz. The bandwidth of the signal was 40 Hz, and its band center was 1000 Hz (figure 6.15a).
Then, keeping the band center at 1000 Hz, and keeping the total intensity constant, they gradually

Figure 6.15
Critical bands and loudness.
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increased the bandwidth, spreading the same energy over a larger and larger frequency range
(figures 6.15b and 6.15c). One might expect that each of these signals would be heard as equally
loud because each contains the same total energy. And, indeed, subjects reported that the loudness
remained constant . . . but only up to a certain bandwidth, after which perceived loudness began
to increase even though there was no increase in total energy. With the band center at 1000 Hz,
loudness began to increase when the bandwidth exceeded about 160 Hz.

So when the noise bandwidth was kept narrower than a critical threshold (160 Hz bandwidth
at 1000 Hz band center frequency), the researchers got the expected effect: subjects reported
that noise bands of varying bandwidth and constant intensity all sounded equally loud.
But when bandwidth exceeded the critical threshold, subjects reported increasing loudness,
even though total energy in the noise spectrum remained constant. Figure 6.16 shows how
they observed loudness to increase after the bandwidth of the noise grew beyond the width of
a critical band.

To explain this effect, Zwicker and Feldtkeller theorized that the ear lumps together the loudness
of components that lie within the same critical band. Loudness increases when significant energy
spills into more than one critical band. Thus, within the critical band, loudness is a function of the
spectral width and spectral intensity. But once the bandwidth of the noise is broader than a critical
threshold, all that matters is the spectral intensity. In order to understand this effect, it is necessary
to do another experiment with masking.

6.9.2 Critical Bands and Masking

Suppose I play a sinusoid with frequency fs and a wideband noise source with a band center fc that
is distant in frequency. You adjust the loudness of the sinusoid so that you can just barely hear it
over the noise. Let’s call this your just noticeable loudness threshold, T0 (figure 6.17a). Now, keep-
ing its spectral amplitude the same, if I move the noise signal’s center frequency so it is the same
as the sinusoid (figure 6.17b), the noise masks the sinusoid, and you can no longer hear it. Now

Figure 6.16
Effect of critical bands on loudness.
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suppose I allow you to raise the level of the sinusoid to some level T so you can hear it above the
noise. The difference between the thresholds, ∆T = T – T0, is the amount by which the noise signal
masks the sinusoid.

Keeping its amplitude the same, if I now increase the bandwidth ∆fn of the noise, the sinusoid
will again become inaudible. You must make the sinusoid even louder (by increasing T ) before
you can hear it again. Therefore the amount of masking ∆T increases as the bandwidth of the
masking signal increases.

However—and this is the interesting part—beyond a critical threshold increases in the noise
bandwidth ∆fn no longer increase the amount of masking. No further increases in T are required,
no matter how much broader the bandwidth of the noise signal becomes.

Fletcher, whose experiment this is, suspected that this effect occurred because of a neurophys-
iological structure in the ear. He suggested that areas of the basilar membrane responded together
to selected frequency ranges, the critical bands. The bandwidth of the noise signal where it ceased
to further increase the just noticeable loudness threshold of the sinusoid was taken as the width of
a critical band, centered on that frequency.

6.9.3 Critical Bands and Pitch

Plomp and Levelt (1965) and Greenwood (1961a) suggested that a pitch-based relation exists
between consonance and critical bands. They believed that pitches of sinusoids separated by less
than a critical band give rise to the effects described in the section on beats, including tonal fusion,
whereas sinusoids that are separated enough to resolve into two distinct critical band regions on
the basilar membrane give rise to the perception of two distinct tones. Experiments showed that
sinusoids appear most dissonant at approximately 40 percent of a critical band. Sinusoids both
closer and farther than that pitch distance become less dissonant. The dissonant sensation does not
occur in the region of tone fusion and also does not occur where the difference in frequency exceeds
the width of a critical band.

Figure 6.17
Sinusoid with wideband noise signal.
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6.9.4 MP3 and Critical Bands

MP3, a component of the MPEG standard (see volume 2, chapter 10), is a practical application of
masking due to critical bands. MP3 is an extension of the technology for encoding digital audio,
known as pulse-code modulation, or PCM (see volume 2, chapter 1). MP3 has created a revolution
in music distribution because audio can be transmitted and stored much more efficiently in MP3
format than with PCM while maintaining satisfactory sound quality.

Both MP3 and PCM encoding rely on a psychoacoustical model—a set of judgments about what
we can and can’t hear—to determine what information in the signal should be encoded. PCM
encoding uses a relatively weak psychoacoustical model:

■ Frequencies above 22.5 kHz are not encoded because they are above the range of human
hearing.
■ Sounds louder or softer than certain limits are also not encoded.

The MP3 psychoacoustical model inherits the PCM model. (In fact, the input to an MP3 encoder
is a PCM-encoded audio signal.) But the MP3 psychoacoustical model also includes criteria about
human temporal and spectral masking, and so it can encode more efficiently than PCM.

MP3 encoding takes place in two principal stages:

1. A psychoacoustical model of the critical bands identifies irrelevant frequency components—
those that would not be perceived because of temporal and spectral masking effects. Masked com-
ponents are encoded with less detail than is employed for unmasked components, thereby simplifying
the spectrum of the encoded signal. Although simplifying the encoding of the masked components
distorts them, the distortion isn’t noticeable because the components are masked. (The amount of
simplification, and hence the amount of distortion, must be constantly monitored and adjusted to be
sure that the distortion introduced by this process never exceeds the masking threshold.)

2. The simplified spectrum is then subjected to additional steps to remove redundant information
in the signal and put it in the most compressed representation possible (see section 9.15).

The result is an encoding of sound that can be transmitted with less effort or stored in less space
than is required for PCM. Savings of between 12 and 20 times that required for PCM audio are pos-
sible without substantial degradation of sound quality.

In order to recreate the audio signal, an MP3 decoder is required. The MP3 decoder restores the
simplified spectrum from the compressed representation encoded by step 2 above. However, the
decoder cannot reverse the simplified encoding of the masked components in step 1 because that
information was discarded. Because MP3 can’t recover exactly the signal presented to its encoder,
it is a lossy encoding or lossy compression scheme.

Strictly speaking, only the simplification of masked components in step 1 is lossy. The redun-
dant information removed in step 2 is recovered completely in the decoding stage, so step 2
performs lossless encoding or lossless compression. Technically, PCM audio encoding is also
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lossy: because of the frequency and amplitude limits it imposes, it doesn’t recover exactly the sig-
nal presented to its encoder. However, because there is no simplification of masked components,
PCM is less lossy than MP3.

6.9.5 Measuring Critical Bands

Although critical bandwidth estimates vary substantially depending upon the type of experiment
used to measure them, they average about one third of an octave for most of the audible range
(but are greater at low frequencies). A semitone interval is , so one third of an octave would
be ≈ 1.26 ≈ 5/4, or slightly over a major third. Thus, the ear appears to take into account the
stimulus of neurons as far away as one third of an octave in order to determine the loudness of
a sound.

Figure 6.18 shows how critical bandwidth varies with frequency for a typical listener (Zwicker,
Flottorp, and Stevens 1957). The dashed line indicates one third of an octave. For instance, at
10 kHz, one third of an octave is between 2 and 2.5 kHz.

Critical bandwidth remains fairly constant up to about 500 Hz, then grows by about 20 percent
of frequency thereafter. A reasonable approximation of the critical bandwidth is given by Zwicker
and Fastl (1990) as

Hz, Critical Bandwidth (6.8)

where BWc( f ) is the critical bandwidth at frequency f.
Although the critical bands are continuous, it is sometimes useful to think of the ear as com-

prising a discrete set of bandpass filters that obey (6.8). Using this approach, it is common to
divide the ear’s spectrum into 24 discrete critical bands, as shown in table 6.1 (Zwicker 1961). This

Figure 6.18
Critical bandwidth vs. center frequency.
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numbered list of discrete critical bands is the bark scale. The bark scale encodes the center fre-
quency and bandwidth of each numbered critical band.

6.9.6 Quality Factor of Critical Bands

Table 6.1 shows that the bandwidth of the critical bands increases in relatively constant proportion
as the center frequency of the band increases. The ratio of the center frequency to the bandwidth
of a bandpass filter is its quality factor, often abbreviated Q. Figure 6.19 shows the Q for each of

Table 6.1
Bark Scale: Critical Bandwidth, Center Frequency, and Critical Band Rate 

Bark 
No.

Center 
Frequency

Critical 
Bandwidth

Lower 
Band Edge

Bark 
No.

Center 
Frequency

Critical 
Bandwidth

Lower 
Band Edge

0

1

2

3

4

5

6

7

8

9

10

11

12

50

150

250

350

450

570

700

840

1,000

1,170

1,370

1,600

1,850

80

100

100

100

110

120

140

150

160

190

210

240

280

20

100

200

300

400

510

630

770

920

1,080

1,270

1,480

1,720

13

14

15

16

17

18

19

20

21

22

23

24

2,150

2,500

2,900

3,400

4,000

4,800

5,800

7,000

8,500

10,500

13,500

19,500

 320

 380

 450

 550

 700

 900

1,100

1,300

1,800

2,500

3,500

2,000

2,320

2,700

3,150

3,700

4,400

5,300

6,400

7,700

9,500

12,000

15,500

Figure 6.19
Quality factor of critical bands.

Bark no.

Q
ua

li
ty

 f
ac

to
r 

(Q
)

7.63

6.5

4.0

loy79076_ch06.fm  Page 181  Wednesday, April 26, 2006  2:28 PM



182 Chapter 6

the critical bands. The narrower the bandwidth, the higher the Q, and the stronger will be its res-
onance when stimulated by a signal whose frequency lies within the band (see section 8.9.6). Like
the critical bands, a constant Q filter varies its bandwidth as a function of the center frequency,
keeping a constant ratio between them. Note in figure 6.19 that the Q of most bands is fairly
constant in the range from 4 to 6, especially in the center range of hearing. Thus, the critical bands
can be viewed as similar to constant Q bandpass filters.

The center frequencies and bandwidths in table 6.1 are only samples of the continuous
frequency response of the ear. In reality, the auditory effects of critical bands are formed around
the frequencies of the signals the ear hears and are not associated with a specific fixed filter bank
in the ear.

The bark number for a frequency in Hz can be obtained with the following equation (Zwicker and
Fastl 1990):

. Bark Number (6.9)

Figure 6.20 shows (6.9) plotted for the range of 20 Hz to 20 kHz.

6.9.7 Critical Bandwidth and Pitch JND

The curve of critical bandwidth vs. center frequency in figure 6.18 is very close to the same shape
over the same range as the curve for pitch JND in figure 6.4. While the pitch JND spreads from about
3 to 30 Hz in 5 kHz, critical bandwidth goes from about 100 to 900 Hz over the same range. Thus,
critical bands are proportionally about 30 times wider than the pitch JND at the same frequency.

6.10 Duration

How long does it take for us to identify the pitch of a tone? How long does it take to determine the
loudness of a sound?

Figure 6.20
Frequency to bark function.
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6.10.1 Effect of Duration on Pitch

Tones with quick onset times (such as vibraphone or marimba) have a clicking or percussive attack
that is essentially a broadband noise. Very brief tones (under 10 ms) sound like clicks no matter
what timbre the tone has. As the tone lengthens beyond about 15 ms, and if the tone’s onset
becomes more gradual, pitch perception solidifies up to about 30 ms. Pitch perception becomes
stronger as the tone continues growing in length regardless of onset time.

Tones of greater complexity do not necessarily take longer to recognize. The ear can identify
many pitches simultaneously in nearly constant rate time. While it can be shown that pitch depends
on duration, this dependence is for extremely short tones only. This allows us, for instance, to fol-
low extremely rapid polyphonic musical passages with sufficient accuracy to enjoy the experience.
Music as we know it would be radically different if pitch were substantially dependent on duration.

Under optimal conditions we establish a sensation of pitch about 4–8 cycles after tone onset. The
conventional wisdom is that the attack noise masks the underlying periodic vibration of the instrument
and that this masking delays our pitch recognition. However, I have a different experience to report.

I once developed a pitch-tracking computer system for an electronic violin built by Max
Mathews. While developing the system, I spent many hours listening to, and analyzing, violin
tones. I observed that I was generally able to identify the correct pitch well before any significant
periodic information was available in the signal. This suggested that my ear was using the
characteristic broadband noise in the violin’s attack transient to help identify the pitch. Spectral
and temporal qualities of the attack noise may provide additional early clues to the correct pitch,
perhaps through a cognitive learned response.

6.10.2 Critical Bands and Acoustical Uncertainty

Generally, the more precise we wish to be about the exact frequency of a sound we are hearing,
the longer we must listen to it. Let’s say that the smallest frequency difference we can discriminate
is ∆f = f – f0 and that the required duration over which we must listen in order to resolve this
frequency difference is ∆t = t – t0. Then we can say that the acoustical uncertainty is

, Acoustical Uncertainty (6.10)

where k is a constant that relates achievable frequency resolution to required temporal resolution,
and vice versa.

Under optimum conditions k ≈ 0.1 for the auditory system (Majernick and Kaluzny 1979). This
means that to achieve frequency resolution of 0.1 Hz, our ears require about 1 second of the stim-
ulus under optimum conditions. If all we have is 0.1 second of stimulus, our ears can achieve fre-
quency resolution of about 1 Hz under optimum conditions. To achieve finer frequency resolution
(smaller ∆f) requires a correspondingly larger time interval (larger ∆t). Thus, k represents the fun-
damental limit on our ability to know the precise frequency of a signal within a precise time interval. 

Uncertainty plays many important roles in the mathematics of music (see section 9.15, equa-
tion (9.19); and volume 2, chapters 3 and 10).

f t∆∆ = k
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Clearly, we want our ears to have the finest frequency precision possible (small ∆f) with the
shortest response time possible (small ∆t). But the basilar membrane is governed by (6.10). So
increasing its frequency precision would necessarily require us to lessen its temporal precision.
However, our hearing neatly sidesteps the limitations of (6.10) by using critical bands. The ear
divides up the audio spectrum into frequency bands each of which has a relatively broad ∆f. Hence,
within each band, ∆t can be relatively small. That way we get good frequency resolution without
suffering poor temporal resolution.

The trade-off is that the critical bands provide relatively poor pitch discrimination by them-
selves. That the pitch JND is about 30 times finer than the width of a critical band suggests just
how greatly aided we are by critical bands and the dynamic feedback processes, described in the
section on frequency sharpening, that refine our sense of pitch within a critical band.

6.10.3 Loudness and Duration

The acoustical uncertainty principle applies for loudness as well. The ear averages over a duration
of about 200 ms to determine the loudness of a sound. Because of this fact, sounds that are shorter
than 200 ms must be proportionately more intense to appear to have the same loudness as sounds
that are longer than this threshold. Put another way, loudness is proportional to duration up to about
200 ms. More precisely, loudness grows by 10 dB as duration grows by a factor of 10, up to
200 ms. This correlation is even stronger for broadband sounds and extends up to about 1 second.
An important consequence of these facts is that our ears lack a means to protect themselves nat-
urally against impulsive high-intensity sounds, such as gunfire (see the section on acoustic reflex
and temporary threshold shift).

6.11 Consonance and Dissonance

Consonance was defined in chapter 3 as tones that sound well together. But what process governs
our perception of consonance? There are many theories of consonance. They generally fall into one
or more of the following categories:

■ Cultural theories examine social, cultural, and stylistic norms.
■ Acoustic theories look at the physical properties of acoustical signals, such as properties of musical
instruments and scale systems.
■ Psychophysical theories look at how the neurophysical structure of the ear may affect
consonance.
■ Cognitive theories examine learning, expectation, and categorical perception.

As an example of a cognitive theory, a dissonant sound may be heard as consonant if it
is preceded by many sounds that are even more dissonant. While learning how to write
sixteenth-century chorale harmonizations in the style of J. S. Bach, I experienced a shift in my
expectation of consonance as my ear acclimated to this antique style. I came to appreciate why
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his contemporaries found some of Bach’s chorale settings shocking, whereas to a modern listener
they can seem bland.

Theories of consonance stretch back at least to Galileo Galilei. Plomp and Levelt (1965) quote
Galileo (1638) as follows: “Agreeable consonances are pairs of tones which strike the ear with a
certain regularity; this regularity consists in the fact that the pulses delivered by the two tones, in
the same interval of time, shall be commensurable in number, so as not to keep the ear drum in per-
petual torment.” The relatively large number of extant theories of consonance goes far beyond
what can be summarized here. Instead, I develop a simple psychophysical model based on critical
bands to give an idea of the subject.

If two sine tones of 1000 Hz and 1015 Hz are played, we do not hear two distinct tones. Instead,
we tend to hear one fused pitch with a 15 Hz beat frequency and attendant roughness (see sec-
tion 6.7). This is because the critical bandwidth for 1000 Hz is about 160 Hz, and the two tones
lie close within the same critical band. If we let “dissonance” define this roughness, then “conso-
nance” defines its absence. In terms of figure 6.14,

■ Frequencies differing by less than a JND of pitch form a perfect consonance, or unison.
■ Frequencies differing by more than a critical band form a consonance.
■ Frequencies differing by between 5 percent and 50 percent of a critical band are the most
dissonant.

Greenwood (1961b) was the first to observe a relation between critical bandwidth and judg-
ments of consonance and dissonance. He analyzed data collected by Mayer in 1894 and compared
it to the estimated size of critical bands. Sounding intervals with tuning forks, Mayer had asked
listeners to identify the smallest interval for which no dissonance was perceived. Greenwood’s plot
of Mayer’s data suggested that the dissonance disappears when the distance between pure tones
is greater than or equal to the size of a critical band. Linking dissonance to position within critical
bands is called tonotopic dissonance.

We can expand this observation into a simple psychophysical metric for the consonance or
dissonance of any two complex tones by counting how many of their partials land together in
critical bands (and discounting any that lie within a JND or do not share a common critical
band). The hypothesis is that the more the partials of the two tones fall within the 5 percent
to 50 percent critical band range, the more dissonant the two tones should be (Plomp and
Levelt 1965).

The following is an illustration of this approach.

1. Start with two complex tones that form a musical interval, say, a perfect fourth.

2. Count the number of dissonant partials d. For each partial of the lower tone , count how many
partials of the upper tone  form an interval that is within a critical band of . Use equation (6.8)
to compute the critical bandwidth for each harmonic. If the interval is small enough to fall within
the same pitch JND, exclude it from the count of dissonances because it is perceived as a unison
and hence is consonant.

pl

pu pl
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3. As we go up in frequency, at some point the successive harmonics of each tone will begin to fall
within the same critical band because the critical bands widen with increasing frequency but the har-
monics do not. Stop counting when the harmonics of either tone by themselves begin to fall within one
critical band, because if the ear uses a method like this, we presume it would have to stop here as well.

Figure 6.21 shows the count of dissonances for pl = 220 Hz with pu set in turn to the 12
equal-tempered semitone intervals from unison to one octave above pl, based on the critical band
function given in equation (6.8).

If we list the intervals from figure 6.21 in order of increasing dissonance, the results are as shown
in table 6.2. The order of the shaded intervals agrees with the ones in table 3.5, which is ordered
according to standard Western cultural norms of musical consonance. So this approach is fine up to
a point. The rest of the orderings in table 6.2 are arguable. The minor seventh and major second are
predicted to be more consonant than the major third, for example. Also, it does not seem right that
the tritone should have the same consonance as the major third. This result agrees with Terhardt
(1974), who wrote that consonance is “only slightly and indirectly correlated with musical intervals.
Thus, psychoacoustic consonance cannot be considered as the basis of the sense of musical intervals.”

While better computational estimates of consonance are available (e.g., Kameoka and Kuriya-
gawa 1969a; 1969b), the sheer number of competing theories of consonance extant in the world
today suggests that the only way forward is to perform (sigh) more research.

Figure 6.21
Dissonance metric of equal-tempered intervals based on critical bands.
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6.12 Localization

How is it that we can so easily tell which direction a sound is coming from? In placing a sound in
space, we extract psychophysical cues from arriving sounds based on

■ The geometry of the outer ear and the placement, size, and shape of the pinnae and ear canal

■ The geometry and orientation of the head, chest, and shoulders

■ The distance of the ears above the ground

We add to these psychophysical cues a cognitive framework that includes

■ Understandings about the acoustical properties of the sound source

■ Basic acoustical facts about sound transmission in air

■ Information about the known acoustical environment

■ Information about our orientation in space in six degrees (up/down, left/right, forward/backward,
pitch, yaw, and roll)

Incredibly, for each sound source in the environment, our hearing automatically and instanta-
neously creates a psychological image of the sound with its direction and distance encoded so that
we register it subjectively as an object in space/time, together with the nature of the acoustical envi-
ronment that it lies within. Pretty amazing. But that’s not all. We can also tell

■ Whether the sound is coming from above or below

■ Its rate of relative motion

■ Its rate of relative acceleration 

and much, much more.

6.12.1 Angular Cues

Angular cues tell the direction of a sound on the horizontal plane. John Strutt (1907), the third
Lord Rayleigh, a pioneer in spatial hearing research, theorized about the cues the ear uses to deter-
mine the angle of an incident sound. He began by noting that if a sound source is located to one
side of the receiver, the sound energy received at the closer (ipsilateral) ear will be more intense
than at the further (contralateral) ear because sound must travel a longer distance to reach the
contralateral ear, and intensity decreases as the square of distance.

6.12.2 Interaural Level Difference

He also noted that sound traveling to the contralateral ear must navigate around the head. He knew
that high frequencies are attenuated relatively more than low frequencies when they diffract
around an object (see section 7.11). The sound heard at the ipsilateral ear will be brighter than at
the contralateral ear because the head shadows the contralateral ear.
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Rayleigh reasoned that by comparing the difference in intensity level, especially of high-frequency
sounds received by the ears, our hearing should be able to tell the direction of the sound. Rayleigh
grouped the intensity cue and the diffraction cue together and called them jointly the interaural level
difference (ILD).

Interaural level difference is small for wavelengths less than about four times the diameter of
the human head (averaging approximately 17 cm). So this cue shouldn’t work for frequencies
below about 500 Hz. But diffraction by the head increases rapidly with increasing frequency, and
above about 3000 Hz, Rayleigh figured that head shadowing should cause a 20–30 dB drop in level
at the contralateral ear, making this a very effective angular cue in this frequency range.

Rayleigh realized that his theory implied that directional sensitivity should vanish for sounds
that contain no energy above about 500 Hz. But when he experimented on this, he was surprised
to discover that he could determine the direction of pure tones even as low as 128 Hz. So he went
back to the old drawing board.

6.12.3 Interaural Time Difference

Rayleigh then considered the possibility that hearing is sensitive to the difference in phase between
signals arriving at each ear because of the greater time that must elapse for the signal to arrive at
the contralateral ear. Rayleigh called this the interaural time difference (ITD) (Strutt 1907). He
used a simplified trigonometric approximation of head shape to calculate the different lengths of
the sound paths to the two ears. His first simplification was to model the head as a sphere with
radius r. Next, he considered only plane waves, whose rays arrive at the ears in parallel. He char-
acterized the direction of sound arrival, the angle of azimuth, as follows. He drew a radius from
the center of the head forward through the nose as the zero-degree reference (figure 6.22a). He
drew another radius at the angle of the incident plane wave. The angle of these two radii is the azi-
muth angle z. With this simplified model the difference in the length of the straight-line path to the
two ears in terms of azimuth is 2r sinz. For example, if z = 0°, sin0 = 0 and there is no delay dif-
ference for sounds arriving directly from the front (or back). If, however, z = 90°, then sin90° = 1,

Figure 6.22
ITD, spherical head.
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and the sound (which is now coming at the head directly from the left side) experiences a delay
of approximately the head diameter to reach the other ear. If we assume sound travels at speed c,
this corresponds to an ITD of 2r sin (z)/c.

There are obvious difficulties with this analysis, including the fact that it calculates the sound
as traveling through the head. Figure 6.22a, shows an incident sound ray traveling through the head
to arrive at the contralateral ear. Still, for small angles of azimuth, this is not a bad approximation.
We can improve it slightly as in figure 6.22b by calculating the delay to the far ear along a ray that
arrives at a tangent point on the side of the head (line length d1), then arcs around by diffraction to
the ear (arc length d2). With equation (5.2) for arc length, the path length will be d1 + d2 = r sin z + rz.
Converting path length to ITD, we have

, . Interaural Time Difference (ITD) (6.11)

Equation (6.11) only works for azimuth angles whose magnitude is less than 90° because
beyond 90° the rays arriving from behind the head would be closer to the source, and as the angle
approached 180°, the arriving sound rays would be time-aligned again from behind the head.

While (6.11) is an improvement, it is still not a good estimate for the large class of people whose
heads are not precisely spherical. Also, most people’s ears are not on a diameter through the center
of the head but are somewhat back from it.

Hearing is also sensitive to the onset of sounds, and we also use the onset time difference
between the ears, the lateral onset cue, to help establish direction of arrival.

6.12.4 Problems with ITD

The ear is only sensitive to ITD for frequencies whose wavelength is less than half the distance
between the ears because above this frequency the effect becomes ambiguous. To see why, let’s
assume the diameter of the average head to be d ≈ 0.175 m. When exactly half a wavelength
spans the distance between the ears (λ = 2d), the ear registers the same pressure differences at
both ears regardless of which direction the sound is coming from. If our ears were sensitive to
ITD for waves in the range , we would hear an apparent source location on the opposite
side from the true direction of arrival. Perhaps anticipating the potential for adaptive catastrophe
here, our evolutionary intelligence wisely bred this capability out of us. Taking the speed of
sound at standard temperature and pressure to be 340 m/s, the frequency corresponding to λ = 2d
is (340/0.175)/2 =  971 Hz, which, not surprisingly, is about where our ears stop paying attention
to ITD cues. Our hearing is most sensitive to ITD around 500 Hz. At that frequency, experiments
show we have a JND of azimuth ∆z near the forward direction of between 1° and 2°. Using (6.11)
to calculate the ITD for ∆z = 2° yields the astonishingly small figure of 18 microseconds. Given
the comparatively sluggish synaptic delay time of about 1 millisecond for average neurons, it
seems incredible that our ears are capable of measuring such small delays with such precision,
but they do.

ITD = r z + rzsin
c

-------------------------- z 90°<

d λ 2d≤ ≤
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6.12.5 Duplex Theory

ILD and ITD together are known as the duplex theory because these two effects are complemen-
tary. Our hearing is responsive to ILD cues from 500 Hz upward becoming reliably strong above
about 3000 Hz, so ILD cues are best for high frequencies. On the other hand, ITD cues are strongest
below about 1000 Hz. For frequencies around 2 kHz, where neither cue works well, our localiza-
tion is not very good (Stevens and Newman 1936).

6.12.6 Anatomical Transfer Function

A major difficulty of the duplex theory of ILD and ITD cues is that it implies there should be regions
where we experience front/back and top/bottom source direction ambiguity. The most obvious case
where the theory predicts this should occur is for sounds on the median plane (see figure 6.24). Sounds
arriving from any position on the median plane have ITD and ILD of 0 because they are equally cen-
tered between the ears. Therefore, we should have no clue as to the elevation of a sound. But we can
clearly distinguish sounds from above and below. Furthermore, identical ILD and ITD cues are sup-
posed to be produced by sounds at positions a, b, c, and d in figure 6.23. The duplex theory implies that
the region of ambiguity forms the surface of a cone of confusion whose apex is the ear. There should
be as many cones of confusion as there are ITD/ILD cues. But the ear, being ignorant of this scientific
difficulty, is quite able to distinguish these cues. So something is missing from the duplex theory.

Researchers eventually noticed the large flaps of skin (pinnae) that stick out from the sides of our
heads. They discovered that our hearing is very sensitive to the way the spectrum of arriving sounds
is modified by the sound shadowing and scattering effects of the pinnae as well as the head, shoulders,
and torso. All these parts of the body cause sounds coming from different directions to be filtered dif-
ferently on their way to the eardrum in a manner that is highly predictable by our hearing (after all,
the shape of our bodies is well known to us). These direction-dependent cues, variously called the
anatomical transfer function (ATF) or the head-related transfer function (HRTF), are the essential
cues for discriminating front/back and elevation of sound sources and also play a role in discrimi-
nating lateral cues. Think about it. Why are our pinnae always behind our ear canals? So that we can

Figure 6.23
Cone of confusion.

a

b
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tell sounds in front from sounds in back. Sounds arriving from behind the head are subject to more
diffraction than sounds coming from in front because the pinnae block the direct path for signals
behind the head. Similarly, we can tell up from down by diffraction effects caused by our anatomy.
Thus, spectral modifications caused by ATF are important cues to locate sounds in space.

6.13 Externalization

ATF also solves another problem. If I play you a stereo signal through loudspeakers, you hear the
sound coming from the general direction of the speakers, that is, outside your head. But if I play
you the same sound over headphones, you generally experience the sound inside your head.
What’s the difference between these two presentation modes? Your ATF. Headphones bypass the
filtering applied by your head, pinnae, shoulders, and torso to incoming signals, depriving you of
a sense of direction for arriving sounds, and your hearing seems to conclude that the sound there-
fore must be coming from inside your head. If I simulated your ATF cues by filtering the sounds
I send to your headphones based on measurements of your ATF, you would hear the sounds outside
your head again.

6.13.1 Measuring ATF

I could determine your own particular ATF experimentally as follows. First, I ask you to sit in a
stable position and (very carefully) insert tiny microphones into your ear canals. While you sit still,
I beam a click or short noise burst from a small loudspeaker at your head from a constant distance
and from all angles of azimuth z and elevation φ around you. I record the signals received by
the microphones in your ear canals, which show how the shape of the waveform is changed by the
scattering/shadowing properties of your body on its way to your ears. I then apply well-known
signal-processing techniques to the recordings (see volume 2, chapter 3), resulting in a set of spectra
describing your ATF for all measured angles of azimuth and elevation.

With this information, I can give you the illusion that you are hearing a sound coming from any
azimuth z and elevation φ of my choice. All I have to do is select the spectrum corresponding to
the direction I want, and filter a recorded sound with that spectrum and play it for you over head-
phones. The illusion even works with loudspeakers under favorable conditions.

The illusion even works pretty well if I substitute someone else’s ATF for yours. These ideas
are the technological foundation for better-quality 3-D audio surround systems. They are able to
skip the tedious part of having to measure each individual’s ATF by using the ATFs of people who
are good ATF “donors,” that is, whose own response patterns are characteristic of those of many
other individuals.

6.13.2 Head Movement and Spectral Context

There are still unresolved issues, even with ATF theory. I said that we use spectral modifications
caused by ATF to help locate sounds. But how can we know a priori whether the spectral features
of a signal we hear are due to ATF-induced filtering or are just built-in aspects of the source signal’s
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original spectrum? In fact, studies show we really can’t tell the difference, that is, unless we can
turn our heads, which immediately clarifies whether a sound is really coming from that direction
or whether it just happens to match a positional spectral cue. If the source also moves, our dis-
crimination improves even more.

The effectiveness of 3-D audio surround systems is greatly improved if the system can com-
pensate for head movement. The listener wears a head-tracking system that allows the experi-
menter to monitor all six degrees of freedom: pitch, roll, and yaw plus the standard {x, y, z}
Cartesian coordinates of position in space (figure 6.24). Additionally, if the sound spectrum is well
known to us, or we can observe the position of the sound source visually, we can discern whether
spectral features are due to the sound source or to our own ATF.

6.13.3 The Precedence Effect

When we hear a sound in a natural environment, we hear not only the signal that travels through
the air directly to our ears but also its many echoes reflected off nearby surfaces. These echoes
superimpose an incoherent jumble of delayed and scaled copies on top of the direct signal, which
is then delivered to our ears to sort out.

Performance of the ITD cue degrades in highly reverberant environments because it depends
upon receiving coherent phase information between the two ears. The ILD cue fares somewhat
better with reverberation because it only looks for level differences. But it is still subject to con-
fusion in rooms with strong standing wave patterns where intensities of sound are subject to local

Figure 6.24
Three-dimensional coordinates.

x

y

z

Horizontal plan

Median plane

Frontal plane

Yaw

Roll Pitch

loy79076_ch06.fm  Page 192  Wednesday, April 26, 2006  2:28 PM



Psychophysical Basis of Sound 193

minima and maxima determined by room geometry. For example, if I play a 500 Hz continuous
sinusoid over a loudspeaker in a room and have you walk around in it, you’ll get different impres-
sions of the location of the speaker at different positions in the room because of the standing
waves.

The saving grace in all this is that, generally, the direct path to our ears from the source is
shorter than any of the reflected paths; thus we hear sounds traveling on the direct path first. Our
hearing is keenly aware of this fact and gleans as much directional information as possible from
the onset of the sound before the reflections begin to arrive. This is the precedence effect
(Wallach, Newman, and Rosenzweig 1949; Haas 1951). In general, sound location is perceived
to be in the direction from which the first signal arrives, so long as the strongest echoes arrive
within about 35 ms, they are spectrally and temporally similar, and they are not much louder than
the direct signal.

Under these circumstances, echoes are suppressed by the precedence effect. The precedence
effect can be demonstrated with a stereo audio system with loudspeakers separated by a few
meters. Set the controls to monophonic reproduction so that the same signal is sent to both speak-
ers. First, stand in front of the speakers exactly on the midline between them while playing some
music or speech. You will hear the signal in front of you, somewhere between the speakers. If you
then move toward one of the speakers by a meter or so, suddenly you will believe that only the
nearby speaker is making any sound—it’s as though the distant one was switched off. But the other
speaker is clearly still contributing loudness and spaciousness to what you hear, which you can
demonstrate if you have an accomplice unplug the far loudspeaker. You will notice a reduction in
overall loudness and a reduction in spaciousness. But if it is plugged back in, you still can’t hear
the sound as arriving from it, and your sense of the direction stays with the local speaker.

6.13.4 The Trade-off between Time and Intensity

ITD and ILD seem to be processed by the brain separately before being combined at a higher level
with other cues to model lateral position of sound. This can be exploited within a certain range to
play off ITD and ILD cues against each other.

If you stand in the median plane between two loudspeakers (called the sweet spot in the audio
literature) fed with a stereo sound signal, you will hear the stereophonic sound field in front of you.
If you move too far to one side, the sound field collapses and the precedence effect reinforces the
percept that the nearby speaker is the location of the sound source. However, to a certain extent,
this can be compensated for by boosting the intensity of the far speaker until it overcomes the ITD
cue, and you can restore again the sensation of being in the sweet spot. The ear apparently weighs
the ratio of ITD and ILD cues to determine lateralization.

6.13.5 Distance Cues

How do we know how far away a sound source is? Suppose I set up two loudspeakers in a room
behind an acoustically transparent but visually opaque screen. The first speaker is 3 meters in
front of you and I play a sound at intensity I. Suppose I then switch to a second speaker at twice
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the distance and play the same sound with the same intensity I. You’d have no trouble telling
which was the closer sound source: because of the inverse square law, the intensity of the direct
signal arriving from the far speaker is ; therefore you hear the second speaker as farther
away.

But suppose we do a second experiment where I secretly increase the intensity of the far speaker
to I2, so that now , and repeat the procedure. Though the inverse square law cue is now
gone, you will still correctly tell me which speaker is the far one and will perhaps also mention that
I appear to have made the far one louder. How did you figure that out?

For every sound, your hearing judges not just the intensity of the direct signal Id but also the ratio
of the direct signal intensity to the attendant reverberant signal intensity R as a cue for distance.
In the first experiment, we’re pumping the same intensity I into the room from either speaker;
therefore the average reverberant intensity in the room is R no matter which speaker plays. Rever-
berant energy is distributed uniformly throughout the room quickly after a sound starts. But mean-
while the direct signal intensity went from I in the close speaker to  in the far one. Thus, your
ear judged that

and reasoned that if the reverberation intensity stayed the same but the direct signal intensity went
down, then the second speaker must be farther away.

However, in the second experiment, the intensity in the room goes from I to I2. Therefore the
amount of reverberation in the room likewise goes from R to R2. But meanwhile the intensity of
the direct signal that you heard remained the same. (Because I squared the intensity of the distant
speaker, the direct signal strength you experience from either speaker is identical.) Thus, your ear
judged that

and reasoned that if the direct signal intensity remains the same but the reverberant intensity
increases, the sound must be both farther away and louder.

We can confirm that your hearing is factoring reverberation into its cue for distance by repeat-
ing this experiment in an anechoic chamber. As the name implies, it is a room that is so padded
that it produces no echoes, depriving you of the reverberation cue. This time you would expe-
rience the second experiment as ambiguous and wouldn’t be able to tell which speaker was
farther away.

Another distance cue is based on the fact that high frequencies are absorbed more quickly by
air than low frequencies. The greater the distance, the more the high frequencies in a signal are
attenuated. The effect is more exaggerated with greater humidity. So even in a large space without
echoes—like a flat desert—you can still tell relative distance because your hearing has a built-in
sense of how much air absorbs high frequencies.

Id = I

Id = I2

I

I
R
--- I

R
------>

I
R
--- I

R2
------>
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6.14 Timbre

“Timbre,” a word borrowed from French, is sometimes defined as “sound color.” Here’s the ANSI
(1999) definition: “Timbre is that attribute of auditory sensation in terms of which a listener
can judge that two sounds similarly presented and having the same loudness and pitch are
dissimilar. . . . Timbre depends primarily upon the spectrum of the stimulus, but it also depends
upon the waveform, the sound pressure, the frequency location of the spectrum, and the temporal
characteristics of the stimulus.”

The first sentence of the ANSI definition is an example of the common but not very helpful ten-
dency to define timbre by what it is not. According to such negative definitions, timbre is what’s
left over after pitch, loudness, and duration are accounted for. Let’s call this approach the residue
theory of timbre. The second sentence is a bit more helpful.

Musicians have a highly developed, though informal, description of timbre. Musically, timbre
can refer to the features of a tone that serve to identify the instrumental source, such as oboe or vio-
lin, or the instrumental family, such as woodwinds or strings. Alternatively, timbre can denote the
semantic quality of a musical tone, such as dark, dull, bright, or shrill. The most useful terms are
those that relate to measurable phenomena, such as sharpness, the ratio of high frequency energy
to total energy. Sharpness can be thought of as the “center of gravity” of the spectral envelope of
a sound (Bismarck 1974). Roughness characterizes tones or noises that contain frequency or ampli-
tude modulations between about 20 and 200 Hz (see section 6.7; and volume 2, chapter 9).

Positive theories of timbre have only recently begun to arise. The theoretical difficulties stem
partly from the multidimensional complexity of timbre (Licklider 1951; Plomp 1970) and partly
from the bias toward viewing timbre as the residue of pitch, loudness, and duration.

Modern psychoacoustical research into timbre has sought to understand

■ What are the principal perceptual structures the auditory system uses to determine timbre? In
other words, what timbral effects are we sensitive to, and in what order of precedence?
■ How does the auditory system categorize and order timbre? In other words, does the ear have a
natural taxonomy of sounds?

Research has shown that the two most significant perceptual structures of timbre are spectral
energy distribution and evolution of spectral energy distribution over time. Thus, timbre consists
primarily of the static and dynamic properties of a sound’s spectrum, leaving aside pitch, loudness,
and duration. Timbre identification has been shown to depend a great deal on spectral evolution.

Although this definition is still basically a residual definition of timbre, at least it suggests a way
to take a small step forward. Suppose we take a collection of instrument tones and normalize them
so that they all have the same perceived pitch, loudness, and duration. Then any remaining differ-
ences between the tones would be, by definition, their timbre. We could then do experiments on
the normalized collection to study how subjects experience the differences between the tones and
try to understand from this how the auditory system organizes and categorizes timbre.
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Such research was carried out by John Grey (1975).13 Although his entire experiment goes
beyond the scope of this book, in brief, he recorded a collection of standard orchestral instrument
tones and performed a set of experiments to normalize them for pitch, loudness, and duration.
Therefore, by definition, the normalized instrument tones differed only in timbre. Subjects were
then played each possible pairing of these tones at random and asked after each pair how dissimilar
they were on a scale of 1 to 10. The experiment generated thousands of perceptual dissimilarity
judgments from a multitude of subjects. These judgments allowed Grey to construct a multidi-
mensional constellation of the orchestral instruments where the distance between all the instru-
ments is proportional to how dissimilar each tone is felt to be from all the others. It is important
to note that the experiment included no hypothesis a priori; all Grey started with were the dissim-
ilarity judgments of his subjects.

The next step was to determine what features of the sound stimuli might best account for the dif-
ferences his subjects heard. He used multidimensional scaling (MDS) techniques (Kruskal 1964)
to reduce the number of dimensions of the dissimilarity judgments into a set of distances in
three-dimensional space. Figure 6.25 shows a view of the dissimilarity judgments expressed as dis-
tances in three dimensions. Abbreviations for the instrument tones are O1, O2, oboes; C1, C2, clar-
inets; X1, X2, X3, saxophones; EH, English horn; FH, French horn; S1, S2, S3, strings; TP,
trumpet; TM, trombone; FL, flute; BN, bassoon.

It is important to note that the data specify only relative distances between data points. Grey
examined the data in one, two, and three dimensions in all possible rotations and decided that the
three-dimensional orientation shown in figure 6.25 offered the best possibilities for explanation of
timbre differences.

In this rotation, Grey noted the y-axis relates to the spectral energy distribution. On the one
extreme, the french horn (FH) and strings (S3) have relatively narrow spectral bandwidth (fewer
harmonics) with most energy concentrated in the lowest harmonics. At the other extreme, the
trombone (TM) has a very wide spectral bandwidth (many harmonics) with energy more evenly
distributed among them all.

The x-axis relates to temporal energy distribution, specifically to how partials align during
attack and decay. At one extreme, higher harmonics of the woodwinds enter and exit simulta-
neously with the low ones at onset and termination of a note. At the other extreme, the higher
harmonics of strings, brass, flute, and bassoon tend to enter after the lower harmonics and exit more
quickly than the lower ones.

The x-axis also expresses musical instrument family partitioning. The woodwinds appear on the
far left, the brass in the middle, and the strings on the far right. The exceptions to this pattern are
the clustering of bassoon with the brass, and flute with the strings.

Grey also interpreted the z-axis in terms of temporal patterns. At one extreme, the strings, flute,
clarinets, saxophone (X1, X2), and oboe (O1) display initial high-frequency low-amplitude
energy, most often inharmonic, during the attack segment. The tones at the other extreme, includ-
ing brass, bassoon, and English horn, either have low-frequency inharmonicity or at least no
high-frequency initial energy in the attack.
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Grey also performed a clustering analysis of the data. The solid lines in figure 6.25 indicate the
strongest clustering, followed by dashed and then dotted lines. For instance, string S1 is most like
the flute, and string S2 is most like string S3. Also, the group {S1, FL} is more like the group {S2, S3}
than the group {FH, BN, TP}. Last, the group {S1, FL} is more like group {FH, BN, TP} than anything
except group {S2, S3}.

The composer Henry Cowell (1930) wrote,

If tone-qualities were arranged in order, and a notation found for them, it would be of assistance to com-
poser and performer alike. . . . Tone-quality thus becomes one of the elements in the composition itself

Figure 6.25
Three-dimensional hierarchical clustering analysis of timbre similarities. (Adapted from Grey 1975.)

z
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and ceases to be only a matter of performance. . . . Progress in the field of new or graduated tone-qualities
in composition has been greatly hindered by lack of notation, as it has been justly felt that if music demand-
ing new tonal values were set down in present notation, the desired effect would be likely to be entirely
lost in the performance. (34)

Figure 6.25 provides composers with interesting information on the use of timbre as an orga-
nizing principle in composition. For instance, to reinforce the independence of two melodic lines,
composers could choose timbres that are far apart in the figure. One can entertain such ideas as
transposable timbre by moving gradually from mellow to bright instruments. Timbres with more
bite tend to stand out in an ensemble because their onset transients tend to contain a higher
percentage of total energy.

Grey’s research is but one study with a very narrow focus: it covers only 16 specific sounds at
one pitch, one duration, and one loudness level. We know little about the spaces between these tim-
bres, let alone the possible maps of timbre space that would arise using other control parameters.
The orchestral instruments themselves are not constant in timbre at different pitches, durations, and
loudnesses. For example, the timbre of the clarinet demonstrates a wide range of effects across its
pitch range. Nonetheless, Grey has provided a tempting glimpse.

6.15 Summary

The most salient aspects of musical sound are pitch, loudness, duration, sound location, and timbre.
Psychometric scales such as decibels and phons were developed to give some objectivity to sub-
jective judgments. While such units provide a common language for discussing the auditory abil-
ities of a population of listeners, they should not be considered to be in the same league as physical
measurements. Nonetheless, subjective judgments can help to expose a coherent subjective struc-
ture if collected over a sufficient number of data points, and this structure can in turn be related
to various acoustical parameters such as amplitude and frequency.
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A physicist who looks back over the history of his subject is struck by the prominent place that was originally
occupied by musical acoustics. In fact it was one of the important sources of information about the nature of
the physical world and a prime source of intellectual stimulation.
—Arthur H. Benade, Trumpet Acoustics

7.1 Sound and Signal

Having focused on the listener in the previous chapter, I now focus on the medium and consider
how sound travels.

The sounds we hear correspond to pressure disturbances in the medium we are immersed in—air
or water. In chapter 6 I mentioned that sound implies a source, a medium, and a receiver. This raises
the age-old question: If a tree falls in the forest and there’s no one to hear it, did it make a sound?

One could argue that pressure disturbances in air are not sound until a subject experiences them,
but this seems academic. A way out of the difficulty is to differentiate between a sound and a signal:
A sound has meaning by the information it conveys from a source to the receiver; a signal is a sound
that conveys such information. Therefore, an unheard sound is not a signal, but it is still a sound.
Practically speaking, just as there is no harm in talking about a sunset (even though it’s the Earth
that turns), it’s okay to discuss the propagation of sounds and signals without regard to a source
or receiver so long as we’re aware of the potential for contradiction.

7.2 A Simple Transmission Model

One simple model of the transmission of signals that takes into account the receiver, source, and
medium is

Receiver Source Medium

Observed sound = Original sound − Transmission loss,

where the transmission losses are spreading, absorption, and scattering of sound on the path from
source to receiver.

loy79076_ch07.fm  Page 199  Wednesday, April 26, 2006  2:51 PM



200 Chapter 7

For sound transmission to carry information (for it to be a signal), it must be detectable at the
receiver, whether the ear or a microphone. Ordinarily, this requires that

■ The sound must be above the receiver’s threshold of sensitivity and within its frequency range.
■ The sound must be greater in strength than the ambient noise, that is, the signal to noise ratio
must be greater than 1.

Otherwise the signal is considered to be buried in the background noise. For signals meeting these
detection criteria, we can get a rough prediction of whether a signal can be heard by relating the
ambient noise level to the sound intensity level:

.

If the result is greater than 1, it’s a relatively safe assumption that it can be detected (although this
must remain a rough estimate because for hearing, detectability is potentially affected by masking).

7.3 How Vibrations Travel in Air

The speed of sound is a function of how quickly a medium can transport energy by wave motion.
This in turn depends upon the physical properties of the medium. 

When energy is injected into a medium, it seeks to return to its lowest energy level by radiating
the energy away. In an elastic medium such as air, energy can be radiated either by heat convection
(heat exchange between adjacent molecules) or by wave motion, or both. When a sound wave trav-
els through a gas, the regions that are compressed become slightly warmer, and the regions that
are expanded become slightly cooler. But the wavelength for most audible sound is relatively large
in comparison to the rate that heat flows through air, so no appreciable heat flows from a conden-
sation to an adjacent rarefaction. So most of the work in sound transmission happens because of
pressure changes rather than thermal convection.

A system that performs work without heat flowing into or out of it is adiabatic. Under normal
atmospheric conditions, and for most audio frequencies of interest to humans, energy propagation
by convection is much slower than energy propagation by sound wave, so air is considered an adi-
abatic medium.

In the medium’s undisturbed state, molecules of fluid media such as air collide randomly in three
dimensions under the forces of thermally induced motion. Average particle speed is proportional
to temperature.

We can usefully think of air as an ideal gas, representing its molecules as a collection of per-
fectly hard spheres that collide but otherwise have no interaction with each other. An ideal gas
stores all its energy in the translational velocity of the particles (that is, the particle speed). The
random motion of the molecules is the air’s internal energy or microscopic energy, as distinct from
the air’s macroscopic energy, which characterizes the large-scale motion of an air mass as a whole.
Sound and wind are forms of macroscopic energy.

Signal to noise ratio = Observed intensity level
Ambient noise intensity level
----------------------------------------------------------------------
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Imagine a packet of air such as that enclosed by your lungs.

■ If you move the air packet (by breathing in or out), energy is transferred from your lung muscles
to the air and stored in the momentum of the air particles—an inertial property of air. 
■ If you compress the air packet (by holding your breath and squeezing your chest and diaphragm),
energy is stored as heat—an elastic property of air.

In either case the energy is stored in the air’s momentum or compression because all the energy
(except that lost to friction) will be released again when the air packet decelerates or the air packet
decompresses. Understanding wave propagation depends on understanding how the medium’s
inertial and elastic properties interact.

Figure 7.1 presents an idealized one-dimensional representation of air, in which small packets
of air molecules are represented as balls {v, w, x, y, z} between springs {h, i, j, k}. In the beginning,
the springs are all pressing with even force upon the balls, the forces balance, and there is no move-
ment, corresponding to the ambient background air pressure.1

If I give ball x an instantaneous shove right, it further compresses spring j and expands i. The
force from x to y grows while the force from x to w shrinks. Therefore, first w and y are drawn to
the right, then v and z, and so on. The movement of segment {x, y, z} is a compression wave, and
the movement of {x, w, v} is an expansion wave.

If stiffer springs are used, or if the springs are more compressed, the force displacing x would
be conducted to y and w faster. Therefore, speed of wave propagation goes up with increasing stiff-
ness. Just as the stiffness of a spring is raised as the pressure on it grows, so the stiffness of a gas
is increased by raising the pressure P it undergoes.

Gases are compressible to the extent that they can easily convert pressure into internal energy,
and different gases have different energy-storing capacities. A gas with a higher heat capacity ratio
γ is like a spring with greater inherent stiffness: it compresses less easily, that is, it requires more
force to compress, and therefore it can store more energy per unit of volume than a more com-
pressible gas with lower γ. So the elastic properties of a gas are its pressure P and its ability to store
heat γ. Increasing either P or γ (or both) increases wave propagation speed.

Now for the inertial properties. If the mass of the balls in figure 7.1 were increased (and the
springs were left unchanged), the balls would have more inertia, and the force displacing x
would be conducted to y and w more slowly. The inertial property of a gas is its density ρ,
defined as its mass m per unit of volume V, or ρ = m/V. Increasing ρ decreases wave propagation
speed.

Figure 7.1
Idealized one-dimensional representation of air.

......
v w x y z

h i j k
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202 Chapter 7

The phase of matter has a huge impact on the inertial and elastic properties of different media. In
general, solids have greater stiffness than liquids, which have greater stiffness than gases. For this rea-
son, longitudinal sound waves travel faster in solids than in liquids or gases. One might think that
because of gases’ relatively small mass per unit volume, the speed of sound would be faster in gases.
But the stiffness is so much greater in liquids and solids that, in general, for speed of sound c, 

.

7.4 Speed of Sound

To summarize the foregoing,

■ Increasing elastic properties P or γ (or both) increases wave propagation speed.
■ Increasing the inertial property ρ decreases wave propagation speed.

Combining these observations, we can say that the speed of sound cs in a gas is proportional to the
ratio of its elastic and inertial properties:

. (7.1)

Since energy is proportional to the square of velocity, we can rewrite (7.1) as a proper equality:

,

and thus the speed of sound is

. Speed of Sound (7.2)

All we need now is to find appropriate values for P, γ, and ρ for air in order to determine the speed
of sound in air, but to find them requires a few additional discoveries.

7.4.1 Heat Capacity

Heat is energy that flows from a higher-temperature object to a lower-temperature object. Because
it is a kind of energy, its unit is the joule (J), the same unit used for work, kinetic energy, and poten-
tial energy.

Heat that flows originates in the internal energy of the hotter substance. Internal energy is the
sum of the molecular kinetic energy (the random kinetic motion of the molecules), molecular
potential energy (forces acting within and between molecules), and other forms of energy. The
internal energy of a substance is not called heat unless it is flowing.

The amount of heat needed to raise the temperature of a substance by a certain amount—its heat
capacity—depends upon the kind of substance and upon the mass of the substance. The heat

csolid cliquid cgas> >

cs
elasticity
density

--------------------- γP
ρ

------∝ ∝

cs
2 = γP

ρ
------

cs = γ P
ρ
---
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capacity Q of materials can be shown to be directly proportional to the change in temperature ∆T
and the amount of mass m, so that . Adding a constant of proportionality c, the specific
heat capacity, allows us to determine the heat capacity of a specific material, Q = cm ∆T. The value
of c must be determined experimentally for each specific material. Solving for c, we have a way
to determine the heat capacity of specific materials:

. Specific Heat Capacity (7.3)

From (7.3), the SI unit for specific heat capacity is J/(kg ⋅ C°). For example, the specific heat capac-
ity of copper is 387 J/(kg ⋅ C°), and the specific heat capacity of water (at 15°C) is 4186 J/(kg ⋅ C°). 

The specific heat capacity of gases is different depending upon whether the gas is measured with
constant pressure or constant volume. This distinction is usually not important for solids and liq-
uids but can be significant for gases, such as air. The specific heat capacity measured holding pres-
sure constant is called cp, and the specific heat capacity measured holding volume constant is called
cv. For example, the constant pressure specific heat capacity cp of oxygen is 912 J/(kg ⋅ C°), and
the constant volume specific heat capacity cv of oxygen is 651 J/(kg ⋅ C°).

The importance of this distinction may not at first be obvious, but it turns out to be crucial for
correctly calculating the speed of sound. Newton first analyzed the speed of sound in The Prin-
cipia. His analysis was correct, but the predicted result was far smaller than measured values. This
problem dogged theorists for the better part of a century and set back the progress of acoustics until
the difference between cv and cp was discovered, and the mystery was solved.

7.4.2 Heat Capacity Ratio

The ratio of cp/cv, the heat capacity ratio, characterizes the inherent molecular springiness of
a gas:

. Heat Capacity Ratio (7.4)

It is the ratio of the specific heat capacity of a gas at constant pressure to the specific heat capacity
at constant volume. 

If we compress a gas, we add to its internal energy, causing its temperature to rise. The com-
pressibility of a gas depends on how its particles accommodate change of heat energy. This in turn
determines the ratio of the change in heat energy to the change in temperature.

For an ideal gas, cp exactly equals cv so that γ = cp/cv = 1.0. This means that the specific heat
capacity is the same whether we hold pressure or velocity constant. If we double the pressure on
an ideal gas, the volume is halved.

If γ is greater than 1.0 (because ), the gas is not ideal. Nonideal gases store energy in the
translational velocity as well as the rotational velocity and vibrational velocity of the particles. For
nearly diatomic gases such as air, γ is 7/5 = 1.40.

Q m T∆∝

c Q
m T∆
------------=

γ =
cp

cv

----

cp cv>
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7.4.3 Mass Density

Having considered the elastic properties of air, we must next look at its inertial properties before
we can establish the physical basis of the speed of sound. Wave propagation is slower in more
dense media because denser particles accelerate less quickly for the same applied force, therefore
they communicate their force to their neighbors less quickly.

The mass density ρ of an undisturbed gas is its mass m per unit of volume V:

, Mass Density (7.5)

where mass is the quantity of matter contained in an object, and matter is anything that occupies space
and exhibits inertia. The SI unit of mass density is kg/m3. For example, the mass density of helium
is 0.179 kg/m3, and the mass density of air is 1.29 kg/m3 (Beranek 1986). To determine the speed of
sound, we must determine the mass density of air, which is composed of numerous different gases.

Air is composed of about 78 percent nitrogen (N2), 21 percent oxygen (O2), 0.9 percent argon
(Ar), and 0.03 percent carbon dioxide (CO2) by mass, and its average molecular mass is the sum
of the products of the various atomic masses times their percentages. So to determine the average
mass of air, we must first determine the atomic mass of the individual gases, which we do as follows.

The mole is the SI base unit for expressing the amount of a substance measured in molecules.
Amedeo Avogadro (1776–1856) discovered that 12 grams of carbon-12 contains 
atoms. This number is known as Avogadro’s number NA. One mole (abbreviated mol) of a sub-
stance contains as many particles (atoms or molecules) as NA.

Since 1 mol has the same number of atoms regardless of what the substance is, the difference
in mass between substances is due to the difference in their molecular weights. For example,

 atoms of carbon-12 weigh 12 g, and the same number of nitrogen atoms weigh
28.013 g. Table 7.1 shows calculations of average molecular mass for air. If  particles
of air weigh 28.87 g, one particle weighs

,  Average Mass, Atom of Air (7.6)

or  kg per air particle.

Table 7.1
Average Molecular Mass of Air

Element Percent Atomic Mass g/mol

N2

O2

Ar

CO2

78.08

20.95

0.934

0.031

×
×
×
×

28.013

31.998

29.948

44.010

=
=
=
=

21.87

6.70

0.27

0.01

28.87

ρ = m
V
----

6.022 1023×

6.022 1023×
6.022 1023×

m = 28.87g
mol 

---------------- . 1 mol
6.022 1023 particles×
---------------------------------------------------- = 4.79 10 23–  g×

particle
----------------------------------

4.79 10 26–×
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7.4.4 Pressure, Volume, and Temperature

Pressure P is force per unit area, measured in atmospheres. An atmosphere (atm) is defined as the
average atmospheric pressure at sea level, with a standardized value of 101,325  Pa (pascal), a little
over 105 N/m2, or about 14.7 pounds per square inch (see section 4.21). Measurements of air
density are made by reference to standard temperature and pressure (STP), defined as 1 atm of
pressure at 0°C, or 273.15 Kelvin. 

The pressure fluctuations of sound waves are very small in comparison to standard atmospheric
pressure. Sound pressure level (SPL) ranges from about 0.1 Pa at the threshold of hearing up to
about 1 Pa at the limit of hearing. This corresponds to a fluctuation of between 10–7 N/atm and
10–5 N/atm.

If we have a volume of a fixed size, and we add more molecules of gas to it (for example, by
pumping more air into a tire), the pressure increases. When the volume and temperature of an ideal
gas are kept constant, doubling the number of molecules of air doubles the pressure. So pressure
is proportional to the number of molecules, or equivalently, to the number of moles n of the gas,
so we can write P ∝ n.

If we have a volume of variable size, and we add more molecules of gas to it (for example, by
pumping more air into a balloon), the volume increases. When the pressure and temperature of
an ideal gas are kept constant, doubling the number of molecules of air doubles the volume. So
volume is also proportional to the number of moles n, and we can write V ∝ n.

If we have a fixed number of molecules of air in a certain volume and we reduce the volume,
the pressure increases, as happens when pressing down on the plunger of a bicycle pump with the
outlet closed. When the number of molecules and the temperature of an ideal gas are kept constant,
halving the volume doubles the pressure because the same number of molecules now occupy half
the space. So for an ideal gas, pressure and volume are reciprocal:

, or  .

The final factor we must consider is temperature T. When volume is kept constant, raising the
temperature of an ideal gas raises the pressure. And when the pressure is kept constant, raising the
temperature of an ideal gas increases the volume. So temperature affects both pressure and volume
directly, and we can write .

Combining these four proportionalities, we can write . We can rewrite this as an equa-
tion by inserting a proportionality constant R, called the universal gas constant. The result is the
ideal gas law:

, Ideal Gas Law (7.7)

where n is the number of moles of gas present, T is absolute temperature in Kelvin, and R is a magic
number worked out experimentally in the late 1700s and codified in Boyle’s law, Charles’s law,
and Avogadro’s hypothesis. A good value for it is 8.314351 J/(mol ⋅ K).

P 1
V
---∝ PV 1∝

PV T∝
PV nT∝

PV = nRT
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Equation (7.7) expresses the ideal gas law in terms of moles n, but using Avogadro’s number,
it is easy to express this in terms of the total number of particles N. The total number of particles
N is just the number of moles n times the number of particles per mole, NA, in other words,
nNA = N. Substituting into (7.7), we have

.

The constant term R/NA is Boltzmann’s constant,2 usually represented by the symbol k:

. Boltzmann’s Constant (7.8)

Substituting k into the ideal gas law, we have

PV = NkT. Ideal Gas Law using Boltzmann’s Constant (7.9)

Notice that the values of (7.7) and (7.9) are expressed only in units of pressure, volume, quantity
of gas, and temperature. From these we can calculate the speed of sound in air.

7.4.5 Calculating the Speed of Sound

Solving (7.9) for pressure, we get

. (7.10)

This can be rewritten in terms of mass density ρ and molar mass m because N/V = ρ/m (a conse-
quence of equation (7.5)). Substituting this equality into (7.10), we get

. (7.11)

A rearrangement of (7.11) yields

. (7.12)

Now, recall equation (7.2) for the speed of sound:

.

Substituting (7.12) into (7.2) yields

. (7.13)

PV = nRT = nNA
R

NA

------ 
  T = N R

NA

------ 
  T

k = R
NA

------ = 8.31 J/ mol K⋅( )
6.022 1023 atoms/mol×
---------------------------------------------------------- = 1.38 10 23–×  J/K

P = N
V
----kT

P = ρ
m----kT

P
ρ
--- = kT

m
------

cs = γP
ρ---

cs = γ kT
m
------
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We have an equation for the speed of sound based only on easily measurable quantities: temper-
ature, compressibility, and mass. Plugging in the values , , and

 J/K yields

. Speed of Sound (7.14)

Temperature (in Kelvin) is the only nonconstant term for the speed of sound in air at standard
atmospheric pressure. To use the more familiar Celsius scale, substitute T = 273.15 = 0°C. For
example, the speed of sound at standard temperature and pressure is

 ≅ 331.9 m/s, Speed of Sound at STP (7.15)

or a little over 1000 ft/s or about 1 ft/ms.
Air is nondispersive, meaning that cs does not change with frequency, as light does in glass, for

example.

7.4.6 Universal Wave Equation

Now that we have an analytic means to determine the speed of sound, we can use it to relate the
period of a wave directly to its frequency. The speed of sound c is

c = f λ m/s, Universal Wave Equation (7.16)

where f is frequency in cycles per second, and λ is wavelength in meters. Knowing any two of these
properties allows us to find the third:

.

For example by (7.15), the frequency of a wavelength of 10 m is f = 33.19 Hz. The wavelength of
1000 Hz in air at STP is λ = 0.3319 m, or about 1 ft.

7.5 Pressure Waves

Sound is propagated through a medium such as air by longitudinal waves, where particle motion,
wave motion, and energy flow are all in the same direction. Longitudinal waves are also called
pressure waves (or P-waves) because wave propagation is carried by pressure differences in the
medium. A two-dimensional representation of a longitudinal pressure wave is shown in figure 7.2.
The figure can be thought of as a density contour map of the medium where the darker areas, or
compressions C, have greater density than the lighter areas, or rarefactions R. The ordering of den-
sities is always  where ρo is density of air at STP. 

As previously discussed, when a packet of air is compressed, the molecules store the energy as
heat. When a packet of air is accelerated, the molecules store the energy as inertia. If we think about

γ = 7/5 m = 4.79 10 26–× kg/m3

k = 1.38 10 23–×

cs = γ kT
m------⋅ = 7

5
--- 1.38 10 23–× T⋅

4.79 10 26–×
-------------------------------------⋅ = 20.0833 T

20.0833 T = 20.0833 16.52725⋅

c = f λ , f = c
λ
---, λ = c

f
--

R ρo C,< <
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figure 7.2 as a snapshot of a sound waveform in time, we see that the wave travels by alternating
inertia storage and heat storage through time. At any moment, the most compressed/rarefied air
packets (hence the ones with the most/least heat) have no momentum, whereas the air packets with
the most velocity (hence the ones with the most momentum) have no compression.

7.6 Sound Radiation Models

Sound propagates with a spherical radiation pattern in free space of uniform density,3 and the inten-
sity of a signal at some distance will generally be inversely proportional to the square of the dis-
tance. But the actual distribution of transmitted sound energy depends upon other factors,
including the radiation pattern of its source, which is a function of the efficiency of sound prop-
agation in three dimensions. For instance, we experience the loudest signal from a violin if we
directly face its top; it sounds quieter if we face its side.

Additionally, sound can be reflected, refracted, or absorbed on its way from a source to a receiver
by objects encountered along the way. For instance, we experience an even quieter signal from a
violin by standing directly behind the violinist, in the player’s acoustical shadow. What arrives at
our ears is determined by these factors (among others) in combination.

Figure 7.2
Longitudinal pressure wave.
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The transmission of sound can be modeled as either waves or rays. Figures 7.3a and 7.3b show how
these models represent two-dimensional waves in close proximity of a point source radiating
in all directions. Near the source, we see great curvature of the wave fronts. In three dimensions, wave
fronts emerge in layers of pressure areas from the source in a spherical pattern. In figures 7.3c and
7.3d, we are viewing sound at intermediate proximity from its source, in the near field or the Fresnel
zone. Equivalently, we are viewing a magnified portion of the sound through a small aperture nearby
its source. Though the total 2-D signal path is still circular, our view of it is so limited that what we
see begins to look more like parallel rays or parallel wave fronts. Figures 7.3e and 7.3f show the sound
at great distance from its source, in the far field, or Fraunhofer region. Equivalently, we are viewing
at extreme magnification through a very small aperture nearby the source. We see so little curvature
that for all intents and purposes the rays and wave fronts are parallel. In this region, the radiation pat-
tern is independent of distance. These are called plane waves, although strictly speaking they are only
geometrically planar in the limit at an infinite distance from the source. In three dimensions, plane
waves pass by like sheets of pressure areas from the direction of the source.

Portraying transmission of sound as rays helps us visualize the direction and strength of sound
propagation, and portraying them as waves helps us visualize wavelength. Both approaches are
just models of the underlying physical phenomena, which we use to help make sense of what we
experience. We can adopt whichever perspective helps us understand, and switch back and forth
between models at will.

At what point do we go from near field to far field, from effectively spherical to effectively
planar transmission? Three factors are significant: the distance from the source s0, the area of
the aperture a through which we observe the waveform pass, and the wavelength λ of the wave-
form (see section 4.24.4). An observation is termed far field if the distance from the source
is much greater than double the area a of the aperture divided by the wavelength λ, called the
Rayleigh distance:

. Rayleigh Distance (7.17)

Figure 7.3
Graphical models of the transmission of sound.
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7.7 Superposition and Interference

Wave interference occurs when two or more waves act simultaneously on a medium. When such
waves pass through each other in an ideal medium, the resulting disturbance at any point in the
medium can be found simply by adding the individual displacements that each wave would have
caused by itself. This is the principle of superposition.

Where the interfering waves have the same sign, the sum of their displacements will be larger
than either wave by itself, resulting in constructive interference. Thus, for example, when the crest
of one wave is superposed upon the crest of another, they interfere constructively. The same goes
for a trough superposed upon a trough.

Where the interfering waves have opposite sign, the sum of their displacements will be smaller
than either wave by itself, resulting in destructive interference. This occurs, for example, when a
crest is superposed upon a trough, or vice versa. For examples of constructive and destructive inter-
ference, see figure 6.13.

Where two waves of opposite sign and equal magnitude coincide, they cancel, resulting in no
displacement of the medium. A listener at that position would hear silence. This is essentially the
principle behind noise-canceling headphones. A microphone mounted near the ear detects an inci-
dent sound wave, and an electronic circuit creates an inverse waveform matching the incident
sound wave, and plays it through the loudspeaker in the headphones so that the incident sound is
canceled by the inverse waveform when it reaches the ear.

7.8 Reflection

Interpreted as rays, sound obeys Newton’s laws of motion because sound rays continue in a state
of motion “at a constant speed along a straight line, unless compelled to change that state by a net
force.” Reflection acts as a net force upon a wave to deflect its direction.

Reflection of sound waves occurs only where the speed of sound changes, which, according to
(7.2), happens only where the density or elasticity of the medium changes. Reflection occurs at the
boundaries between media with different densities and elasticities, for instance, where sound
strikes a wall. But reflections can also occur within the same medium where its density or elasticity
changes. For example, the enormous impulsive sound wave created by a bolt of lightening in the
clouds would be heard as a single clap, like a sonic boom, except for the numerous reflections
caused by the turbulent differences in pressure and temperature within the storm. We hear the effect
of these reflections as rolling thunder. 

Sound reflection is just like light reflection: the angle of the incident ray and the reflected ray
lie on the same plane, and the angles of incidence θi and reflection θr are equal (figure 7.4a),

θr = θi. Law of Reflection (7.18)

Specular reflection, which is reflection from smooth, relatively plane surfaces, creates a phan-
tom source equidistant to the perpendicular of the reflecting surface (figure 7.4b). Nonspecular
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reflection (figure 7.4c) creates dispersion, scattering, or diffuse reflection. If the reflecting
surface is sufficiently diffuse, no phantom source is created.

Looking at reflection from the wave perspective, we’d say that each local point on the reflecting
surface emits a new spherically spreading wave front in response to the incident wave. The direc-
tion in which this new reflected wave front is propagated is constrained by

■ The local geometry of the surface it strikes

■ The pressure it experiences from other local wave fronts

This characterizes any reflection, specular or not. For a plane wave striking a plane surface, the
hemispheres radiated by each point form a coherent wave front that resembles the impinging wave
front but traveling in a new direction. For nonspecular reflection, we must examine the way each
hemisphere is constrained by its local surface and the influences of nearby hemispheres in response
to their own local conditions.

A wave front will experience scattering if the dimensions of the object it encounters are
small in comparison to its wavelength. A wave front will experience reflection if the dimen-
sions of the object it encounters are large in comparison to its wavelength. For example,
a table top 1 m in diameter will tend to scatter wavelengths larger than 1 m and reflect smaller
wavelengths.

Assuming that the direct path between source and receiver is not blocked, the first sound we
hear from a source is always the direct signal because it travels the shortest distance between
source and receiver. Since there is strong evolutionary survival value in knowing the direction
from which a sound originates, our hearing suppresses reflected copies arriving after the direct
signal from other directions (see section 6.13.3). But the precedence effect only works for about
35 ms after the arrival of the direct signal. Reflections arriving after that are experienced as dis-
tinct echoes. Reflections within the precedence interval are experienced as lending spaciousness
to the sound. If there are so many reflections that we cannot distinguish them, we hear them as
reverberation.

Figure 7.4
Phantom reflection source.
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7.8.1 Determining Distance from Reflections

Reflected energy can be used to measure distance to a reflective object because some energy usu-
ally returns to the source. This is the way radar works. The same technique also works for sound:
for example, some cameras are equipped with a distance-finding device consisting of an element
that makes a highly directional clicking sound, and a microphone. The click emitted by the device
reflects off the object the camera is aimed at, and some of the energy returns to the device’s micro-
phone. The device measures the elapsed time and uses equation (7.16), the universal wave equa-
tion, to calculate the distance to the object.

Since sound can penetrate opaque objects, sound reflection can be used to map underground
rock strata. Using acoustic pulse reflectometry, geologists track the reflections of a shock wave
transmitted through the earth by setting off a small explosion and recording the echoes (figure 7.5).
By examining the delay and amplitude of the most prominent reflections at various microphones,
and knowing the average speed of sound in the earth, geologists can infer the depth and location
of strata of different densities.

The same principle has been applied to deriving the bore profile of tubular musical instruments
such as winds and brass, and the tracheal tubes of humans and animals, using a noninvasive tech-
nique (Ware and Aki 1969). Though these instruments can in principle be measured with calipers,
in practice complications such as side holes and the inaccessibility of interior tubes limit the accu-
racy of this approach. For the voice, a noninvasive approach to measuring the tracheal tubes of live
subjects is invaluable. With acoustic pulse reflectometry, an impulse of sound is injected into the
instrument. Reflections arise in response to the impulse where the bore diameter changes. The
more rapid the change in bore diameter, the larger the reflection it causes. The resulting impulse
response function is measured by a microphone. The impulse response is converted into a
cross-sectional area as a function of axial distance from the impulse source, providing the desired
bore profile.4

Figure 7.5
Acoustic pulse reflectometry.

Microphone 2Microphone 1
Explosion
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7.8.2 The Old Rope Trick

We can model sound reflection in transverse waves by attaching a rope to a wall. Holding the free
end, if you snap the rope, an impulsive wave travels down its length. When the wave reaches the
wall, some of the wave energy reflects back towards your hand while some is transmitted into the
wall. The returning wave experiences phase reversal, meaning that the returning pulse travels on
the opposite side of the rope: if the outgoing pulse travels above the rope, the reflection returns
below the rope (figure 7.6a). This is how sound travels in strings with rigid terminations.

Attaching the end of the rope to a lightweight thread and the thread to a wall makes the rope act
as though it were free at the wall end (figure 7.6b). The reflected wave remains on the same side
of the rope both coming and going, so there is no phase reversal.

When the rope’s end is fixed, as in figure 7.6a, we can think of the rope’s reflected wave as com-
ing from an imaginary inverted source on the other side of the wall (figure 7.7). If the rope is fixed
to the wall, the wave’s displacement clearly must be zero when it reaches the wall (assuming the
wall is inflexible). We would achieve the same effect if we had an identical rope on the other side
of the wall that was shaken the opposite (inverted) direction. The imaginary inverted wave arriving
from the imaginary source would exactly cancel the real source when the two motions meet at the
wall, also providing zero displacement.

Figure 7.6
Reflection of an impulsive wave on a rope.

Figure 7.7
Rope with fixed end.
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However, when the rope’s end is free, as in figure 7.6b, the end snaps like a whip, momentarily
doubling its displacement. We can model this as an uninverted imaginary wave arriving from
the imaginary source, so the waves add when they meet, providing twice the displacement
(figure 7.8).

7.8.3 Shive Wave Machine

Most natural wave motion occurs too fast or is otherwise too subtle to follow easily with the eye. In
the 1950s, John N. Shive developed a wave machine at Bell Telephone Laboratories that clearly
reveals transverse wave motion. An array of stiff steel rods are attached crosswise at regular intervals
to a wire (figure 7.9). Because of the relatively large inertia of the rods compared to the elasticity of
the wire, a wave takes several seconds to travel from one end of the array to the other. If the tips
are painted with phosphorescent paint and the apparatus is viewed under black light, only the tips are
visible, and one sees an array of dots moving up and down in transverse wave motion. This can
be used to replicate the experiments with the ropes. With the far end free, as in figure 7.9, a positive
impulse sent down the wave machine results in a positive reflected wave, as in figure 7.6b. With the
rod at the far end clamped so it can’t move up or down, a negative wave is reflected, as in figure 7.6a.

7.8.4 Reflection and Transmission at Media Boundaries

The Shive wave machine can also be used to examine what happens when waves cross the bound-
ary between two media with different speeds of sound. The crossbars at the right end of the wave
machine shown in figure 7.10 have been shortened so that the speed of wave propagation along
this section of the machine is doubled.5 Call the slower speed of wave propagation in the long bars

Figure 7.8
Rope with free end.

Figure 7.9
Shive wave machine.
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 and the faster speed in the short bars cf. The figure shows a wave crossing over the boundary,
one half still in the slow section, one half in the fast section.

We can compare what happens when a wave crosses from a slower to a faster medium (send
an impulse from (a) in figure 7.10) and from a faster to a slower medium (send an impulse from
(b) in the figure).

■ If, as in figure 7.9, the bars of the Shive machine do not change length, then  and the
speed of propagation remains unchanged. All energy is transmitted along its entire length, none
is reflected until it reaches the end.
■ If, as in figure 7.10, the bars change length, then . Because there is a difference in the
speed of propagation, some energy is transmitted and some is reflected.
■ The initial disturbance that moves toward the barrier is the incident wave, the reflected wave is
returned from the boundary, and the transmitted wave passes through the boundary.
■ The sum of the reflected and transmitted energy always equals the total original energy (apart
from that lost to friction or sound).
■ Where wave motion goes from the slower medium into the faster medium, as in figure 7.10a, the
returning wave does not experience a phase reversal, like the rope attached to a string.
■ Where wave motion goes from the faster medium into the slower medium, as in figure 7.10b, the
returning wave experiences a phase reversal, like the rope attached to a wall.
■ In no case is the phase of the transmitted wave reversed.
■ The frequency of the wave is preserved across the boundary.

We can account for these phenomena as follows. Suppose there is a boundary where medium 1
has speed of propagation c1 on one side and medium 2 has speed of propagation c2 on the other.
Assume that the incident wave always starts in medium 1. Then the amplitude coefficient of the
reflected wave Ar will be

. Reflection (7.19)

Figure 7.10
Reflection and transmission at a boundary.
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The amplitude coefficient of the transmitted wave  will be

. Transmission (7.20)

For example, if the speed in medium 1 is twice that of medium 2, so that c1/c2 = 2/1, and the inci-
dent amplitude is equal to 1, then by (7.19) the amplitude of the reflected wave will be –1/3 and
by (7.20) the amplitude of the transmitted wave will be 2/3. This is equivalent to starting the inci-
dent wave from (b) in figure 7.10.

If we reverse this so that c1/c2 = 1/2, then reflected amplitude is 1/3 and transmitted amplitude
is 4/3. This is equivalent to starting the incident wave from (a) in figure 7.10.

If c1/c2 = 1/1, reflected amplitude is 0 and transmitted amplitude is 1. We can use these equations
to determine the behavior of the rope described in section 7.8.2:

■ In the limit, if the second medium’s speed of propagation is zero, c1/c2 = 1/0, then reflected
amplitude is –1 and transmitted amplitude is 0. This is the case for the rope with fixed end and the
Shive wave machine in figure 7.9 with its end clamped—all the energy is reflected and comes back
inverted.
■ If the second medium’s speed of propagation is infinite, the reflected amplitude is 1 (not inverted)
and transmitted amplitude is 2. This corresponds to the rope with free end and the Shive wave
machine with its end unclamped.

Remember, total energy is conserved in the system, but amplitude adjusts according to the mass
and elasticity of each medium at the boundary.

Reflection of longitudinal waves, such as sound waves in air, can be visualized as follows. Consider
a long pipe with a drum head at the left end (figure 7.11a). We can create an impulsive wave by striking

Figure 7.11
Closed-ended and open-ended reflections in a tube.
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the drum head, which sends a sharp positive pressure wave down the tube. If the tube is closed at its
right end, the positive pressure doubles when the impulsive wave strikes it, and the wave is reflected
back as a positive pressure wave—the same as described for a free-end rope reflection.

However, if the tube is open at its right end, the wave interacts with the air surrounding the mouth
of the tube. When the positive pressure wave exits the tube, it displaces the air, which is at normal
atmospheric pressure around the mouth. This displacement is then propagated away from the open-
ing as a high-pressure wave. A new low-pressure area surrounding the mouth is created in its wake.
Air from outside and inside the tube is drawn to this new low-pressure zone. The air outside the
tube that is drawn back then propagates away from the tube as a low-pressure wave, and the air that
is drawn from inside the tube then propagates back up the tube as a low-pressure wave (figure 7.11b).
This is the same as described for a fixed-end rope reflection.

When sound reflects from a concave surface, wave intensity is focused exactly as light intensity
is focused in a reflecting telescope. If a microphone is placed at the focus of a parabolic dish, sound
waves arriving from the same direction as the directrix (the line bisecting the reflector) are focused
on it because each point on the parabola is equidistant from the focus and the directrix (figure 7.12).

7.8.5 Acoustical Coupling

There are situations where it would be good to have as much energy as possible travel from one
medium into another while reducing or eliminating reflections due to the discontinuity at the bar-
rier between the two media. For instance, the boundary at the oval window in the ear has air outside
and denser perilymph inside (see section 6.2.3). If sound waves struck the oval window directly,
most energy would reflect back out of the ear and little would get inside to enable hearing. The tym-
panum and the bones of the middle ear provide the inner ear with a mechanical coupling that passes
almost all energy into the inner ear for a range of frequencies of greatest biological interest, thereby
providing the inner ear with a more intense signal at these frequencies. Such coupling devices are
called transformers.

Figure 7.13 shows the Shive wave machine adapted to couple energy across a boundary with
minimal reflection. The average speed of sound in the central region is the geometric mean of the

Figure 7.12
Parabola focusing sound on a microphone.

Directrix
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speed in the two surrounding media. The transformer couples most efficiently for frequencies
whose wavelengths are close to four times the length of the transformer. It works progressively less
well for other frequencies.

7.9 Refraction

That part of a sound’s energy that is transmitted through a boundary between two media enters into
the new medium and is subject to refraction. Suppose a plane wave strikes a plane surface with
a different speed of sound c. If the angle of incidence α of the wave is not perpendicular to the new
medium, the wave is bent upon entering it and goes off at a different angle β.

There are three cases to consider:

■ The speed of sound is the same in the two media: c1 = c2. Then a sound that strikes the surface
of the second medium at an angle of incidence α will enter the new medium at angle β, and α = β
(figure 7.14a).
■ The speed of sound is faster in the first medium: . The angle of incidence  resulting
in a focusing effect (figure 7.14b). The energy is focused because relatively wide angles of inci-
dence result in relatively narrower angles of refraction.
■ The speed of sound is faster in the second medium: . Then , resulting in a dispersive
effect (figure 7.14c). The energy is dispersed because relatively narrow angles of incidence result
in relatively wider angles of refraction.

In general, for some angle of incidence α, the sound will be refracted into area Q if  and into
area P if  (figure 7.14d). We see that the angle of incidence α is related to angle of entry
β by β = Κ α, where . 

The exact relation, known as Snell’s law, is

. Refraction (7.21)

Figure 7.13
Transformer at a boundary.
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Solving for β, we have

.

For example, if c1 = 1.0, c2 = 1.25, and the angle of incidence is α = 45°, the angle of entry is
β = 62.1°.

Where an incident sound wave moves from a slower to a faster medium (c1 < c2), there is a crit-
ical angle αcrit that causes the angle of entry to equal 90°. When α = αcrit, the energy of the refracted
wave (called a creep wave) travels along the boundary, and is rapidly attenuated. When α > αcrit,
all incident wave energy is reflected. The value of the critical angle is

.

7.9.1 Gradient Refraction

Figure 7.14 shows refraction at sharply defined boundaries between media of different densities,
but refraction takes place wherever any parameter affecting the speed of sound changes for any
reason. Refraction can occur continuously over a gradient, for example. 

Figure 7.14
Refraction at a barrier.
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On a still evening with no clouds, the atmosphere near the ground remains warm because of the
ground’s lingering heat, and the air generally is colder with increasing elevation. As the density
increases over a gradient, the speed of sound correspondingly decreases. Figure 7.15a shows a
sound source at some elevation above the surface of the earth. The warm air below causes the wave
front to speed up, the cool air above causes it to slow down, and the result is that the wave front
bends upward with increasing distance from the source.

On a still morning with no clouds, air in the upper atmosphere is warmed by the sun faster than
air near the ground, so the atmosphere generally gets warmer with increasing elevation. Figure 7.15b
shows the wave front bent downward with increasing distance from the source by the early morning
refraction gradient. Sound can often be heard on the surface of the earth at a farther distance when
refraction is downward under these weather conditions because the wave fronts travel around the tops
of surrounding obstacles. I once lived a half mile from the ocean. During the day, the surf sound was
blocked by tall cliffs. But on calm nights a temperature gradient would form, refracting the sound.
Every night (reliably within 5 minutes of midnight, for some reason), suddenly, I’d hear the surf.

7.9.2 Land Speed of Sound

Consider what happens when one shouts into the wind to a listener. The land speed of sound must
be measured with respect to the average wind speed. Thus, if c = 331 m/s but the air itself is moving
at 10 m/s, the land speed of sound cl is actually 341 m/s in the direction of the wind.

When wind flows smoothly without vortices or other turbulence, it travels slower at ground level
than higher up. The speed of air molecules in contact with the earth must be effectively zero
because the earth is stationary with respect to the wind and these air molecules are bound to earth

Figure 7.15
Refraction of sound in the atmosphere.
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by strong molecular forces. Air molecules above them are progressively less subject to this resis-
tance, with increasing elevation causing the air to move in horizontal sheets, an effect called lam-
inar flow. Thus the speed of wind—and hence the land speed of sound—shows a gradient increase
with elevation in the direction of the wind. Figure 7.16 shows this effect on two listeners at equal
distances downwind (a) and upwind (b) of a sound source. The listener upwind receives less inten-
sity than the downwind listener because upwind sound is refracted up into the sky.

7.10 Absorption

When sound energy is transformed into another kind of energy, such as heat, we say the sound is
absorbed. Different materials absorb sound to varying degrees: a cement wall absorbs little and reflects
most sound energy; a wood wall absorbs some and reflects some; carpet absorbs most and reflects little.

Air itself absorbs sound energy, depending upon its temperature and relative humidity. Cold, dry
conditions favor sound transmission, whereas hot, moist conditions absorb sound, with high fre-
quencies being most subject to attenuation. This means that the intensity of a signal being trans-
mitted through air will actually be less than would be predicted by the inverse square law of
distance because the air itself dissipates energy from the sound.

An anechoic chamber is one whose walls absorb all sound, providing no detectable echo or
reverberation. Usually the walls are constructed of large wedges of soft, fibrous material on all sur-
faces. If we envision a sound wave incident upon a wedge as a ray (figure 7.17), we can see that
reflection causes the ray to strike the wedge many times, each time transferring some of its energy
as heat into the wedge until it is completely absorbed.

Figure 7.16
Refraction due to wind speed.

Figure 7.17
Sound absorption panel.
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The best absorber of all is an open window: 100 percent of the energy that goes through it is lost
to listeners in the room. Thus the absorption of all other materials is compared to that of a window
of equal area, and the absorption coefficient of an open window is defined as a = 1. If a square
meter of carpet absorbs half as much sound as a window of equal size, then the absorption coef-
ficient of the carpet material would be a = 0.5.

A surface having an area S and an absorption coefficient a can be said to have total absorption
A = Sa, equal to an open window of area A. Materials vary as to how much sound they absorb in
different frequency bands. The absorption coefficients of concrete, wood, carpet, and air are shown
in table 7.2. The entry for air assumes a temperature of 20°C, 30 percent relative humidity.

Our ears use attenuation due to air absorption and surface reflection to help identify objects in
space in a number of ways:

■ In the open, if we hear a sound we recognize, but it sounds muffled, we assume it is far away.
The muffling is a consequence of the attenuation of high frequencies with distance through air.
■ In a hall the direct signal from a source not only arrives first but is also spectrally the brightest that
we hear from that source because it is least subject to attenuation due to air absorption at the walls
or in the air. Our ears compare the spectral brightness of the direct signal to the reflected signals as
a cue to the location of the sound source (along with other cues such as intensity and time of arrival).

7.11 Diffraction

Since sound waves emanate spherically from a sound source, one might think that if an object
blocked the sound, the size of the sound shadow would grow with distance beyond the blocking
object (figure 7.18a). Instead, the sound shadow shrinks with distance (especially for low frequen-
cies) and even disappears (figure 7.18b). This is pretty good news if your seat at the concert hall
is directly behind a large pole: you’ll still be able to hear the music—at least the low frequencies.
This tendency of sound to spread out into sound shadows is called diffraction.

Diffraction arises in two common situations: apparent bending of waves around small obstacles
or past sharp edges, and spreading out of waves past small apertures. Small in this case means small
in proportion to the wavelength of the passing waveform.

Table 7.2
Absorption Coefficients of Various Materials at Various Frequencies

Material

Frequency (Hz)

125 250 500 1000 2000 4000

Concrete block

Wood

Carpet

Air

0.36

0.15

0.08

–

0.44

0.11

0.24

–

0.31

0.10

0.57

–

0.29

0.07

0.69

–

0.39

0.06

0.71

0.01

0.25

0.07

0.73

0.02
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It is a lot easier to study diffraction of light than of sound because we can see light. So let’s make
some simplifying assumptions and consider diffraction of light through an aperture (figure 7.19a).
Diffraction of sound works exactly the same way. Assume that the light arrives from such a distance
that the wave fronts are virtually parallel, so we can ignore the spherical complexities of waveforms.
Now imagine that this wave front impinges on a barrier with a small circular aperture. The light pass-
ing through the aperture strikes a screen behind it. Figure 7.19b shows the diffraction pattern of light
intensity striking the screen for some aperture diameter d, wavelength λ, and distance to screen z. The
whiter the area, the more energy it is receiving. Figure 7.19c shows a cross-section of the diffraction
pattern with intensity on the y-axis. It is understandable that the light should be most intense on the
screen directly opposite the aperture. But what about the fringe areas that also get light energy? 

To understand the diffraction pattern, consider how the plane wave front passes through the aper-
ture. According to Huygens’s principle,6 the sound wave in the aperture behaves as if all the points
of the wave surface within the aperture were separate radiating sources of sound with the same
phase. This means that every point on the wave surface within the aperture emits vibrations not
only directly toward the screen but also in all other directions, hemispherically. Thus all the points
on the wave surface within the aperture radiate their energy in such a way that it spreads out uniformly

Figure 7.18
Naive expectation vs. actual behavior of sound shadows.

Figure 7.19
Diffraction through an aperture.
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and hemispherically into the area beyond the barrier. Figure 7.20 shows this behavior for two points
within the aperture. (We are assuming the phases of all these separately radiating points are aligned
by the plane wave that is driving them from behind.)

Figure 7.21 shows that vibrations emanating from all points on the wave surface reach the center point
A in phase and reinforce each other in constructive interference. (Only two points are shown to keep the
figure simple, but Huygens’ principle holds for an infinite multitude of points interacting this way.) Fig-
ure 7.22 shows how the same vibrations at a different angle cancel at point B, resulting in destructive

Figure 7.20
Behavior of two points in the aperture according to Huygens.

Figure 7.21
Constructive interference.

Figure 7.22
Destructive interference.
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interference. Waves with the same wavelength will sometimes add, sometimes cancel, depending
upon θ, the angle of incidence. The same destructive interference shown in figure 7.22 would happen
if point B were on the other side of the x-axis at the same distance from the center of the aperture.

If we consider the whole screen, there would be a dark ring with a radius . Now imagine
a point C at twice the distance B is from A. The phase of the vibrations would once again be con-
structive as they were at point A, and there would be a white ring on the diffraction pattern. How-
ever, it would be fainter because the distance to the screen from the aperture is greater, and light
intensity drops with the square of the distance, according to the inverse square law. Thus consec-
utive concentric rings receive less and less energy until they are insignificant.

The cross-section of the diffraction pattern (figure 7.19c) looks rather sinusoidal, although the
values are all positive and it dies away quickly at the edges. In fact, this is a squared sine wave that
is scaled so its intensity dies away quickly off-axis.

The approach to diffraction presented here, which considers only plane waves, is due to Joseph
Fraunhofer (1787–1826). Fraunhofer diffraction involves coherent plane waves incident upon an
obstruction. The more general case, Fresnel diffraction, is the same except that the curvature of the wave
fronts is taken into account. This was first worked out by Augustin-Jean Fresnel (1788–1827). The dif-
fraction pattern shown in figure 7.19b, historically called the Airy disc,7 corresponds to Fraunhofer
diffraction through a circular aperture. Diffraction through other aperture shapes requires different
equations.

Before we can construct an equation for diffraction, let’s first isolate the factors involved:

■ Intensity diminishes as point p is moved further from the axis by increasing r (figure 7.19a). This
is simply the inverse square law at work.
■ Diffraction grows as the aperture becomes smaller. As the size of the aperture d shrinks, the total
amount of energy passed through decreases, and the energy that still gets past is diffracted more
strongly. Figure 7.23 shows a cross-section of the Airy disc diffraction pattern as a function of aper-
ture size. The larger the aperture, the more the energy tends to beam (and the more energy gets past

Figure 7.23
Diffraction pattern as a function of aperture size.
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226 Chapter 7

the aperture because it is bigger); the smaller it is, the more the energy spreads out across the screen
uniformly (and the less energy gets past the aperture because it is smaller).
■ Diffraction is greater, the longer the wavelength. Low frequencies (large λ) tend to diffract, and
high frequencies (small λ) tend to beam. Figure 7.24 shows a cross-section of the Airy disc dif-
fraction pattern as a function of wavelength/frequency. As frequency goes from low to high, the
energy tends to beam.
■ As the distance to the screen z grows, the image on the screen gets larger and fainter (figure 7.25). 
■ The diffraction pattern changes with the shape of the aperture. Figure 7.26 shows a diffraction
pattern made by a rectangular aperture.

Fraunhofer diffraction by an aperture is mathematically equivalent to the Fourier transform of the
aperture shape (see volume 2, chapter 3).

Figure 7.24
Diffraction pattern as a function of wavelength.

Figure 7.25
Diffraction pattern as a function of distance to screen.

W
av

el
en

gt
h 

in
cr

ea
se

s

Low frequency (large   )
Energy tends to diffract.

High frequency (small   )
Energy tends to beam.

Image on the screen
gets larger and fainter.

D
is

ta
nc

e 
to

 s
cr

ee
n 

in
cr

ea
se

s.

loy79076_ch07.fm  Page 226  Wednesday, April 26, 2006  2:51 PM



Introduction to Acoustics 227

We can engineer an equation for diffraction by putting all these facts together. Referring to the
geometry of figure 7.19a, we know that

■ Overall intensity and the amount of diffraction are both proportional to diameter d of aperture.
■ The diffraction effect is magnified as the distance z from the aperture to the screen grows, while
overall intensity simultaneously goes down.
■ The amount of diffraction is proportional to wavelength λ.
■ As we move away from the axis by a radius distance r, the intensity at point p goes down.
■ Overall, the intensity Ia is directly proportional to the amount of sound energy entering the aperture.

Then the intensity Ip of energy at point p on a screen that is distance r from the screen’s axis is

, Diffraction (7.22)

where .
The terms d, λ, and z control the distance between the peaks of the diffraction pattern. The peaks

will become wider apart if the aperture d is made smaller, if the wavelength λ grows, or if the distance
to the screen z grows. Terms d and z also have an effect on the overall intensity: if the aperture d is
made larger, more energy is let through; if the distance to the screen z grows, the intensity diminishes.

Why does music played through a loudspeaker sound so different depending upon where one
is listening from? On-axis, in front of the speaker, we hear a rich mixture of low and high fre-
quencies; off-axis, the sound gets increasingly muffled until, standing directly behind the speaker,
all we hear is low frequencies. Of course, the answer is diffraction. A loudspeaker in an enclosure
is subject to exactly the same Fraunhofer diffraction as plane waves passing through an aperture
(figure 7.27). We would expect to hear these same diffraction effects, and we do. Figure 7.28 shows

Figure 7.26
Diffraction pattern of a rectangular aperture.
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equal-energy contour graphs for high-frequency energy (7.28a) and low-frequency energy (7.28b)
from a loudspeaker into a room.

7.12 Doppler Effect

If a train moves past very quickly, we hear the pitch rise as it approaches and then fall as it moves
away. Why?

All waves travel at the same speed in a uniform medium, but if the distance between receiver
and sound source is shrinking, the more recently emitted waves do not have as far to go to reach
the receiver. In the time it takes to produce one wavelength, the source has moved toward the
receiver thereby foreshortening the wavelength being emitted in that direction. We hear the fore-
shortened wavelengths as a higher pitch. The same reasoning can be used to show why the pitch
drops for a sound source moving away.

Figure 7.27
Loudspeaker as a Fraunhofer diffractor.

Figure 7.28
Equal-energy contours.
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7.12.1 Doppler Shift with Stationary Listener

Figure 7.29 shows how a sound source S moving to the right compresses the wavelengths emitted in
its direction of travel and lengthens those emitted in the opposite direction. Thus, a stationary listener
at point A hears a higher pitch than a listener at point B as a consequence of the movement of S.

Assuming the listener is stationary, the equation describing Doppler frequency shift fd for a
moving sound source at frequency f and velocity u is

. Doppler Shift (7.23)

When the velocity of the source u = 0 the ratio  and , so there is no pitch shift.
But for  (corresponding to the source moving toward the listener) the denominator is smaller
while the numerator remains constant; therefore the ratio , causing the Doppler-shifted
frequency fd to go up. If the source is moving away, , and the ratio becomes ,
causing the Doppler-shifted frequency fd to go down. For example, if the source is moving toward
us at half the speed of sound, then , and we hear the frequency f shifted
up exactly one octave (figure 7.30).

Figure 7.29
Doppler shift.

Figure 7.30
Frequency shift heard at half the speed of sound.
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We might expect that if the sound source were to move away at half the speed of sound, we would
hear a one-octave shift down in frequency, but since  f 2/3, the pitch
drops only by a fifth.

If the source is traveling away from the listener at the speed of sound, then

,

a drop of an octave (figure 7.31). If the source is traveling toward the listener at the speed of sound,
then

,

so waves emitted exactly in the direction of travel at the speed of sound stack up on top of each
other and form a single pulse with infinite frequency (see figure 7.31). A listener standing nearby
would first hear a sonic boom, then the sound source shifted down an octave as it flashed past.8

What happens if velocity exceeds the speed of sound, that is, ? Theoretically, the listener
would hear the sound backward, and only after it had passed by (figure 7.32).

Figure 7.31
Frequency shift heard at the speed of sound.

Figure 7.32
Supersonic Doppler shift.
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7.12.2 Doppler Shift with Stationary Sound Source

Another possibility for Doppler shift is when the sound source is stationary and the receiver is
approaching it. The equation for this case is

. Doppler Shift, Receiver Moves (7.24)

If the receiver moves away from the source at the speed of sound, then 
because the receiver is traveling at the same speed of the sound; all frequencies are shifted to 0.
If the receiver approaches the source at the speed of sound, then , for a
shift up by an octave.

7.12.3 Doppler Shift with Source and Receiver Moving

If the source and receiver are moving with velocities us and ur, respectively, the equation becomes

. Doppler Shift, Both Move (7.25)

7.12.4 Two-Dimensional Doppler Shift

Equation (7.25) and all the other Doppler equations in the preceding sections are only accurate in
one dimension, that is, where the source and listener are headed either directly away from or toward
each other. However, most listeners prefer to stand to one side of speeding trains when observing
their Doppler effect. A listener close to the train tracks experiences a sharper swing in pitch as the
train passes by than a listener some distance away. What accounts for the difference?

I’ll only consider the case where the source travels in a straight line past a listener in two dimen-
sions, as when a train goes past someone standing beside the tracks. However, since paths can usually
be broken down into a sequence of linear segments, this approach can be generalized with little effort. 

In this case, we can no longer rely on absolute velocity; we must look at the relative velocity between
source and receiver. How the distance between source and receiver changes through time determines
Doppler shift. Figure 7.33 shows a sound source moving on a straight line at some absolute velocity u

Figure 7.33
Trajectory of a moving sound source.
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232 Chapter 7

past a stationary listener at distance d. Clearly, positive Doppler shift is greatest at position 1, less at 2.
There is no Doppler shift at position 3 because there is no relative velocity between source and
receiver—for a moment they are neither moving closer nor further apart. After position 3, Doppler
shift starts going negative, and the negative Doppler shift at position 4 matches the positive Doppler
shift at 1. Doppler shift will be maximum at both horizons, and zero at the point of closest approach.

Geometrically, Doppler shift is proportional to the ratio of the arctangent of the lengths of sides
x and d, as shown in figure 7.33. The relative velocity  from the source to listener in terms of the
source velocity u and the distance of the listener from the source’s path d can be expressed as

,

where x is the location of the source along its trajectory (with respect to the point of nearest
approach). Setting  in the Doppler shift equation for a moving source given in (7.23), we have

. Doppler Shift in Two Dimensions (7.26)

We can test (7.26) by setting the distance d to 0, so the source heads directly at the listener,
and we should get the same Doppler shift results as before. And, indeed, when d = 0,

no matter what x is, so that term drops out of (7.26), and we have just
(7.23) again. Figure 7.34 plots the Doppler shift that the listener will hear if a sound source pro-
ducing a pure tone at 440 Hz goes past at half the speed of sound. The curves show the listener at
1 m, 5 m, 50 m, and 100 m from the closest approach, and the curve is plotted for the span of 100 m
on either side of the listener’s position. The closer the listener gets to the path, the closer the
Doppler shift approaches the one-dimensional case; for instance, at 1 m the frequency is nearly
doubled on approach, then drops nearly a fifth (to 293 Hz) when departing.

Figure 7.34
Doppler shift curves.
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7.13 Room Acoustics

Suppose we pop a balloon in a concert hall and record the result. The sound the room makes in
response to this brief impulse of sound is its impulse response.

The first few sound paths from source S to receiver R are shown in figure 7.35. The direct signal D
travels the line-of-sight path from the sound source to the microphone, arriving at time tD. The next
few impulses, early reflections, arrive at the microphone after reflecting from nearby surfaces.
These include the first-order (one bounce) reflections labeled 1, 2, 3, and 4, and the second-order
(two-bounce) reflections labeled 5 and 6. Many other possible paths from source to receiver are
not shown. In addition to these paths, there are also reflections from the side walls, from the stairs,
and from the stage. Over time, there are so many reflection paths that the sound field in the room
ends up composed of plane waves distributed with uniform randomness in all directions.

Figure 7.36 shows an idealized impulse response of a hypothetical room. The original impulse
occurs at time t0. The direct signal arrives at the microphone at time tD. Depending upon the geom-
etry of the room, the early reflections may occupy the first 10 to 100 ms of the room’s reverberation

Figure 7.35
Direct sound path and early reflections in a concert hall.

Figure 7.36
Idealized impulse response of a hypothetical room.
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time. The time delay of each reflection is proportional to the time it takes the impulse to travel from
the sound source to the walls and then to the microphone. The amplitude of each reflection is
inversely proportional to the distance traveled, directly proportional to the size of the reflecting sur-
face, and inversely proportional to the material the surface is made of (among other factors).

The remaining reflections, late echoes or the reverberation tail, are the result of the combina-
toric explosion of multiple reflections over time. The sound energy in a good-sounding hall
declines approximately in an exponential curve after the source has stopped emitting sound. The
shape of the curve is influenced by the position, orientation, and characteristics of the sound source
and listener as well as their placement in the room. The notion that the room response can be
idealized into distinct sections does not necessarily bear out well in practice.

In addition to reflection, sound distribution is also influenced by spreading, absorption, refrac-
tion, and diffraction. Figure 7.37 shows the first half-second of the impulse response of a cathedral.
While some early reflections stand out, it is remarkable how quickly and uniformly the density of
reflections builds up. The room response shows a uniform, gradual buildup until about 180 ms,
then a gradual decline, providing a rich reverberant background. The long reverberation tail (not
shown) is audible for about 10 s after the impulse.

7.13.1 Musical Character of Rooms

Music of a particular style is generally designed for a characteristic listening environment and may
not sound good if reproduced in an uncharacteristic setting. For example, plainchant (a monopho-
nic vocal style of the Middle Ages in Europe that is made up mostly of long sustained tones and
slow tempos) was designed for highly reverberant cathedral spaces where sound lingers for 10 s
or longer. Highly intricate and rhythmically active polyphonic music of the Baroque era was
designed for halls with reverberation times of about 2–3 s. Plainchant in a Baroque concert hall
sounds thin and exposed, and when polyphonic Baroque music is performed in cathedrals, the
sound lingering from previous notes interferes with subsequent notes, making it difficult to follow
the intricate lines of the music. Architectural taste and musical taste go through cycles of fashion
and convenience. A late-romantic symphony by Gustav Mahler, with its focus on sonority, calls
for longer reverberation time; a string quartet from any era sounds best in a more modest room;
organ music usually calls for cathedral-length reverberation.

Figure 7.37
Impulse response of a cathedral (0.5 seconds).
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For speech, the primary objective is intelligibility rather than a graceful reverberation. Figure 7.38
shows the first half-second of the impulse response of a concrete tunnel with severe acoustical prob-
lems. Its evenly spaced early reflections at 10 ms intervals produce a flutter echo caused by the
parallel walls of the tunnel, which gives an unpleasant shuddering quality to the room response. At
100 ms, a slap-back echo from another section of the tunnel reaches the microphone. Since this is out-
side of the interval masked by the precedence effect (section 6.13.3), it is heard as a separate acous-
tical event, competing with the direct signal for audition and severely degrading intelligibility.

7.13.2 Reverberation Time

In the 1890s, Wallace Sabine (1868–1919) was presented by Harvard University with the challenge
of taming the bad acoustics of a lecture hall. The room was unusable because its reverberation time
was excessive, and it also had other problems similar to those shown in figure 7.38. His elegant
solution created the foundations of the field of architectural acoustics. Sabine (1921) described the
problem with his characteristic lucid prose:

In the lecture room of Harvard University, . . . a word spoken in an ordinary tone of voice was audible for five
and a half seconds afterwards. During this time even a very deliberate speaker would have uttered 12 or 15
succeeding syllables. Thus, the successive enunciations blended into a loud sound, through which and above
which it was necessary to hear and distinguish the orderly progression of the speech.

Sabine reasoned that two principal factors competed to determine the reverberation time of a
room: its boundary surface area and its internal volume.

■ Surface area. When sound is reflected from a surface, a great deal of its energy is lost. Some is con-
verted into heat in the wall, and some is transmitted through the wall to the outside. In either case, the
sound is absorbed because it is removed from the room (see section 7.10). Increasing the boundary sur-
face area reduces the reverberation time because then the sound has more opportunity to be absorbed.
■ Volume. The larger the volume of air in a hall, the less opportunity sound has to reflect off the
walls and be absorbed. In comparison to the walls, air itself absorbs relatively little energy when
transmitting sound (see table 7.2). Increasing the internal volume decreases the rate of sound dis-
sipation and therefore increases reverberation time.

Figure 7.38
Impulse response of a bad sounding room.
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From these considerations, we can see that reverberation time TR is proportional to the ratio of
volume to area:

.

Suppose we have a bare room with internal volume V, with hard walls that absorb very little sound
energy, and one wall contains an open window of area S. All sound that passes through the window
to the outside can be said to be absorbed by the window in the sense that it leaves and does not return.
The reverberation time TR is equal to the ratio of the volume V to the area S of the open window:

, (7.27)

related by a constant k. When V is in m3 and S is in m2, Sabine found that the constant k is 0.161 s/m
(see appendix A).

Absorption Not all surfaces absorb sound at the same rate. Rooms lined with carpeting and cur-
tains absorb sound much more readily than do bare walls of brick or concrete. 

Sabine modeled the absorption of particular surface materials by comparing them to the ideal
absorption of an open window of the same area. Since the open window absorbs all energy that
reaches it, he assigned it an absorption coefficient of α = 1. A surface material that absorbs half of
the incident sound energy has an absorption coefficient of α = 0.5. Two square meters of this mate-
rial would be needed to replace the absorption provided by a window of 1 square meter. From this
example, we see that in general, a surface of area S and absorption coefficient α has an absorption

(7.28)

that is equivalent to the absorption of an open window of area A.
Real rooms have a variety of surfaces with different materials. The average absorption  of all

surfaces is simply the sum of contributions from each surface that reflects sound in the room:

, (7.29)

where the Si are the individual surface areas, the αi are the corresponding absorption coefficients,
N is the number of surfaces, and S is the total boundary surface area of the room. Absorption is
sometimes expressed in units of metric sabine, the absorption of 1 square meter of open window,
named in honor of Wallace Sabine.

Combining volume, surface area and absorption, Sabine’s formula for reverberation time is

. (7.30)
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Air Absorption Though the effect is small in comparison to the absorption of surfaces, in a large
enough hall the absorption of sound by the air itself must be taken into account. The absorption
of air m depends upon temperature and relative humidity and is equal to about 0.012 at 20°C,
30 percent relative humidity. The absorption of air also depends upon the volume V of air the sound
must travel through. So we must add a term mV to the denominator of (7.30):

. Sabine’s Equation for Reverberation Time (7.31)

Frequency Response Most surface materials and the air itself tend to absorb high frequencies
more readily than low frequencies. Each time the sound strikes a wall, and the farther the sound
travels in air, some high-frequency energy is removed from the reflections, providing a low-pass
filter effect. The late reflections progressively darken the tone of the reverberation because each
reflection absorbs a little more of the remaining high-frequency energy. Our ears use this cue to
help us distinguish the sound source from the decaying reverberant sound field and to distinguish
newly arriving sound from lingering sound.

Low-frequency sound tends not to be reflected by the walls but passes through them to the out-
side. Each time the sound strikes a wall, some low-frequency energy is transmitted out of the hall
and lost, providing a high-pass filter effect. If too many bass frequencies are lost too quickly, the
hall reverberation sounds tinny. Wall material must be quite dense, such as stone or brick, to retard
the escape of the lowest frequencies.

7.13.3 Sound Quality of Halls

The combination of low-pass filtering of high frequencies and high-pass filtering of low frequen-
cies means that the reverberation tail contains mostly low-to-mid-range frequencies. The rate at
which frequencies in different ranges decay affects the quality of the hall’s reverberation. If
low-frequency energy lingers too long, the hall sounds “tubby.” If high-frequency energy lingers
too long, the hall lacks warmth. 

Many factors contribute to a good-sounding hall. Studies by Manfred Schroeder (1979) have
shown the importance of having sufficient sound reflected to the listeners from the side. Lateral
reflections with relative time delays in the range of 25–80 ms add a feeling of pleasant spaciousness.

Beranek (1962) listed 18 subjective attributes that affect the quality of a concert hall. A few of
these are intimacy, liveness, warmth, loud-enough direct sound, evenness of reverberant sound
throughout the hall, good clarity or definition (the direct signal and early reflections should not be
lost in the reverberation), ensemble (players should be able to hear one another easily), and suf-
ficient quiet. To this list can be added no strong echoes, no flutter echoes, no focusing of sound
by large concave surfaces, and no sound shadows underneath balconies.

In spite of a century of theory and experimentation, architectural acoustics is far from a science.
Major successes and catastrophic failures have been designed by architectural acousticians.
Sabine’s acoustic design for the Boston Symphony Hall made it one of the premier concert halls

TR = 0.161 V
mV + αiSi∑
--------------------------------⋅
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in the world. But it was admittedly a combination of good science and good luck. Beranek’s acoustic
design for Avery Fisher Hall, originally called Philharmonic Hall, in New York was an enormous
and costly failure in spite of his extensive research, which included direct measurements of the
world’s finest concert halls. (The failure was perhaps more a consequence of the fact that the archi-
tect failed to take his recommendations fully into account.) Whereas laboratory scientists generally
can suffer their failures in the privacy of their laboratories, not so acousticians, who succeed or fail
very publicly.9

7.14 Summary

Air is adiabatic, and as a consequence, sound travels through air in waves determined mostly by
the mass and elastic properties of air molecules. We derived the speed of sound from underlying
physical principles and considered types of waves and how sound radiates.

Waves interact in a medium additively through constructive and destructive interference. Sound
may be scattered or reflected depending upon the relation between the scale of the object the sound
encounters and the frequency content of the sound. Reflections complicate the job our ears have
to determine sound location. We can use reflection to determine distance and other properties in
an acoustical environment without having to do direct measurements. Reflection occurs at bound-
aries between media, with or without phase reversal, depending upon whether the sound enters a
denser medium. Sound can be transmitted more efficiently by matching the impedance of the two
media using transformers.

Sound is also subject to refraction at the boundary between media, depending upon the angle
of incidence. If the boundary is continuous, the sound undergoes gradient refraction. When sound
energy is transformed into another kind of energy, such as heat, we say the sound is absorbed. The
tendency of sound to spread out into sound shadows is called diffraction. Doppler effect is
the apparent change in frequency of a sound as a source and a receiver pass each other at relative
velocities.

Finally, we examined the acoustics of halls. Wallace Sabine showed that reverberation time
depends upon the ratio of its boundary surface area and its internal volume.
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8 Vibrating Systems

Philosophy is written in this grand book—I mean the universe—which stands continuously open to our gaze,
but which cannot be understood unless one first learns to comprehend the language and to interpret the
characters in which it is written. It is written in the language of mathematics, and its characters are triangles,
circles and other geometric figures, without which it is humanly impossible to understand a single word of
it; without these, one wanders about as in a dark labyrinth.
—Galileo Galilei, The Assayer

8.1 Simple Harmonic Motion Revisited

The basis for the production of music and sound lies in the principles of mechanical physics. The
physical laws of vibration are highly applicable to music, because they determine not only the sounds
instruments make but also how the basilar membrane vibrates in response (see section 6.2.4).

In section 1.2.2 I broached the subject of one-dimensional harmonic motion of a spring and
weight system. In chapter 5 I related it to circular motion. Now it’s time for a still deeper view.
Vibration arises from the interaction of an elastic force and inertia. We saw, for example, that these
determine the speed of sound (see section 7.4).

8.1.1 Elasticity

Elasticity is the property of a material that allows it to restore itself to its original shape after being
distorted (stretched, compressed, twisted). An elastic material is in equilibrium when all forces
applied to it sum to zero. If the sum of applied forces is zero and does not change through time,
it is in static equilibrium.

Suppose I fix one end of a helical spring to a stationary object such as a ceiling, with its other
end dangling freely. As I displace the free end away from or toward the fixed end, I distort the
spring’s shape. The internal elastic force that pushes or pulls against my hand, seeking to return
it to its original shape is its restoring force. 

8.1.2 Elasticity, Stiffness, and Hooke’s Law

Suppose I apply a force to two elastic materials until they are displaced the same amount. If the
force needed to achieve the same displacement of the two materials is different in each case, then
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one material is stiffer than the other. The stiffness of an elastic material is the ratio of applied force
to the resulting displacement. We can equate the force F required to achieve a displacement x by
inventing a mediating constant of proportionality k, which represents the strength of the counter-
force applied by the elastic material: 

.

The negative sign of k reminds us that the direction of the counterforce seeks to restore the spring
to its undeformed state. Solving for F yields

F = −kx. Hooke’s Law (8.1)

This equation1 relates stiffness, force, and displacement. Stiffness k is sometimes called the spring
constant. The reciprocal of stiffness is called compliance.

Hooke’s law is not a fundamental physical law like Newton’s laws of motion; it is simply an
observation about a common physical phenomenon related to the properties of elastic materials.
In particular, the constant k is not a fundamental constant of nature but a value determined exper-
imentally for each material, based on the molecular structure of the material.

8.1.3 Linear and Nonlinear Elasticity

Hooke’s law describes a linear relation between force, displacement, and spring constant because,
when plotted, the spring constant is a straight line with slope F/x = −k (figure 8.1a).

Simple harmonic motion is the term used to describe the vibration of instruments that are gov-
erned by linear elasticity because their partials are (for the most part) in harmonic relation, that is,
they are integer multiples of the fundamental. These instruments include violins, woodwinds,
brass, and tuned percussion instruments.

Figure 8.1
Linear and nonlinear elasticity.
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A great advantage and a great limitation of Hooke’s law is that it does not take into account the
extent of a material’s elasticity. No material is elastic over an infinite range. Although it may
respond in a relatively uniform way within a central range, beyond some point it requires much
greater force to be deformed further, and eventually many materials bend permanently or break if
forced too far. Beyond this central range, we can’t speak of a simple spring constant because the
force that must be applied to achieve greater displacement does not increase in a straight line: this
is a nonlinear relation. Beyond this central range, we must construct a curve describing the mate-
rial’s stiffness as a function of displacement: F/x = −K(x) (figure 8.1b). In this case, the amount of
restoring force is a nonlinear function of the amount of displacement. All physical materials are to
some degree nonlinearly elastic.

The advantage of Hooke’s law is that it sheds a great deal of light on the nature of harmonic vibrat-
ing systems, which account for a great deal of our acoustical environment. Harmonic systems are also
typically easier to understand, mathematically. But it is important to remember that if we study only
linear systems, we overlook some of the signature characteristics of musical instruments that result
from their nonlinear elasticity, and we won’t be able to make sense of highly nonlinear vibrating sys-
tems at all. That being said, let’s take the easier path and study linear systems first.

8.2 Frequency of Vibrating Systems

Notice that Hooke’s law in (8.1) does not include mass but deals only with the elastic properties
of objects. Suppose I have a tethered lightweight spring with spring constant k, and I suspend a
mass m from its free end. I let the spring stretch to its point of static equilibrium. After it comes
to rest, I then displace the spring a distance r by pulling down on it. (I pull it only a small distance
so that it remains in its relatively linear elastic range.) Moving it by distance r required me to supply
a force F = kr to overcome the spring’s stiffness, and the spring now exerts a restoring force of −kr.

If I release the mass, it will begin to rise, seeking the spring’s point of equilibrium. By Newton’s
laws of motion, acceleration of the mass is proportional to F/m, so the acceleration will be

. (8.2)

We now have two equations for acceleration: (8.2) for linear acceleration of a mass on a spring
and (5.12) for centripetal acceleration. These can be viewed as equivalent motions (see section 5.1).
Therefore we can also equate their accelerations. Doing so, we have

.

Note that we have introduced velocity v into the equation. Solving for v yields

(8.3)

a = kr
m
-----

v
2

r
---- = kr

m
-----

v = kr2

m
------- = r k

m
----
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Now, we have two equations for the velocity of vibrating systems: (8.3) and (5.9). Equating
them, we have

.

Note that we have introduced periodic time T into the equation. Solving for T yields

.

Recalling that frequency f = 1/T, we can write

. Vibrating Frequency (8.4)

Equation (8.4) relates the frequency of a vibrating spring/mass system to its linear spring constant k
and its mass m. The equation predicts that the frequency of a vibrating system will double if the
spring constant quadruples, and will halve if the mass quadruples.

For a practical example, consider the spring and weight system shown in figures 1.4 and 8.7. To
determine its frequency of vibration, we must determine its spring constant, and the amount of
mass. We can determine the spring constant by measuring the degree of stretch induced by gravity.
Suppose the spring stretches by 0.025 m when loaded with 1 kg. At this point, the elastic force bal-
ances the force of gravity, which means kl = mg. Solving for k and substituting m = 1 and l = 0.025,
we have

 N/m.

With a mass of 1 kg the vibrational frequency would be

 Hz.

Doubling the mass to 2 kg drops the frequency to 87.9 Hz.
The method of tuning stringed instruments consists of changing the tension of the strings by

stretching them around tuning pegs (rather than adjusting their mass). An increase of tension on
the string lowers its elasticity, thereby increasing its vibrating frequency. Since there are practical
limits to the elasticity of all materials, it is necessary to trade off mass against elasticity in order
to achieve a desired frequency. This is why instrument makers use smaller-diameter strings for
higher pitch, because they carry less mass per unit distance.

v = 2πr
T

--------- = r k
m
----

2πr
T

--------- = r k
m
----

2π
T

------ = k
m
----

1
T
--- = 1

2π
------ k

m
----

f = 1
2π
------ k

m
----

k = mg
l

------- = 1 . 9.8
0.025
--------------- = 392

f = 1
2π
------ k

m
---- = 1

2 . 3.14
------------------ 392

1
--------- = 124.4
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8.2.1 Radian Frequency and Angular Velocity

We can simplify (8.4) by multiplying both sides by 2π:

. Angular Frequency (8.5)

What does ω signify here? Since ω contains f, it still represents frequency, but by letting ω also
include the term 2π, we get a frequency parameter that only involves k and m.

Think of ω as frequency expressed in units of 2π radians. Thus integer values of f measure whole
periods of a circular or sinusoidal motion. Parameter ω is called angular velocity or radian frequency,
depending on the circumstances, and f is just frequency. For example, if a wheel rotates once per sec-
ond, it passes through 2π radians each second; therefore its frequency f = 1 Hz and its angular velocity
ω = 2πf = 2π rad/s. If a spring/mass system vibrates in harmonic motion once per second, f = 1 and
radian frequency ω = 2πf = 2π. The term angular velocity is usually used for circular systems, and
the term radian frequency is usually used for vibrating systems, but they amount to the same thing.

8.3 Some Simple Vibrating Systems

A simple spring/mass system vibrates in one dimension with one degree of freedom. Below are
some other examples of simple vibrating systems. For simplicity, none of these examples takes
friction into account.

8.3.1 Pendulum

A simple pendulum (figure 8.2), consisting of a mass m attached to a string of length l, vibrates
with circular harmonic motion so long as the displacement x � l.2 If the mass of the string is much
less than m, the frequency of vibration will be

, Pendulum Frequency (8.6)

Figure 8.2
Pendulum.

ω = 2πf = k
m
----

f = 1
2π
------ g

l
---

l

x
m

loy79076_ch08.fm  Page 243  Wednesday, April 26, 2006  3:25 PM



244 Chapter 8

or, expressed in radian frequency, . Notice that mass does not appear in this equation. The
frequency of a pendulum is strictly a function of length l and gravitational force g.

8.3.2 Piston

Air captured inside a cylindrical tube by a piston of mass m will tend to vibrate at a frequency deter-
mined by the mass and the elasticity (otherwise known as compressibility or compliance) of the
air (figure 8.3). The compressibility of the air depends upon a number of factors, including the
cross-sectional area of the cylinder A, the length of the air column l, the pressure of the gas P, and
the heat capacity ratio γ of the gas, which has a value of about 1.4 for air (see section 7.4.2). The
spring constant of air is k = γPA/l, and the frequency is

. Piston Frequency (8.7)

Perhaps it is not surprising that frequency should be proportional to inherent molecular elasticity
and gas pressure, but the A and l terms may seem a little counterintuitive at first glance. Why does
frequency go up as the area increases?

To see this, imagine that we replace the air with many very slender springs going from the piston
to the bottom of the cylinder. If we increase the length l of the air column, it’s as though we add
more springs end to end in series (figure 8.4b). Many springs in series are more elastic than one
spring by itself. Thus, increasing the length is like adding more springs in series: the compliance
goes up, so the frequency goes down.

If we increase the area A of the piston, it’s as though we add more springs side by side in parallel
(figure 8.4c). Many springs in parallel are stiffer than one spring by itself. Thus, increasing the area
is like adding more springs in parallel: the compliance goes down, so the frequency goes up.

8.3.3 Helmholtz Resonator

If air is blown across the mouth of a bottle, the air stream contains many frequencies, but the bottle
steals energy (mainly) from just one frequency supplied in the air stream and converts it into simple

Figure 8.3
Piston.
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harmonic motion, which is heard as a breathy tone. Resonance is the tendency of a system to steal
energy from, and vibrate sympathetically at, a particular frequency in response to energy supplied
at that frequency.

The bottle acts as a Helmholtz resonator,3 which is a variation on the piston. The air captured
in the neck of the bottle constitutes the mass, and the air in the chamber of the bottle constitutes
the spring. The frequency of vibration depends upon the compliance of the air in the chamber and
the mass of the air in the neck (figure 8.5).

The resonant frequency is approximately

, Helmholtz Resonator (8.8)

where c is speed of sound, A is the cross-sectional area of the neck, v is bottle volume, and l is the
length of the neck. I say “approximately” because the effective length of the neck must be increased
a little (an end correction) to account for how the air in the tube “recruits” nearby molecules outside
the bottle to increase the mass of the air plug. Some end correction must be applied to wind

Figure 8.4
Springs in series and parallel.

Figure 8.5
Helmholtz resonator.
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instruments to properly calculate their resonant frequency. Unfortunately, the choice of the end
correction scaling term can be rather complicated because the amount of correction required varies
depending upon the geometry and proportions of the flange (Benade and Murday 1967; Dalmont,
Nederveen, and Joly 2001).

For example, I took a standard Cabernet 750 ml wine bottle with average neck diameter of
19 mm and neck length of 8 cm, drank its contents,4 then calculated (with somewhat greater dif-
ficulty than usual) as follows:

c = 331.6 m/s.

A = πr2 = π  m2.

V = 7.5−4 m3.

Using an end correction of 1.5 times the radius of the neck’s opening yielded

l = 0.08 + 1.5 ⋅  m,

for which (8.8) gives a resonant frequency of 105.7 Hz. Experimentally, the resonant frequency was
closer to 110 Hz, two octaves below A440, indicating that the end correction of 1.5 was slightly off.

It is perhaps counterintuitive that the frequency of a Helmholtz resonator rises as the area A
grows, but the reason is the same as for the piston.

The ducted port loudspeaker enclosure design shown in figure 8.6a is a practical example of
a Helmholtz resonator. The port consists of an opening in the side of the loudspeaker enclosure.

Figure 8.6
Ducted port loudspeaker enclosure.
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The duct is a tube inserted into the port, which performs the same function as the tube at the top
of a Helmholtz resonator. The loudspeaker enclosure is a cavity that acts like the volume of a
Helmholtz resonator.

Ideally, loudspeakers are supposed to be colorless reproducers of other sounds, but since they
are themselves essentially a spring/mass system, they have a natural vibrating frequency of their
own. Loudspeakers therefore tend to exaggerate the strength of signals that are near their natural
vibrating frequency. For high-fidelity speakers, the natural vibrating frequency is often below
100 Hz, resulting in an objectionable “boomy” coloration to bass notes, shown as the peak in
the magnitude spectrum plot (figure 8.6b). The purpose of the ducted port enclosure is to com-
pensate for the natural vibrating frequency of the loudspeaker, to even out its response to low
frequencies.

The size of the enclosure and the size of the duct are designed so that the air inside the enclosure
vibrates at the same frequency as the loudspeaker. When the loudspeaker is sounding at its natural
frequency, it causes the air in the enclosure to resonate (figure 8.6c). But, as mentioned, a resonator
steals energy at its resonant frequency, thereby bleeding away the excess and providing the loud-
speaker system with relatively colorless reproduction at low frequencies (figure 8.6d). Precisely
how this stealing of energy takes place is discussed in volume 2, chapter 6.

8.4 The Harmonic Oscillator

The vibrating systems shown in previous sections all arise from the interaction of an elastic force
and an inertial force. The elasticity provides a restoring force while the inertia causes the restoring
force to overshoot its equilibrium point, thereby extending the vibration. Such systems are called
harmonic oscillators.

To understand mathematically how vibration arises, let’s return to the simplest harmonic
oscillator consisting of a mass attached to the end of a lightweight spring, suspended from a
crossbar (figure 8.7). We can characterize the vibration by analyzing the forces at work on the
harmonic oscillator through time. We combine Hooke’s law, which characterizes the spring’s
restoring force, with Newton’s second law of motion, which characterizes the mass’s inertial
force, and observe how these forces interact to cause a sinusoidal displacement of the mass
through time.

Figure 8.7
Simple spring/mass system.
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For a continued discussion of resonance, skip to section 8.9. However, that treatment depends
upon the intervening material.

8.4.1 Hooke vs. Newton

When discussing equation (8.1), Hooke’s law of linear elasticity, I talked about the static force F
required to achieve a spring displacement x if the spring has stiffness k. But now we want to exam-
ine how the spring force would change if we varied the spring displacement through time, so let’s
consider x as a function of time, x(t). Therefore, we want to study the force

Fk = −k ⋅ x(t), (8.9)

where Fk is the force required to overcome to the spring’s stiffness to achieve a displacement x at
time t.

By Newton’s second law of motion we know that the force required to set a mass in motion is
proportional to the mass m times its acceleration a. But here again we want to examine how such
a force would change if we varied the mass’s acceleration through time. So if we consider a as a
function of time, a(t), then we want to study the force

Fm = m ⋅ a(t), (8.10)

where Fm is the force required to overcome the mass’s inertia m to achieve an acceleration a at
time t.

If we apply no external force to a dangling spring/mass system, it will eventually come to rest
with the spring displaced downward slightly by the force of gravity on the mass. Where it comes
to rest is its point of static equilibrium. A system is in equilibrium when the sum of the forces
operating on it is zero. At the static equilibrium point, the force of gravity is exactly opposed
by the spring’s restoring force. The mass is at rest relative to the spring.

In what follows it will be convenient to eliminate the effects of gravity and friction, which we
can do by imagining the spring/mass system vibrating in outer space.5 Because there is no gravity
nearby, we must use a bipolar spring—that is, a spring that provides both a pull when stretched and
a push when compressed. Imagine one end of this spring attached to the mass and the other end
attached to a very massive object, such as a space station. Let’s suppose that the mass is at rest rel-
ative to the spring and exerts no force (Fm = 0) and the spring exerts no counterforce (Fk = 0). Then
Fm = Fk because both are zero. This system is in static equilibrium because the sum of the forces
equals zero.

But we can show that Fm = Fk even if the mass is vibrating, that is, if the system exhibits dynamic
equilibrium. A dynamical system is one whose state depends upon its previous state (in addition
to any other forces acting upon it). For example, suppose I pull down on the weight, stretching the
spring an initial displacement x. The restoring force of the spring tugs on the mass with a force
proportional to its displacement. In the first infinitesimal moment after I release it, the restoring
force attempts to accelerate the mass upward, but the inertia of the mass reacts with a counterforce
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proportional to its mass. The tendency of a mass to resist change in velocity is its inertial reactance.
If there were no inertial reactance, the spring would just snap back to its equilibrium point. But
instead, during this first infinitesimal moment after release, the elastic force and the inertial reac-
tance still balance, and Fm = Fk. 

As the inertial reactance gives way, the mass accelerates toward the static equilibrium point. But
as it does so, the force applied by the spring diminishes, since there is now less displacement, and
the spring tugs on the mass with proportionately less force.

When the mass reaches the static equilibrium point, the restoring force of the spring vanishes.
Since this means the restoring force is no longer accelerating the mass, the inertial reactance of the
mass also vanishes at this point. Thus here as well, Fm = Fk. However, though the mass stops accel-
erating, its momentum continues to carry it upward, past the static equilibrium point. Now the
restoring force begins to oppose the upward movement, causing the mass to decelerate by a pro-
portional amount, and Fm = Fk here as well. 

In summary, the restoring force Fk grows with increasing displacement from the equilibrium
point. The farther the spring is from equilibrium, the more strenuous is the force it applies to the
mass in order to return to equilibrium; but because the mass’s inertial reactance opposes it, the two
forces always balance and are in dynamic equilibrium at all times and in all positions.

8.4.2 Equation of Vibratory Motion

Starting with Fm = Fk and substituting appropriate terms from (8.9) and (8.10) produces
m ⋅ a(t) = −k ⋅ x(t). Expressing this as a dynamic equilibrium yields

m ⋅ a(t) + k ⋅ x(t) = 0, Equation of Motion (8.11)

where m is mass, a(t) is acceleration at time t, k is the spring constant, and x(t) is displacement of
the mass at time t. Recall that equilibrium means that the sum of applied forces equals zero.

Notwithstanding this intuitive presentation, it would be good to understand how (8.11) can
cause an oscillatory vibration because it’s not immediately obvious just from looking at it. What
we are trying to discover is how displacement x changes as t varies, that is, we want to find an alge-
braic expression for x(t). Intuition suggests that (8.11) should describe a sinusoidal motion. Actu-
ally, to be more precise, it should describe every possible sinusoidal motion, because even such
a simple spring/weight system is theoretically capable of creating an infinite variety sinusoidal
motions with different initial phases, amplitudes, and frequencies. They should all be embodied
in (8.11). That all possible sinusoidal motions are indeed embodied in (8.11) is the subject of
volume 2, chapter 6.

8.5 Modes of Vibration

The degrees of freedom of a vibrating system are determined by how many independent motions
the system can make. There are two kinds of motions: translational, which is backward/forward,
left/right, and up/down, and rotational, which involves pitch, yaw, and roll.6
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A subway has one translational degree of freedom (backward/forward), a car has two (adding
left/right), an airplane, three (adding up/down). Adding the rotational motions, an airplane has six
degrees of freedom (all three translational and all three rotational motions).

All the vibrating systems described in previous sections have only one degree of freedom. The
system shown in figure 8.8, having two weights coupled with springs, has two degrees of freedom.
The system in figure 8.8a is just a variation on the simple system in figure 8.7 and exhibits similar
harmonic motion. If the total of the mass and spring stiffness of the 8.8a system is the same as that
of the 8.7 system, both will vibrate at the same frequency. But even if the mass and spring stiffness
of the systems in figures 8.8b and 8.8a are the same, the vibrating frequency of the 8.8b system
will be higher because the restoring force from the springs is three times greater. Thus, if the radian
frequency for the 8.8a system is , the radian frequency for the 8.8b system is

. This method of analysis of vibration was introduced about 1727 by Johann
Bernoulli (1667–1748).

These independent vibrational modes are sometimes called normal modes or natural modes. For
each mode, each element of the vibrating system reaches its position of maximum displacement
from equilibrium at the same moment. Though the vibrating modes of the 8.8a and 8.8b systems
are virtually independent, it is difficult to get a system to vibrate in just one or the other mode with-
out very carefully positioning the balls before releasing them. Ordinarily, the vibration will be a
combination of the two modes.

The system shown in figure 8.8 has only two normal modes because it has only two degrees
of freedom. A system with N degrees of freedom will have N normal modes. We could add more
weights and springs in order to study systems with N degrees of freedom and therefore N modes.
Or, we could just increase the number of dimensions of the system from one to two by allowing
transverse vibration. The vibrating system in figure 8.9 has four degrees of freedom—the two
for the figure 8.8 system plus two more—because now each ball can move in two directions. In
general, if the number of masses in a vibrating system is a, and they can each move in b direc-
tions, then the number of degrees of freedom N = ab.

Each normal mode has its own characteristic frequency made up of some combination of
the average contributions of all the masses in the system and the average contributions of the

Figure 8.8
System with two degrees of freedom.

a) b)

ω1 = k m⁄
ω2 = 3k m⁄
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stiffness in the springs. The resulting motion of the entire system can be characterized as a
superposition of all the separate vibrational modes. Figure 8.10 shows the superposition of the
normal modes of the systems in figures 8.8a and 8.9b. Since the modes are virtually indepen-
dent, and each has its own vibrational frequency, the spectrum of frequencies of the entire sys-
tem is the linear combination (the sum, or mixture) of each mode. If sound radiates from such
a vibrating system, we hear the sum total of all frequencies of each of the vibrating modes.
The strengths of these frequencies is proportional to the amount of energy in each mode,
separately.

8.6 A Taxonomy of Vibrating Systems

There are many classification systems of musical instruments, such as the traditional categories
of brass, strings, woodwinds, and percussion. Another classification system organizes them as
idiophones (chimes, cymbals, xylophone, vibraphone, marimba, gongs), membranophones
(drums), aerophones (flutes, oboes, clarinets, trumpets, tubas, whistles, sirens), and chordo-
phones (violin, piano, guitar, harpsichord). If we group instruments by the similarity of
the fundamental equations governing their vibration, we obtain the simple taxonomy shown in
table 8.1.

Tension is the primary restoring force for strings and membranes, and frequency is proportional
to tension. Stiffness is the restoring force for bars, air columns, and plates, and frequency is pro-
portional to stiffness.

There are many subgenres for these examples. Bars can be free at both ends or free at only
one end. Plates can be clamped at the edge, supported at the edge, supported at the center, or
totally free.

Figure 8.9
Transverse and longitudinal vibration.

Figure 8.10
Superposition of normal modes.
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Bars, plates, and strings can vibrate unhindered or slap against a surface. The saxophone reed
is a bar fixed at one end, which slaps against a mouthpiece. Sitar strings slap against a sloping
plate attached to the bridge in order to create the characteristic “sizzle” sound. The bottom
membrane of a snare drum slaps against an array of coiled wires laid across it to lend it a char-
acteristic “crunch” sound. In all cases, the resulting spectrum contains much more energy
in higher partials because of the discontinuity in simple harmonic motion that the slap
introduces.

Traditional musical instruments are made from collections of these elements. For example, the
essential elements of a saxophone are a bar and an air column; the essential elements of a piano
are strings and a plate (the sounding board).

All taxonomies are necessarily reductionist; this one is, too. For example, the strings of a violin
actually vibrate in at least four dimensions: up/down, front/back, longitudinal (end to end), and tor-
sional (twisting) vibration. These motions of the strings all affect each other. Also, an important
distinction between instruments is whether they are continuously driven (e.g., violins, voice,
woodwinds, brass) or impulsively driven (e.g., piano, harpsichord, guitar, percussion). The advan-
tage of this taxonomy is simply that it allows us to group similar instruments together by the basic
physical equations that govern their vibration.

8.7 One-Dimensional Vibrating Systems

According to the taxonomy of instruments in table 8.1, the vibration formulas for stringed instru-
ments and bar percussion instruments are closely related. This seems counterintuitive. If they are
related mathematically, why do they sound so different? For example, few would mistake the
sound of a xylophone for that of a piano, even though the piano’s strings are also struck. The piano
and other stringed instruments made from long thin wires have largely harmonic spectra, whereas
percussion instruments generally have inharmonic spectra.

If the formulas for their vibration are to mean anything, they must account for the vast difference
in timbre. The aim of this section is to demonstrate the underlying symmetry of one-dimensional
vibrating systems.

Table 8.1
Simple Taxonomy of Musical Instruments

Dimension
Restoring 
Force

Vibrating
Element Taxonomy

1-D Tension

Stiffness

Strings

Bars

Air columns (brass, woodwinds, flutes)

Chordophones

1-D idiophones

Aerophones

2-D Tension

Stiffness

Membranes (drums)

Plates (gongs, cymbals)

Membranophones 

2-D idiophones
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8.7.1 Strings

Stringed instruments can be classified by

■ How they are sounded:

Bowed: the violin family

Plucked: guitar, mandolin, harp, harpsichord

Struck: piano, hammered dulcimer
■ How they select pitch:

Unstopped strings: harp, piano, harpsichord

Stopped fretted: guitar, mandolin, lute

Stopped unfretted: violin family
■ Whether their sound can be continuously produced:

Continuously driven: all bowed strings

Impulsively driven: all plucked and struck strings

The piano and harpsichord provide an array of strings tuned to consecutive scale degrees, and music
is played by selecting the appropriate string. The guitar, lute, violin, and mandolin have a smaller array
of strings tuned to nonconsecutive scale degrees, and they provide a fingerboard underneath the strings
so the player can sound the pitches in between adjacent strings by stopping off different lengths. 

The fingerboard on the violin family (violin, viola, cello, and bass viol) is a smooth surface so
that any pitch in the continuous pitch space covered by the string may be selected. Guitar, lute,
banjo, and mandolin have frets—transverse bars across the fingerboard under the strings—so that
when stopped by the finger, the length of the stopped string is determined by the fret. Frets provide
an improved ability to stop multiple strings with correct intonation.

Continuous pitches may be produced by sliding the finger along the string of a violin, an effect
called glissando. Sliding the finger along the string of a fretted instrument produces a series of dis-
crete pitches, an effect called portamento.

Strings are stretched between rigid supports with a means of adjusting their tension. In virtually
every stringed instrument, energy is injected into the string transversely—perpendicular to the
string—and transverse motion carries the majority of the energy. Because strings are typically of
very low mass and do not displace much air, they are almost always coupled to the air through a
sounding board, such as the wooden back of a piano or the body of a violin, mandolin, or guitar.
The sounding board allows the energy in the string to be transmitted efficiently into the surround-
ing air by matching the impedance of the string to the air. Without the sounding board, we would
hear very little from a stringed instrument. For example, a strummed unamplified electric guitar
is virtually inaudible a few feet away, whereas the sound from an acoustic guitar can fill an audi-
torium.7 The difference is that the acoustic guitar matches string impedance to air, and the electric
guitar does not (see volume 2, chapter 8).
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Bowed instruments produce a continuous tone by replacing energy in the string as it is dissipated.
A skilled player can sustain continuity by instantaneously reversing the direction of the bow when
the end is reached. Players of impulsively driven instruments, such as the mandolin, can create the
illusion of a sustained tone by rapidly replucking the string, an effect called tremolo. Bowed instru-
ments can also be plucked, an effect called pizzicato.

Unless they are being played with tremolo, all impulsively driven stringed instruments decay gradu-
ally to silence from note onset. The rate at which they decay to silence varies enormously. The efficiency
with which an instrument radiates energy determines its rate of decay (see section 4.19.2). The banjo is
perhaps the most efficient stringed instrument, radiating away all its energy in a few seconds. At the other
extreme, the bottom notes of a piano can sustain for several minutes (with the damper pedal down).

In the following subsections I present the vibration of ideal strings that are perfectly flexible, have
constant mass per unit length, and are connected to massive, nonyielding supports. At first, I will
ignore the effects of dissipation on the vibration of strings. However, all stringed instruments
depend upon dissipation to carry sound energy into their surroundings where it can be heard. Ten-
sion, not stiffness, is the restoring force of the ideal string. Of course, all real strings have some stiff-
ness, and stiffness is the hidden link that relates stringed instruments to bar percussion instruments.

String Modes Strings can be usefully studied as many tiny spring/mass systems concatenated
together, similar to those shown in figure 8.9. Since the number of possible vibrating modes is
large, for simplicity we consider just the first five modes available when the number of degrees
of freedom N = 5 (figure 8.11a). Figure 8.11b shows the corresponding first five modes of the infi-
nite number of degrees of freedom of an ideal string (N = ∞).

For each mode, the points where the string crosses the equilibrium are called zero-crossings,
points of inflection, or nodes of that mode. Since the strings are fixed at the ends, the ends are nodes
as well. Nodes are pivot points around which the string vibrates. For each mode, the points where
the string is farthest from equilibrium are called maxima, points of maximum excursion, or antinodes
of that mode.

Figure 8.11
Modes of transverse vibration.
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Standing Waves and Traveling Waves In an ordinary medium such as air, sound propagates
as traveling waves. But the rigid boundaries at the edges of a string cause most energy to be
reflected back into the string, and prevent it from radiating away (see section 7.8.4).

The shapes of the modes shown in figure 8.11b are called standing waves because the shape of
the string remains the same at all moments and only its amplitude changes. (More precisely, the
height of the wave is scaled through time in the direction perpendicular to its length.)

The behavior of a standing wave can best be described as the sum of two waves traveling in
opposite directions. Imagine two waves, y1 and y2, moving through each other from opposite direc-
tions along a string. Their combined displacement, y = y1 + y2, creates a standing wave.

To demonstrate this requires some trigonometry. Let the traveling wave moving to the right be
represented as the sinusoid y1(x, t) = Asin(kx + ωt) and the one traveling to the left as y2(x, t) =
A sin(kx − ωt), where t is time, ω is radian frequency, x is displacement of the wave from its
origin along the direction of travel, k is the rate at which the displacement grows, and A is
amplitude.

To see how this represents a traveling wave, we reason as follows. If we set k equal to zero, then
Asin(kx + ωt) reduces to Asin ωt, which plots an ordinary sine wave with a zero-crossing at the ori-
gin. But if k is nonzero, then as x grows (because the wave is traveling), the zero-crossing at the
origin moves away from the origin with velocity k.

Now let’s return to the standing wave on a string. To see how two oppositely moving traveling
waves combine into one standing wave, consider the following trigonometric identities (see
volume 2, appendix):

sin(a + b) = sin(a)cos(b) + cos(a)sin(b)

sin(a − b) = sin(a)cos(b) − cos(a)sin(b).

Suppose we let a = kx and b = ωt; then we can represent the two sinusoids as follows:

y1 = sin(a)cos(b) + cos(a)sin(b)

y2 = sin(a)cos(b) − cos(a)sin(b).

Summing the two sinusoids, we have

y = y1 + y2 = 2Asin(a)cos(b)
(8.12)

= 2Asin(kx)cos(ωt).

Equation (8.12) shows the product of two sinusoids. Its plot is a standing wave that is
the point-by-point sum of the two signals, y1 and y2, as they pass through each other. Figure 8.12
shows string mode 4 at several phases and the location of the nodes and antinodes of the string.

Mode Wavelengths Consider the wavelength of the first mode, the fundamental (figure 8.11b).
Since this mode outlines half of a sine wave, if the string length is L, then one full period of its
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wavelength λ1 = 2L. One full period of mode 2 fits exactly in length L, so we can write λ2 = L. And,
in general, we can write

, Mode Length (8.13)

where n = 1, 2, 3, . . . .

Mode Frequencies For an ideal string, the velocity of a transverse wave is the same for all
modes because the stiffness doesn’t increase with the mode number. (This is not true for real
strings.) If the velocity of transverse waves on an ideal string is vt, then we can express the relation
between frequency f, wavelength λ, and velocity vt as λ = vt/f, or f = vt/λ. Using the definition for λn

from (8.13), we can express the frequency of mode n as 

. (8.14)

Because the ideal string has no stiffness, vt depends only on the string’s mass per unit length m
and its tension T, so that

. 

In a string, tension T takes the role of elasticity in a harmonic oscillator. Putting it all together, we
can express the frequency of string mode n as

, String Mode Frequency (8.15)

where n = 1, 2, 3, . . . .8

8.7.2 Longitudinal Bars

In the preceding section, we considered the case of the ideal string, which contains tension but
no stiffness. The bar vibrating longitudinally, by stretching and shrinking its length, is the other

Figure 8.12
String mode 4 as a standing wave.
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limiting case because it is under no tension; its restoring force is entirely due to its stiffness. Its
vibrating frequency equation is very similar to that of the string. The frequency f of mode n is

, Longitudinal Bar (8.16)

where Y is Young’s modulus of elasticity, ρ is the mass density of the material, L is the length of
the bar, and n = 1, 2, 3, . . . .

According to (8.16) the modes of the longitudinal bar are in a harmonic frequency series, like
strings. The longitudinal vibration modes of a bar are usually very much higher in frequency than
the corresponding transverse vibration modes of the same bar. Historically, longitudinally vibrat-
ing bars have been used as tuning forks for frequencies above 5000 Hz, where the traditional tuning
fork design is no longer satisfactory. Some modern instruments use this vibration mode, for
instance, by stroking a steel rod with a rosin-coated cloth to excite longitudinal vibration modes.

Figure 8.13 shows the direction and magnitude of movement of the first three modes of a
longitudinal bar.

Young’s Modulus The forces needed to stretch a solid object depend upon the following factors
(figure 8.14):

■ Amount of stretch For two identical rods (figure 8.14a), proportionately more force is required
to stretch one rod further than the other.

Figure 8.13
Modes of a longitudinal bar. (Adapted from Olson 1952.)
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■ Cross-sectional area For rods of identical material and length but different cross-section, the
amount of force required to stretch the thicker rod will be proportionately greater (figure 8.14b).
■ Length of rod For rods of identical material and cross-section but different length, the amount of
force required to stretch the shorter rod will be proportionately greater (figure 8.14c).

These observations can be combined as follows:

, (8.17)

where L0 is the original length of the object, ∆L is the increase in length, A is the cross-sectional
area, and Y is a constant of proportionality called Young’s modulus.9 Young’s modulus is the ratio
of stress to strain of a material. Its value depends upon the nature of the material. Solving for Y
in terms of the units involved shows it is measured in pascals (force per unit area, N/m2). 

Note that equation (8.17) is valid only if the amount of stretching is relatively small compared
to the original length of the object because it only applies to linear elasticity (see section 8.1.3).

Table 8.2 is a short list of Young’s modulus for various materials. Young’s modulus varies a great
deal from one sample to the next, depending on the purity of the sample and its manufacturing process.

8.7.3 Transverse Bars

Transverse vibration can occur where a bar is clamped at one end or is free at both ends. Bars free
at both ends are used in instruments such as the xylophone, marimba, vibraphone, glockenspiel,

Figure 8.14
Stretching solid rods.
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× 1010

× 1010

× 1010

× 1010
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110
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× 1010

× 1010

× 1010
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and celeste. Bars fixed at one end, also called cantilever beams, are the key vibrating elements in
the harmonium, accordion, jaw harp, and some organ reed stops. 

The vibrating frequency of a longitudinal bar depends upon its length, density, and elasticity, but
in transverse vibration frequency also depends on the thickness and cross-sectional shape of
the bar because this has a direct effect on the transverse flexibility of the bar. Additionally, trans-
verse bars can twist, creating torsional modes. 

Cantilever Beam To study vibration of transverse bars, suppose we take a springy steel wire
with relatively little mass, and stick its base into a rigid surface, then attach a mass to the free end
(figure 8.15a). When pulled to the side and released, a coherent vibrating movement occurs over
the entire length of the spring; hence this is mode 1 vibration, which produces the fundamental fre-
quency. Given a stiffness k and mass m, equation (8.4) determines the vibrating frequency.

Now attach half of the mass at the end and half in the middle of the spring (so that, overall, the
mass is the same). Some energy will vibrate mode 1 (figure 8.15b), but some will vibrate mode 2
(figure 8.15c). Because mode 2 flexes the spring much more than mode 1, the spring constant k
for mode 2 is higher, making the vibrating frequency of mode 2 a noninteger multiple of the fre-
quency of mode 1, producing a nonharmonic partial. Mode 2 vibration can be about six times
higher in frequency than mode 1, corresponding to an increase in the spring constant by a factor
of about 18 (since mass is the same overall).

Now we distribute the mass in thirds (figure 8.15d), allowing us to energize mode 3. The amount
of flexing that the spring undergoes for mode 3 vibration is even greater, so the spring constant k
for mode 3 is even larger. Mode 3’s frequency is approximately 18 times higher than mode 1’s,
corresponding to an increase in k by a factor of about 186.

For every additional mass added to the wire, we more closely approximate an actual bar. Olson
(1952) gives the equation for the fundamental frequency of a cantilever beam as

, Cantilever Beam (8.18)

Figure 8.15
Modes of a tuning fork.
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where L is the length of the bar in meters, ρ is its mass density in g/cm3, Y is Young’s modulus,
and K is the radius of gyration.

For a bar of rectangular cross-section, Olson gives the radius of gyration as K = a/ , where
a is the thickness of the bar in the direction of vibration. (Width doesn’t matter because we are not
considering vibration across the thick side of the rectangle.) For circular cross-section, Olson gives
K = a/2, where a is the radius of the bar. If the cross-section is hollow, Olson gives

,

where ao is the outside radius of the pipe and ai is the inside radius. He then gives partial frequencies
(table 8.3).

For example, suppose we have a bar 0.5 m long, rectangular in cross-section, made from alumi-
num that is 10 mm thick. Young’s modulus Y ≈ 74 × 109 Pa for aluminum,10 the mass density
ρ ≈ 2.7 × 103 kg/m3, thickness a = 0.01 m, length L = 0.5 m, and because the bar is rectangular,
K = 0.01/ . Plugging these values into (8.18) for n = 1, 2, 3, 4, 5 yields a fundamental and partials
shown in the last column of table 8.3.

Bar with Free Ends Rossing (1983) supplies the following function for a bar with free ends:

, Bar with Free Ends (8.19)

where K, L, Y, and ρ are the same as defined in (8.18). The parameter m needs a bit of explaining.
Rossing writes, “The frequencies of the modes are in proportion to the squares of the odd
integers—almost. The number m begins with 3.0112 and then continues with the simple values
5, 7, 9, . . . , (2n + 1).”

We can describe the values for m as follows:

for n = {1, 2, 3, . . . }.

For example, using the aluminum bar described in the subsection on cantilever beam and plugging
those values into (8.19) for n = 1, 2, 3, 4, 5 yields the frequencies shown in table 8.4.

Table 8.3
Modes and Frequencies of Fixed/Free Bar

Partial No. of Nodes Node Distance from Free End Partials
Example 
Frequency

1

2

3

4

0

1

2

3

0.2261

0.1321, 0.4999

0.0944, 0.3558, 0.6439

f1
6.267 f1
17.55 f1
34.39 f1

33.83

212.00

593.69

1163.36

12
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The ratios of the partials in tables 8.3 and 8.4 are strongly inharmonic. Nonetheless, bars such
as these are used for pitched instruments like glockenspiel, chimes, and orchestral bells. This is
possible because the higher partials die out quickly (during the initial clang tone), leaving the first
partial by itself as a relatively pure tone. Also, the inharmonic higher partials of some of these
instruments are well beyond the range of human hearing.

Making Transverse Bars Have More Harmonic Spectra The marimba, xylophone, and vibra-
phone are made from bars free at both ends, suspended over resonating tubes. The bars are thinned
in the middle so as to bring the first two partials into a harmonic relation. Here’s how it works. 

Thinning the middle of a bar has the effect of reducing the stiffness of just its mode 1 vibration.
(It also slightly decreases the mass of the bar, which slightly raises its pitch, but the decrease in
stiffness is the more important effect.) The result is that the frequency of the first mode is lowered
relative to the others, which are largely unchanged. Marimba bars are thinned enough so that the
relation f2/f1 goes from about 2.75/1 to 4/1. Xylophone bars are thinned less, so the ratio  f2/f1 = 3/1.
Thus, f2 is an octave and a fifth above f1. The 3/1 ratio accounts for the prominence of the sound
of a musical fifth in the xylophone’s timbre.

Each bar of the marimba, xylophone, and vibraphone is also equipped with a resonating tube
placed below it to amplify and draw out the fundamental pitch (at the expense of shortening the
bar’s vibration time because resonance steals energy from the bar at this frequency). The vibra-
phone also has an electric motor that rotates paddles within each tube. They look just like rotating
dampers in a stove pipe. The paddles cut off the energy supplying the resonator tubes, giving a
tremolo effect (periodic amplitude fluctuation plus a small periodic fluctuation in pitch) as they
rotate. The speed of rotation can be varied by a control on the motor, and the motor can also be
switched off. An interesting additional consequence of the flue arrangement on the vibraphone res-
onators is that tones last longer, on average, when the paddles rotate than when they are open: less
energy is radiated from the bars when the resonators are blocked. Therefore the energy lingers
longer on average in the bars when the paddles rotate.

8.7.4 Stiffness of Strings and Inharmonicity

We saw in the discussion of transverse bars that stiffness increases in higher modes, stretching the
upper partials of these instruments. The same is true for strings, especially thick strings that

Table 8.4
Bar Free at Both Ends

Partial Frequency  Ratio

1

2

3

4

5

215.25

593.48

1163.21

1922.86

2872.42

1.00

2.75

5.40

8.93

13.34
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increasingly resemble transverse bars the thicker they become. Let’s return to the discussion of
strings and consider the effects of stiffness on nonideal strings.

While the ideal string vibrates in a series of modes that are perfectly harmonic, actual strings have
some internal stiffness, so they are not perfectly elastic. Thus there are actually two restoring forces
in a string: tension and stiffness, and the vibrating frequency of each mode in a string is determined
by both. According to equation (8.15), tension affects all modes equally. However, stiffness provides
proportionally greater restoring force for the higher modes because the higher the mode, the more
the string is bent. Therefore higher-numbered modes undergo progressively greater amounts of stiff-
ness. And since frequency of a vibrating string is proportional to stiffness (and tension), an increase
in stiffness causes an increase in frequency. Thus the frequencies of the modes of a stiff string spread
out in frequency and are no longer exact multiples of the fundamental. The stiffer a string, the less
it acts like a string and the more it acts like a bar, according to the taxonomy in table 8.1. 

Case Study: The Piano The range of frequencies a piano must reproduce is from about 27 Hz
to 4000 Hz, a ratio of more than 1:100. If we used strings of the same tension and mass, and if the
highest-pitched string were only 4 in. long, the lowest strings would have to be well over 33 ft long.
Clearly, real pianos aren’t that enormous.Why? Equation (8.15) suggests that the only parameters
affecting the frequency of a vibrating string are length, tension, and mass per unit length. If we want
to shorten the bass strings, then we must either decrease their tension or increase their mass per
unit length, or some combination of both; or play some other tricks in combination with these.

We could shorten the bass strings if we lowered their tension. But piano strings sound best when
they are close to their maximum tension so that they produce a bright and long-lasting tone. So we
can make only minor adjustments in tension.

We could shorten the bass strings if we made them thicker. But then they would become more
like transverse bars: their overtones would become stretched and they no longer would have
strictly harmonic spectra.

Actually, the problem is not so much that bass strings would have inharmonic spectra. By itself,
a string with mildly stretched overtones sounds pretty good. In fact, studies have shown that musi-
cians and nonmusicians seem to prefer strings with slightly stretched overtones. The real problem
is that the stretched overtones of bass strings do not line up with the fundamentals of strings tuned
to the higher octaves of these bass strings. Ideally, we’d like the overtones of the bass strings to
line up exactly with the fundamentals of the higher-pitched strings, but they don’t because of their
stiffness.

Piano makers have employed a variety of strategies to work around this problem. For instance,
since thinner strings have less stiffness, they use multiple thinner strings struck simultaneously
instead of one thick string. They also wrap wire around strings to increase their mass. Since the
string inside the wrapping is relatively thin, overtones are not stretched as much in these strings
as would be the case with a solid string of the same thickness. But for compact pianos such as spin-
etts, where the bass strings must be very short, overtone stretching is a serious challenge to tuning
the instrument. In fact, harmonic stretching is a problem even for grand pianos with the longest,
thinnest strings. This is just a fact of life for piano tuners.
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The work-around employed by piano tuners is to tune the higher-pitched strings progressively
sharper so that the harmonics of the lower strings more or less line up with the fundamentals of
the higher strings. Spinets, which by design must have the shortest, thickest bass strings, require
the greatest progressive sharpening to blend away the significant overtone stretching of the bass
notes, whereas concert grand pianos require the least because they can have longer strings.

8.7.5 Air Columns

An air column by itself can never be anything more than a Helmholtz resonator, vibrating in sym-
pathy to a sound caused by another source, so it must be coupled to a sound-producing source,
which can be anything that vibrates (table 8.5).

Modes of Vibration Vibration of an air column occurs because of longitudinal displacement of
air particles. There are two forms of air columns: those open at both ends, and those open at one
end only. Additionally, the profile of the pipe may be cylindrical or conical.

Recall that a node is a point where displacement due to vibration is zero, and an antinode is a point
where displacement due to vibration is greatest. At the open end of a pipe, there is a displacement
antinode because the air inside is free to move in and out of the tube. At the closed end of a pipe, there
is a displacement node because the air can’t move longitudinally (the closed end prevents it). The
vibration modes of air columns can be found quickly using the same approach we took for strings.

Pipe Open at Both Ends Clearly, air is free to vibrate in and out of the ends of a pipe open at
both ends. That means a pipe open at both ends can only support modes that have displacement anti-
nodes at both ends. The first four displacement modes are shown in figure 8.16. The figure indicates
how much particle displacement is possible at each position along the length of the pipe. The actual
particle motion in an air column is the same as shown for longitudinal bar vibration in figure 8.13.

Table 8.5
Air Column Instruments

Bar

Lips and bar

Loudspeaker

Lips and mouthpiece

Fipple

Lips and fipple

Xylophone, marimba, and vibraphone; some pipe organ ranks; many automobile 
horns; some enclosed-reed mouth-blown instruments such as the crumhorn

Woodwinds; jaw harp

Ducted-port loudspeaker enclosure

Brass instruments

Recorder, pennywhistle, most pipe organ ranks

Flutes and fifes

Figure 8.16
Displacement modes of open-ended pipe.

Mode 1 Mode 2 Mode 3 Mode 4
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The wavelength of mode n is λn = 2L/n, where L is the length of the tube. Therefore the frequency
of mode n of a pipe open at both ends is

, n = 1, 2, 3, . . . . Frequency Modes of a Pipe Open at Both Ends (8.20)

Equation (8.20) is a slight simplification because the effective length of the tube is actually a little
longer than its physical length. The air in the column recruits air near the end of the tube into its vibra-
tion pattern, and an end correction scaling must be applied to obtain a reasonable estimate of the
effective length. The end correction depends upon the geometry of the opening (see section 8.3.3).

Pipe Closed at One End A pipe closed at one end can only support modes that have displace-
ment antinodes at the open end and displacement nodes at the closed end. The first four are shown
in figure 8.17.

■ Mode 1 is one quarter of a sine wave, so λ1 = 4L. 
■ Mode 2 is three quarters of a sine wave, so λ2 = 4L/3.
■ Mode 3 is five quarters of a sine wave, so λ3 = 4L/5. 
■ Mode 4 is seven quarters of a sine wave, so λ4 = 4L/7. 

Extracting the pattern, we see that the wavelength

, n odd.

Thus, the closed-ended pipe only exhibits odd harmonics, and it sounds an octave below an
open-ended pipe of the same length. The equation for the mode frequencies of the closed-ended
pipe is

, n odd. Frequency Modes of a Pipe Closed at One End (8.21)

This is also a slight simplification because of the need for an end correction.
From this we can explain why a clarinet sounds an octave lower than a flute in spite of being

approximately the same length: the flute functions as a pipe that is open at both ends, whereas the
clarinet is closed at one end.11 The same fact explains why the spectrum of a flute includes all har-
monics, whereas that of the clarinet contains only odd harmonics. Differences in their harmonic

Figure 8.17
Displacement modes of closed-ended pipe.
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spectra also account for what happens when they are overblown. The flute overblows at the octave:
it sounds eight diatonic steps above standard fingering. The clarinet overblows at the twelfth: it
sounds twelve diatonic steps (an octave plus a fifth) above standard fingering.

Tube with Conical Bore The bores of flute and clarinet are both approximately cylindrical and
are approximately the same length. The oboe, bassoon, and saxophone have approximately conical
bores and are all closed at one end.

Since the oboe is about as long as a flute but closed at one end, we might naively predict that
the oboe should, like the clarinet, be able to play an octave below the flute. But, in fact, the oboe
and flute have about the same bottom pitch. Why?

The simple answer has to do with the physics of the conical bore of the oboe. In cylindrical tubes
sound propagates as a virtually plane wave. (The smaller the bore, the more it is like a plane wave,
but as the diameter gets large in comparison to the length, the waves start to become more spher-
ical.) If we ignore the very small effect of air absorption of the sound along the tube, the amplitude
of the signal is relatively constant along its length.

But because sound spreads out as it moves toward the open end of a cone, we must take into
account the effects of attenuation of the signal is it travels toward the open end. Recall from equa-
tion (4.36) that intensity I falls off with the square of the distance r, so I = 1/r2. Recall also that
amplitude A is proportional to the square root of intensity, so . Therefore amplitude dimin-
ishes as 1/r along the inside of a cone.

Conical tubes, like cylindrical ones closed at one end, must have a displacement node at the
closed end and a displacement antinode at the open end. But the wavelengths that fit must take into
account the 1/r amplitude scaling (figure 8.18). For a tube with conical bore of length L, the wave-
lengths that fit are the sinusoids

for n = 1, 2, 3, . . . because they all have a node at r = 0 and an antinode at r = L. (To understand
the node, think carefully about the value of this expression as r goes to zero; to understand the anti-
node, think about its value as r goes to L.) Because all n sinusoids fit, the spectrum contains all har-
monics. Because the wavelength of the conical bore’s fundamental is 2L, its fundamental pitch is
the same as a cylindrical bore of the same length. The silver flute and oboe are approximately the
same length; the bottom note of the silver flute is C4, and the oboe’s bottom note is a half-step
lower, Bb3. 

Figure 8.18
Harmonic pressure waves of a conical bore.
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8.8 Two-Dimensional Vibrating Elements

There are many musically interesting vibrating surfaces, including stretched membranes and plates.
Stretched membranes such as drums are the two-dimensional equivalent of the stretched string,

where the restoring force depends upon tension. Like the ideal string, the ideal membrane is infinitely
flexible, infinitely thin in cross-section, and uniformly stretched by a force sufficiently massive not
to be affected by the motion of the membrane. The overtone series of stretched strings is harmonic,
but stretched membranes have inharmonic spectra. Besides many percussion instruments, instru-
ments with stretched membranes include the resonator for banjos and the Hindustani sarod and esraj.

Plates are the two-dimensional equivalent of the transverse bar, where the restoring force
depends upon inner stiffness of the plate material. Whereas stretched membranes must always be
fastened at the rim, plates can be clamped at the edge, supported at the edge, supported at the center,
or completely free to vibrate. A piano sounding board can be thought of as a plate supported at the
edge. A cymbal is a plate supported at the center. Although analytic solutions for arbitrary
two-dimensional geometries can certainly be derived, this section focuses on circular shapes.

Both concentric and radial vibration modes are possible for circular vibrating elements. Circular
modal geometries are traditionally classified by two numbers, the first indicating the number of
radial nodes, and the second indicating the number of concentric nodes (always including the node
at the rim). General membrane vibration modes are shown in order of increasing modal frequency
in figure 8.19. This classification applies to circular stretched membranes and also to circular
plates clamped or supported at the edge because these systems always have a node at the rim (they
are clamped). However, it does not apply to circular plates supported at the center or free because
these systems have an antinode at the rim.  

Figure 8.19
Modes of two-dimensional vibration.
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8.8.1 Bessel Functions

It can be demonstrated that the contour of the surface for each mode shown in figure 8.19 is given
by a Bessel function of the first kind. There are families of these Bessel functions (“of the
first kind,” “of the second kind,” etc.). Each family is made up of functions of integer orders.
Figure 8.20 shows a Bessel function of the first kind, order 0 in the range . Bessel
functions of the first kind are traditionally denoted by the letter J, with a subscript indicating the
order. Thus, the function shown in figure 8.20 would be written . Bessel functions of
the first kind resemble damped sinusoids because their peak amplitudes gradually diminish as
the index x increases. They have the characteristic shape of a cross-section of a vibrating two-
dimensional object such as a drum head. We might imagine it could be a stop-action photograph
of a water wave emanating from where a drop of water fell into a pond.

8.8.2 Stretched Circular Membranes

The fundamental frequency f of a vibrating membrane is conventionally given as

Stretched Membrane (8.22)

where σ is the area density, d is the diameter, and T is the tension. Hall (1980) specifies area density
for a Mylar tympani head (with 2 mm thickness) as σ = 0.26 kg/m2. Tympani drums come in many
sizes, and their tightness is frequently adjusted during performance. But assuming a tympani drum
with d ≈ 0.6 m and T ≈ 2 × 103 N/m, the fundamental would be f ≈ 112 Hz, around the pitch A2.

Bessel functions of the first kind Jn(x) can be used to model the vibrating modes of a circular
stretched membrane. It is easiest to start with mode 01, the fundamental mode, shown in plan in
figure 8.19 and in elevation in figure 8.20.

The roots of the Bessel function (the places where it crosses zero) indicate the location of the
nodes of the concentric modes. Circular stretched membranes must always have a node where they

Figure 8.20
Bessel function of the first kind, order 0, J0(x).
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are clamped at the edge. For instance, figure 8.20 shows that the first roots of J0(x) are x ≈ ±2.4.
Thus the shape of mode 01 vibration is defined as J0(x) over the range of approximately

, labeled z1 in figure 8.20. If this section of the Bessel function is spun 360° around
its y-axis to create a circular surface, we get the shape for mode 01 shown in figure 8.21.

The location of the next roots of J0(x) are at x ≈ ±5.5, labeled z2 in figure 8.20. This section of
J0(x) corresponds to mode 02 in figure 8.21. This mode has two circular nodes, one at the outer
edge and the other about halfway toward the center. If the radius of the outer node is 1.0 m, the
radius of the inner node would be about 2.4/5.5 = 0.436 m.

Following this pattern, the shape of mode 03 vibration is defined as J0(x) over the range of
approximately , labeled z3 in figure 8.20.

For circular membranes, the frequencies of the modes are given by

, Drum Head Mode Frequencies (8.23)

where f is the fundamental frequency of the membrane, and βmn is the nth root of the mth-order
Bessel function of the first kind. (For convenience, I count the first root of the Bessel functions as
n = 1.) Figure 8.22 shows Jm(x) for m = 0, 1, 2, 3. The function βmn is just the list of all the places
where the Bessel functions are zero, sorted by Bessel function order.

Unfortunately, the roots of the Bessel functions are not evenly spaced, and no simple equation
is known for finding them. However, we can approximate their values. For instance, we’ve already
observed that β01 ≈ 2.4, and β02 ≈ 5.5. Thus, by (8.23), if the frequency of  Hz, the fre-
quency of  would be about 550 Hz, and so on.

The equation used to plot the vibration pattern of the drum modes shown in figure 8.21 is

, Drum Vibration (8.24)

Figure 8.21
Vibration modes of a drum head.
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where m is the number of circular nodes in the mode, r and φ are the polar coordinates of the point on
the surface of the drum being evaluated, and x is the value of the nth root of the mth-order Bessel func-
tion. For example, the surface of mode 01 (figure 8.21) is defined as m = 0, x = 2.4 (which is the first
root of J0, referred to as β01). We can evaluate any point on the surface of the drum by specifying its
location in polar coordinates via radius r, which varies over the unit distance 0 to 1, and φ, which varies
from 0 to 2π. The parameter t specifies the phase of the drum mode’s vibration. If this function is plotted
such that t goes gradually from 0 to 2π/x, we see one complete vibration of the drum head for that mode.

Equation (8.24) was used to plot the concentric and radial modes shown in figure 8.21, which
correspond to the modes shown in plan in figure 8.19. Mode 01 has only one concentric node at
the outer edge where it is clamped. The 0n modes (consisting of the set of modes 01, 02, 03, . . .)
are strongly excited when energy is injected into the center of the membrane. Mode 01 makes the
surface move uniformly up and down and radiates energy into the surrounding air very efficiently
because it pushes air directly away from the membrane’s entire surface. Consequently, the energy
in this mode radiates into the surrounding air very quickly, and the sound dies away rapidly—so
rapidly that for most drums one simply hears a thump from this mode after the mallet strikes it.
Succeeding 0n modes radiate progressively less efficiently than mode 01, so the energy given them
by the initial mallet strike is conserved through time. Thus they contribute slightly more to the ring-
ing sound of the drum because they dissipate less quickly.

The 1n modes (modes 11, 12, . . .) are strongly excited when the drum is struck between the cen-
ter and outer edge. Mode 11 radiates sound less efficiently than mode 01 because it merely sloshes
the surrounding air laterally back and forth from one side of the membrane to the other as the two
halves alternately rise and fall. Because little energy is dissipated, this mode strongly contributes
to the sound of the drum through time. Higher 1n modes contribute progressively less energy to
the overall sound.

Studies show that the modes that most strongly contribute to the ringing tone of a timpani drum
include the 11, 21, 31, 41, and 51 modes.

The frequencies of the stretched membrane partials can also be approximated with the formula
, where f is the fundamental frequency given in equation (8.22) and n is the partial number.

Figure 8.22
Bessel orders 1 to 4.
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Figure 8.23 shows a plot of the frequency coefficients for the first 12 modes in figure 8.19. The
solid line behind the coefficients in figure 8.23 is an approximate fitted curve.

Notice that the higher partials of a stretched membrane increasingly crowd together with
increasing mode number, in contrast to the transverse bar, where higher partials spread apart with
increasing mode number. This accounts for the dense sound of drums in comparison to bar instru-
ments: drum partials tend to stack up closer and closer together as frequency rises.

8.9 Resonance (Continued)

This section continues the discussion of resonance that began with the Helmholtz resonator (in sec-
tion 8.3.3). The aim here is to create a solid framework in preparation for a more detailed math-
ematical treatment in volume 2, chapter 6.

Resonance lies at the heart of virtually every kind of musical instrument.

Resonance is the tendency of a system to vibrate sympathetically at a particular frequency in 
response to energy induced at that frequency.

Resonance requires two elements: a driving force, represented as a function of time, r(t), and a
driven vibrating system such as a spring/mass combination. A system that contains both these ele-
ments is called a driven harmonic oscillator. The driving force is the input to the vibrating system,
and the forced motion is the output. This is in contrast to the free motion of a vibrating spring (see
figure 8.4), which receives no external force after initial excitation.

While the driving force r(t) can be any function, we get a clearer view of resonance by observing
periodic inputs, and we get the clearest view from studying sinusoids, such as

, Driving Force (8.25)

where t is time, A is the driving amplitude, ω = 2πf, and f is the driving frequency. Of course,
more complicated periodic and nonperiodic signals can be used, but here I limit the discussion to
sinusoids.

Figure 8.23
Stretched membrane mode frequencies.
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8.9.1 Driven Harmonic Oscillator

Many musical instruments can be broken down into a part that generates vibrating energy and a
part that modifies vibrating energy to create that instrument’s particular sound. For example, the
breath of a flute player is shaped by the resonance of the flute to produce the flute’s characteristic
sound. In order to understand the vibrations of such instruments, we can study an equivalent but
simpler system consisting of a harmonic oscillator driven by a variable-speed motor (figure 8.24).

What happens when we vibrate a harmonic oscillator? How can we characterize its motion? We
want to understand how the natural vibrating frequency of the spring/mass system responds to the
frequency of the driving force.

The first thing we need is a driving force that will produce sinusoidal motion, as defined in equa-
tion (8.25). In figure 8.24 the driving force is provided by a motion generator that consists of an
armature attached to a motor shaft. A wheel at the end of the armature is captured in the slot of a
horizontal bar that is attached to a vertical bar. Together, the two bars make a T shape. The
T-shaped bars can only move vertically between four guide wheels. The motor and guide wheels
are mounted on a rigid framework, and the mass is restrained so it can only move up and down.

Figure 8.24
Driven harmonic oscillator.
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As the motor turns, and the T bar configuration rises and falls in sinusoidal motion, the generator
raises and lowers the mass via the spring.

Figure 8.25 shows successive snapshots of the system for one rotation of the motor shaft. The
phase angle of the armature is given for each position, together with its corresponding amplitude.
Comparing the displacement of the system to the sinusoidal line below them demonstrates that the
motion of the system is indeed sinusoidal and is related directly to the phase of the motor shaft.

The vertical distance traveled by the motion generator is the driving amplitude A in equation (8.25).
If the length of the armature is s, then the peak-to-peak amplitude of the generator A = 2s. The rev-
olutions per second of the motor (and hence, complete sinusoidal periods of the motion generator)
corresponds to the driving frequency f in equation (8.25).

8.9.2 Response Amplitude

The displacement of a spring and mass from moment to moment depends upon the interplay of
Hooke’s law and Newton’s first law of motion (see section 8.4). The spring/mass system has a nat-
ural resonant vibrating frequency fr, but now we must also take into account the fact that it is driven
by r(t), the periodic function of the motion generator. When the driving frequency equals the natural
vibrating frequency, f = fr, the spring/mass system will respond by vibrating strongly in sympathy
with the driving force. When , the response of the spring/mass system will be less strong.

Figure 8.25
Phases of the driven harmonic oscillator.
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The response of the system is the amount of movement made by the mass. If the response of the
system to the driving force is strong, the mass at the end of the spring will move a great distance, caus-
ing the spring to bend. If the response is weak, the spring will bend very little or not at all. So we can
characterize the response amplitude Ar as the difference between the length of the spring/mass system
when it is not being driven (its resting length) and its length while it is being driven.

We measure Ar by observing how much the spring is flexed—either compressed or expanded.
Thus Ar is the change in the length of the spring from its resting length. When Ar is positive, the
spring is stretched; when Ar is negative, the spring is compressed (figure 8.26).

To study resonance, we want to compare the magnitude of the response amplitude Ar to the mag-
nitude of the driving amplitude A, moment by moment.

8.9.3 Visualizing Driven Oscillation

Let’s set the motion generator to a low frequency. A low frequency is any frequency f that is sub-
stantially lower than the natural vibrating frequency f0 of the harmonic oscillator. We indicate this
by requiring f � f0. Next, we position the armature so that it is horizontal and facing to the right (the
position shown in the leftmost drawing in figure 8.25), and switch it on. As it begins turning coun-
terclockwise, the rising force of the motion generator displaces the spring, which passes the force
along to the mass. By Newton’s first law of motion, the inertia of the mass applies a counterforce
to the change in applied force. The spring, being flexible, stretches to make up the difference between
the rising force of the generator and the counterforce of the mass’s inertia. As the spring stretches,
by Hooke’s law, it applies a greater force to the mass, which consequently accelerates upward.

As the armature rotates toward the vertical position, it no longer lifts the spring/mass system
so quickly, but the mass continues to rise because of Newton’s first law of motion. The
spring—squeezed between the generator and the mass—compresses until its counterforce balances

Figure 8.26
Response amplitude.
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the upward force of the mass. As the armature starts down, the spring is further compressed, increas-
ing the force on the mass until it accelerates downward as well. The rest of the cycle continues in this
manner.

8.9.4 Varying the Driving Frequency

As we increase the driving frequency f, the force supplied by the generator to the mass increases,
the counterforce of the mass’s inertia increases, and the flexion of the spring increases to com-
pensate. Consequently, the magnitude of the response amplitude Ar grows.

We might expect Ar to continue to grow as we increase the driving frequency, but when f (the
driving frequency) is equal to fr (the resonant frequency), Ar stops growing and, for higher fre-
quencies, begins to shrink. As f continues to increase, Ar shrinks even more. Let’s define maximum
amplitude Amax as the amplitude at which Ar achieves its greatest value, and the resonant frequency
as the frequency fr at which Ar = Amax. Then, by definition, the maximum response of the
spring/mass system to the generator occurs when f = fr (figure 8.27).

Stiffness-Limited Vibration For very low driving frequencies, where f is near zero, the accel-
eration applied to the mass by the generator is small, so the inertial counterforce of the mass is also
small. Since the force of the spring’s stiffness is much greater than the counterforce of the mass’s
inertia, the displacement of the mass closely tracks the displacement of the spring, which in turn
closely tracks the displacement of the driving force. Since the mass, the spring, and the driving
force are all moving together at the same speed in the same direction at the same time, they are in
phase. For frequencies below resonance, the response amplitude Ar is stiffness-limited because the
spring’s stiffness limits the magnitude of Ar.

At low frequencies most of the energy expended by the generator to accelerate the mass is stored
in the mass as kinetic energy (and the rest is stored in the spring as flexion). All energy stored in
the mass (and the small amount stored in the elastic force) is returned to the generator when the

Figure 8.27
Resonant spectrum.

} } f

Dissipation-limited

Stiffness-limited Inertia-limited

f < fr f = fr f > fr

Amax
Am

loy79076_ch08.fm  Page 274  Wednesday, April 26, 2006  3:25 PM



Vibrating Systems 275

mass is decelerated by the generator. So over time no work is done. (Of course, some energy is dis-
sipated because of friction, which is ignored here.)

Inertia-Limited Vibration For high frequencies, where , the acceleration applied to the
mass by the driving force is very large, and so the inertial counterforce of the mass is also very large.
The spring is literally caught between these two forces and must flex quite far to span the distance
between the accelerating generator and the lagging mass. The mass will barely have begun to accelerate
in one direction before the spring starts tugging at it from the other direction. As a consequence the mass
moves less and less in either direction as frequency rises above fr. The response amplitude Ar is inertia-
limited for frequencies above resonance because the mass’s inertia limits the magnitude of Ar.

Most of the energy expended by the generator to accelerate the mass is stored in the spring as
flexion (some is stored in the mass). All energy stored in the elastic force (and energy stored in the
mass) is returned to the generator when the spring is unflexed (and the mass is decelerated). So over
time no work is done.

Dissipation-Limited Vibration Note that the energy stored by the spring and the mass is con-
served (see section 4.17). The energy dissipated by the system consists of such nonconservative
forces as heat and sound radiation. The conservative forces maintain the resonance; the noncon-
servative forces dissipate or radiate the system’s energy away.

Near the resonant frequency, where , the elastic force and inertial force come into balance.
The relative positions of the mass, spring, and armature are such that the generator performs pos-
itive work on the mass throughout its cycle, so energy flows constantly from the generator to the
mass through the spring. The phase of the generator leads the mass by one quarter of a cycle. The
spring and mass trade energy between each other, never returning it to the generator.

If the spring/mass system continuously absorbs energy from the generator without ever return-
ing any of it, we might expect that Ar would grow without bound. That’s true except for one thing.
Ar tends to grow without bound at resonance, and the velocity of the mass also tends to grow with-
out bound. But the increased velocity causes energy to be dissipated at a faster rate, radiated as
more intense sound and heat. At some value of Ar, the energy being received by the spring/mass
system from the generator balances the energy being dissipated by the spring/mass system, and the
amplitude reaches its maximum, Amax.

The amplitude of the oscillation is dissipation-limited when f = fr. This suggests an alternative
definition of resonant frequency: 

Resonant frequency is the frequency that is most effective at enabling a vibrating system to 
return to its original energy level by dissipation.

Given the propensity of systems to seek the most efficient way to return to their original energy
levels, it seems entirely reasonable that the world should be filled with resonant systems.

If the rate of energy dissipation is small,  can become large enough to destroy the system
because there is nothing to stop the escalating amplitude of the mass as it continues to receive energy.

fr � f

fr f≅

Amax
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The well-documented catastrophic failure of the Tacoma Narrows Bridge is the often-cited case in
point for this phenomenon (figure 8.28). (The common explanation that the bridge failed because it res-
onated with a frequency component of the howling wind is not necessarily incorrect, but in fact it was
probably not the simple linear resonance being described here that destroyed the bridge. The exciting
force of the wind was itself affected by the vibrational response of the bridge. The result was a recursive
nonlinear dynamic system (Lazer and McKenna 1990; McKenna 1999) (see section 8.10.1)).

8.9.5 Damping

What is the effect of various rates of dissipation on resonance? Damping refers to how efficiently
energy can be dissipated by a vibrating system.

Suppose we increase the amount of friction the mass undergoes while moving up and down (see
figure 8.25). We could do this, for example, by suspending the mass in a liquid of some kind. The
viscosity of the fluid resists the vertical vibrating motion of the mass in proportion to the rate at
which the mass is drawn through the fluid: the faster its velocity, the greater the drag. The effect
of greater damping on a resonant system is to reduce and broaden the resonant curve (figure 8.29).

Figure 8.28
Tacoma Narrows Bridge disaster.

Figure 8.29
Effect of damping on resonance.
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Note that the peak resonant frequency declines slightly as damping increases, as indicated by the
curved line drawn through the peaks in figure 8.29.

Different degrees of resonance are required for different purposes in musical instruments. The
resonance peak of an organ pipe must be very narrow so that it sounds just one frequency. But the
resonance of a piano sounding board should be as broad and flat as possible so that it will respond
to all frequencies the same. Similarly, it is important for loudspeakers to have as broad a resonance
as possible so as not to overly color the sounds they reproduce. Since damping broadens the res-
onant peak, pianos and loudspeaker systems often are designed to be highly damped.

8.9.6 Bandwidth and Quality Factor

As shown in figure 8.30, we can characterize the sharpness of a resonance by comparing its height
to its girth at some particular distance down from the top of the peak. Starting from Amax, the apex
of the curve, we drop down a distance of 3 dB.12 The frequencies where this line intersects the
skirts of the curve are f0 and f1, and the span of frequencies  is the bandwidth of
the resonator. The ratio of the resonant frequency to bandwidth 3 dB down from peak amplitude
is a frequency-independent measure of the steepness of the curve that engineers call quality factor.
It is defined as

. Quality Factor (8.26)

Q indicates how much more a driven oscillator absorbs power at its resonant frequency than it does
at a standard distance from the resonance frequency. In figure 8.29, the most highly damped res-
onance has the lowest Q.

8.9.7 Phase Delay

For the harmonic oscillator in figure 8.25, if we plot the phase delay between the angular position
of the motor arm and the linear position of the mass for various values of Q (figure 8.31), we see
that the higher the Q, the more abruptly the system transitions from in-phase to out-of-phase
motion. For a high-Q resonator at low f, phase delay remains near zero until f nearly equals fr , at

Figure 8.30
Quality factor.

f0 fr f1

f

Amax

3 dB

f∆ = f1 − f0

Q =
fr

∆f
-----

loy79076_ch08.fm  Page 277  Wednesday, April 26, 2006  3:25 PM



278 Chapter 8

which point small additional increments in f result in large increases in phase delay. On the other
hand, highly damped (low-Q) oscillators build up phase delay gradually.

8.9.8 Resonance with Multiple Degrees of Freedom

These ideas about resonance can easily be extended to more complicated vibrating systems with mul-
tiple degrees of freedom. Each vibrating mode simply has its own resonant response, characterized
by a resonant frequency fr and Q (figure 8.32a). The total response of such a system is the combination
of these resonant curves (figure 8.32b).

8.10 Transiently Driven Vibrating Systems

When a performer starts to play a note on a sustaining instrument such as a pipe organ, the vibra-
tion of the instrument builds up gradually over time during the onset, or attack, phase of the note
(figure 8.33). When the performer stops playing, it gradually returns to silence during the decay
phase. The attack and decay phases are known collectively as transients.

Attack Suppose we set the speed of a driven harmonic oscillator’s motor to its resonant fre-
quency fr, then switch on its power. This would be analogous to blowing into a flute or organ
pipe, bowing a string, starting to sing, and, in general, beginning a sustained tone. Even if the

Figure 8.31
Phase delay for various quality factors.

Figure 8.32
Combining resonances.
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motor starts turning instantaneously, it still takes time for the response of the system to reach
 because 

■ The mass/spring system absorbs energy at a constant rate, causing the amplitude of vibration to
grow.
■ As the amplitude of vibration grows, the system dissipates energy at an increasing rate.

Because the rate of dissipation increases with increasing amplitude, growth in amplitude gradually
slows as dissipation approaches equilibrium with the applied force. The higher the Q, the greater
is the system’s energy storage capacity at frequency fr, and the longer it takes to reach an equilib-
rium between the applied force and dissipation.

Steady State When energy is dissipated at the same rate that it is applied, amplitude growth
stops, and a steady state is achieved. We say the resonator is ringing at fr .

Decay When the applied energy is withdrawn, we enter the decay phase, and the system behaves
exactly as described in section 8.4. In a highly damped system (low-Q), vibration ceases quickly
because the dissipation rate is high. But a high-Q resonator has little dissipation, so the energy
drains away more slowly.

Release A fourth state, release, characterizes the final sound some instruments make if they are
stopped from vibrating by dampers. For example, when lifting the key on a harpsichord before the
tone has died away, there’s a slight buzz as the damper presses down on the string to stop it from
vibrating.

8.10.1 Resonance, Recursion, and Xeno’s Paradox

Suppose we examined the amplitude A of the decay at regular intervals, and tabulated a list of
the results over N sample times. We’d have a sequence of samples . We select
one of those samples, An, where . We can compute the next value in the sequence,
An+1, by multiplying An by some factor , corresponding to the rate of dissipation. If the

Figure 8.33
Amplitude envelope of a harmonic oscillator.
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amplitude of the current cycle is An and the dissipation is d, then the amplitude of the next sample
will be

. (8.27)

So the energy in the vibrating system at each moment depends upon how much energy there was
in the previous moment, times a constant factor that determines how much will be dissipated
away as sound and heat. Mathematicians call such systems recursive; physicists call them
dynamical.

We can evaluate the decay curve by letting an = an+1 and then repeating (8.27) forever to generate
the rest of the curve. For example, if we set a0 = 1 and d = 0.9, we have the sequence {1.0, 0.9, 0.81,
0.729, . . .}. Plotting these points reveals an exponential decay (figure 8.34). This function never
reaches zero.

A curious aspect of resonant systems is that, theoretically, they never stop vibrating. This is an
acoustic incarnation of Xeno’s paradox (see appendix A). Suppose we measure the amount of time
it takes for the amplitude of a note to drop to one half of Amax and call it t1/2, the halving time. If
A(t) is a measure of the amplitude at time t, and A(0) = Amax, then we can express halving time as

. (8.28)

Since the amplitude drops to 1/2, the vibrational energy in the system drops to one fourth of its original
value at t1/2, and

.

If we wait until an additional time interval t1/2 has elapsed, the amplitude will be one fourth and energy
one eighth of the original. At each subsequent time interval t1/2, the amplitude will again be halved
and the energy quartered, but there is still energy present proportional to what was there before. Thus,
unless we wait for eternity, the amplitude never reaches zero (unless it was zero to begin with). 

The target value that the amplitude is heading toward (but never reaches) is the asymptote.
During the attack phase, the asymptote is Amax, during the decay phase it is zero.

The Exponential Function and the Time Constant We’ve seen that the transients of all linear
resonant systems—where the rate of energy loss or gain is proportional to the current energy—
have a characteristic exponential shape. This includes virtually all musical instruments and sound

Figure 8.34
Exponential decay.

An+1 = An
. d

A 0( )
A t1/2( )
---------------- =

Amax

2
-----------

A2 0( )
A2 t1/2( )
------------------ =

Amax
2

22
-----------

loy79076_ch08.fm  Page 280  Wednesday, April 26, 2006  3:25 PM



Vibrating Systems 281

in reverberant spaces. The exponential function commonly used in musical applications to model
this is

, Exponential Decay (8.29)

where Amax is peak amplitude, time , and the time constant τ is the characteristic rate of
decay. The asymptote of the exponential decay function is zero.

Conventionally, τ is the time it takes for E(t) to decay by 1/e, that is,

, (8.30)

corresponding to a drop of 10 log(1/e) = −4.34 dB SIL (see equations (5.31) and (5.32)).
The attack envelope is the inverse of (8.29):

. Exponential Attack (8.31)

The asymptote of the exponential attack is Amax. Figure 8.33 shows an example of exponential
attack and decay envelopes.

Solution to the Paradox What’s the solution to the paradox of the never-ending exponential
envelope?

Often, the force of friction in a vibrating system increases at low amplitude, erasing the little
remaining energy in the vibrating system at an accelerated rate and helping to mark the end of its
sound. A nonlinear friction function at low velocity also explains why the brakes in a car sometimes
start to grab just as it approaches a complete stop. But even if energy is depleted at an accelerated
rate, there’s theoretically still some there forever.

Perceptually, a decaying sound will become inaudible if it drops below the threshold of hearing
or the ambient noise level, whichever is higher. So the empirical solution to this version of Xeno’s
paradox is to decide on a time after which we consider the amplitude to be insignificant.

T60, Decay Time, and the Meaning of Silence How long does it take for sound in a concert
hall to decay into silence? The reverberation time of a hall (see section 7.13.2) is one of the key
determinants of its acoustical quality: if reverberation lasts too long, music and speech tend to
become blurred, reducing intelligibility. A short reverberation time may improve intelligibility but
may make the room sound dead.

A rule of thumb used widely in architectural acoustics is that a sound with initial amplitude Amax

becomes insignificant after it has decayed by 60 dBSPL. This time, called t60, is a measure of the
reverberation time of a room. Some cathedrals have a t60 time of about 10 seconds or more; the
t60 time of concert halls usually lasts a few seconds. The t60 time of a bedroom may be a few mil-
liseconds, and the t60 time of a good anechoic chamber should be vanishingly close to zero.

Since –60 dB = 20 log10 0.001, t60 can be thought of as the time it takes Amax to decay by a factor
of 1000. That is, if A(t) is the amplitude of a sound at time t and A(0) = Amax, then

y = E t( ) = Amaxe t τ⁄–

t 0≥

E τ( )
E 0( )
----------- = 1

e
--- 1

2.78
---------- 0.36≅ ≅

y = E t( ) = Amax − Amaxe
t τ⁄–
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.

We can relate t60 to the halving time t1/2 by noting that A(t60) corresponds to about ten halvings of
amplitude, that is,

≈ ,

so . Similarly, we can relate t60 to the time constant τ by solving (8.29) for τ:
. Thus, t60 is just under seven time constants long. The energy being radiated

at time t60 is the square of the amplitude, or

,

which corresponds to a drop in sound intensity of 60 dBSIL. If the original intensity is, say,
100 dB, then 100 dB − 60 dB = 40 dB SIL, approximately the same as the threshold of ambient
noise in quiet listening environments, which is a workable definition of silence.

8.10.2 Why High-Frequency Components Die Out Faster

Vibrating systems with many degrees of freedom have multiple resonances, and overall the
response of the system is a composite of the individual resonances of the modes (see section 8.9.6).
It follows that each degree of freedom n has its own damping time τn. Characteristically, high-
frequency vibration modes have the smallest τn. 

To see why, consider two identical masses m1 and m2 vibrating in simple harmonic motion with
identical amplitude A but with frequencies . By equation (5.27), we know that the energies
of the two masses are  and , and so , that is, m1 has less
energy than m2. Since at any moment of time, the rate at which energy is radiated is proportional
to the total amount of energy, m2 loses energy faster than m1, and its vibrations are damped out more
quickly (Ruiz 1969).

Figure 2.24 shows the evolution through time of the harmonics of a musical instrument tone.
Each instrument has a characteristic way in which its partials evolve through time, which can be
understood by examining the interplay of the vibration modes, the forces the player exerts upon
the instrument, and the coupling of the instrument to the air (see volume 2, chapter 6).

8.11 Summary

We examined the mathematical formulas that determine the sound of conventional musical instru-
ments. We combined Hooke’s law with Newton’s second law of motion to observe in detail the
movement of simple harmonic motion.
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A vibrating system has degrees of freedom, which can interact additively. Musical instruments
can be organized by the similarity of their mathematical equations. The parameters are dimension,
restoring force, and vibrating element.

We considered the mathematics of strings, string modes, and standing and traveling waves. Bars
and strings are governed by the same equations, but because bars are stiffer, they are nonharmonic.
Young’s modulus is used to determine the vibrating properties of strings and bars.

We examined air columns in light of the Helmholtz resonator and developed models for the
vibration of pipes open at one end or both ends, which differ from models of conical pipes. Drums
are two-dimensional vibrating analogues of strings and bars. Their vibrating modes are charac-
terized by Bessel functions of the first kind.

The discussion of resonance was continued by examining the behavior of a driven harmonic
oscillator. The behavior of a resonator changes as a function of driving frequency, resonant fre-
quency, and the amount of damping in the system. The result is characterized in terms of quality
factor Q and phase delay. We considered transiently driven vibrating systems, such as when a musi-
cal instrument starts and stops a note, and observed a paradox related to Xeno’s.

8.12 Suggested Reading
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9 Composition and Methodology

[The Analytical Engine’s operating mechanism] might act upon other things besides number, were objects
found whose mutual fundamental relations could be expressed by those of the abstract science of operations,
and which should be also susceptible of adaptations to the action of the operating notation and mechanism
of the engine . . . Supposing, for instance, that the fundamental relations of pitched sounds in the science of
harmony and of musical composition were susceptible of such expression and adaptations, the engine might
compose elaborate and scientific pieces of music of any degree of complexity or extent.
—Ada Lovelace1

The best view of musical composition is provided by a study of methodology. So understanding
methodology is the first aim of this chapter. The subject of methodology encompasses most human
activities, including the arts and sciences. Approaching composition this way has the great advantage
of enabling us to relate the arts and sciences, to see their similarities and differences in sharp relief.

Studying the methodology of composition provides a crisp and efficient way to identify and
compare the aesthetic aims of particular composers and schools of composition. This is of great
benefit because we can then accurately compare and contrast the wide panorama of interests and
values that have concerned composers over the ages.

The second aim of this chapter is to study the development of artificial composing systems. Per-
haps surprisingly, the foundations of this field are over a thousand years old. The implications of
these ideas stir far-reaching and provocative questions about the nature of music and composition.

The third aim of this chapter is to show how compositional principles can be expressed in a com-
puter programming language and to develop a set of tools that can be adapted for readers’ own
music research. A simple but powerful music programming language called MUSIMAT is pre-
sented, and many of the methods discussed are shown in MUSIMAT code. The chapter provides
computational strategies for composing music and insights about the nature of composing.

9.1 Guido’s Method

Around 1026 the learned Benedictine and famous music theoretician Guido d’Arezzo developed
a way to teach his students composition which, in his religious environment, amounted to com-
posing plainchant melodies to accompany sacred texts in Latin. This same Guido invented the
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medieval music theory of hexachords, a group of six diatonic tones with a semitone interval in the
middle, e.g., C D E F G A. He also assigned letter names to the diatonic scale and invented the
solmization syllables ut (do), re, mi, fa, sol, la that are familiar to music students.

Guido developed a method of memorizing the musical scale and its solmization syllables, his-
torically called the Guidonian hand (figure 9.1). By pointing to parts of the hand a choir master
can indicate the next note of the melody to be sung. Although it is just a simple way of associating
pitches with positions on the hand, it came to epitomize the entire system of the church modes in
medieval Europe. It became such a powerful metaphor that conservative music theorists of the late
Middle Ages used it to resist the introduction of chromaticism by saying that the new scale degrees
were “not in the hand” (Apel 1944).

Guido’s combination of theoretical prowess and practical aptitude laid the foundations of objec-
tive composition, which I define as the use of naturalistic (nonsubjective) processes in composi-
tion. Although we associate the development of automated composition with the twentieth century,
Guido’s work demonstrates that it is a quite ancient practice.

Guido published his composition method for students as part of a treatise for singers titled
Micrologus. This was an important source for the development of organum, the earliest type of
polyphonic music in Europe. There is debate as to whether Guido was seriously proposing his
method as a means of composing music, or if it was just a didactic aid for teaching composition.
But in any event, he managed for the first time in history to objectify a way of composing music
into a definite set of rules. Although elementary, his method is the prototype for all objective com-
positional systems from that day to this. It can be used for thought experiments on the general
nature of composition.

Guido’s first step was to construct a table of correspondences between the notes of the scale and
the vowels contained in the Latin text that is to be set to music. First he laid out the pitches of the
double octave, which was the standard compass of vocal music of his time (figure 9.2). Against

Figure 9.1
Guidonian hand. (Adapted from Apel 1944.)
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this he placed three iterations of the vowel sequence, a e i o u:

Γ A B C D E F G a b c d e f g a′
a e i o u a e i o u a e i o u a

Guido then selected a Latin text and extracting the vowels from each word, set about looking up
corresponding pitch values from his table. Since this method supplies three choices for each vowel
(and four choices for the vowel a), the method has multiple solutions for each text. Following this
procedure, he composed a melody for the entire text that changed pitch on every vowel. Figure 9.3
shows a block diagram outlining Guido’s method. There are two inputs, the vowels of the Latin
text and the choices made by the subjective judgment of the composer that determines from which
vowel group to draw the pitch. The output is the resulting plainchant melody.

For a one-vowel text, there are 3 possible one-note “melodies”; for a two-vowel text, 32 mel-
odies of two notes; and for an N-vowel text, 3N melodies. Thus, the number of possible melodies
grows explosively for longer texts. Guido suggested that anyone who felt his system was too con-
straining should expand it by adding another line of vowels under the notes with a different start-
ing point, doubling the number of choices. Even so, the method still constrains the choices of
a composer, who otherwise could choose any pitch at any time. We assume this was Guido’s
intention, to ease his students into the deep ocean of unlimited possibilities with small steps by
the shore.

But even if choice is constrained by the method, composers still must exercise their subjective
faculties to develop a pleasing and musically interesting line. Guido suggested that by selecting
only the best excerpts from several attempts, composers could obtain a composition perfectly
adapted to the text and meeting the requirements of good compositional practice.

Figure 9.2
Vowel/note correspondence.

Figure 9.3
Block diagram for Guido’s method.
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9.2 Methodology and Composition

Methodology is what allows us to construct the wheel, plant crops, solve equations, and write sym-
phonies. Methodology is the DNA of human culture: it carries information that enables societies to
function and to persist from generation to generation. The proper study of composition is the study
of methodology, and the full appreciation of methodology requires an understanding of algorithm.

9.2.1 Algorithm

Algorithm is the most highly qualified methodology. The word comes from algorism, which means
to calculate with Arabic numerals.2 According to Donald Knuth (1973) algorithm is a broader con-
cept, covering any set of rules or sequence of operations for accomplishing a task or solving a prob-
lem so long as it demonstrates each of the following five characteristics:

■ Finiteness The method must not take forever.
■ Definiteness Each step must have a significance that is commonly understood.
■ Input The method must have valid materials or information upon which to operate.
■ Output The method must produce at least one result, generated by applying the method to the inputs.
■ Effectiveness The method must always produce the same output from the same input; the result
must not depend upon unknowns (e.g., a miracle, a coin toss, or the phase of the moon); and there
can be no ambiguous outcomes (e.g., dividing by zero is not allowed because the result is undefined). 

A method that meets all these requirements is called algorithmic.
According to Knuth, methods also display aesthetic traits, or “goodness.” These include effi-

ciency, simplicity, grace, elegance, parsimony (no extraneous steps or rules), and tractability (eas-
ily adapted to a variety of circumstances). A method’s goodness is also demonstrated by how well
it reveals our understanding of the problem being solved.

9.2.2 Euclid’s Method

By way of example, consider the problem of finding the greatest common divisor (GCD), which
is the greatest number that divides two numbers without remainder. This comes in handy when
reducing two numbers to their lowest form, so as to reduce interval ratios to their lowest common
denominator. For example, the GCD of 9 and 12 is 3. We just “know” that, but how do we know
it, and how can we represent this knowledge to someone else? And how can we find the GCD of
91 and 416, which we almost certainly do not “know”? Euclid developed the following method to
solve this class of problem for positive integers. 

Euclid’s Method

1. Given two numbers, m and n both greater than zero, find their remainder after integer division.

2. If the remainder is 0, the answer is n.

3. Otherwise, let m = n, and let n = r, and start over.
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The results for 9 and 12 are shown in table 9.1, and the results for 91 and 416 in table 9.2.

9.2.3 Is Euclid’s Method Algorithmic?

Yes, Euclid’s method is algorithmic.

■ It is finite (it will always eventually reach r = 0).
■ It is definite (for positive integers) because the meaning of division and remaindering for positive
integers is unambiguous. (But if we extend the positive integer range to include zero, the method
is no longer definite because division by zero is undefined.)
■ It has inputs, m and n, and an output, the answer.
■ It is effective because there is no miraculous, random, or subjective element in Euclid’s method;
it always gives the correct answer (barring mistakes in arithmetic).

It meets Knuth’s aesthetic criteria as well: it is simple (requiring only three steps), elegant (lovely
to think about), and parsimonious (it gets straight to the point). It is also tractable because it can
easily be adapted (e.g., to a computer).

9.2.4 Is Guido’s Method Algorithmic?

No, Guido’s method is not algorithmic. Subjective choice is required for Guido’s method, so it fails
the definiteness criterion. But it meets all other criteria, including Knuth’s aesthetic criteria. We
can call methods like Guido’s nondeterministic methodologies, but I prefer a more concise name:
art. The characteristic feature of art of all kinds is that it combines objective criteria and methods

Table 9.1
Euclid’s Method, 9 and 12

Step m n r

1

2

3

9

12

9

12

9

3

9

3

0

Table 9.2
Euclid’s Method, 91 and 416

Step m n r

1

2

3

4
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416

91
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416
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52

39

13

91

52

39

13

0
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with choice making. The difference between art and algorithm is that deterministic methodology
(algorithm) always produces the same result from the same inputs, whereas nondeterministic
methodology may produce variable results even with the same inputs.

Choice making, such as thinking of a number between 1 and 6, is always subjective. So-called
objective choice, such as tossing a six-sided die, is actually just the delegation of subjective choice
to an external process. (Have you ever flipped a coin to make a choice and then decided to do the
opposite?) A delegated external choice-making entity is an oracle. If a method requires consulting
an oracle of any kind, it is automatically art, not algorithm. We should also distinguish between
choice making and choice accepting. The latter is always subjective.

9.2.5 Why Study Methodology?

In order to create their methods, both Euclid and Guido had to reach inside their own subjectivity,
to hold their goals in mind while simultaneously observing their own mental processes long enough
to objectify what they discovered into a set of rules. Because this requires considerable mental dis-
cipline, I believe that we only develop methods where we care deeply about the aim of the method.

This suggests that the study of methods can reveal our values and hidden assumptions. For
example, we observe that Guido’s method constrains the music to follow the words, thereby
revealing Guido’s belief that the purpose of music was to set off the biblical text, much the way
a ring sets off a jewel.

The guiding principle of this chapter is that the analysis of methodology can reveal the aesthetic
agenda of its creator. Thus, by examining the methods of composers, we can understand the inner
significance of their music. After building some tools and skills, I discuss some ground-breaking
compositional methods for the purpose of examining their underlying values, as a way of helping
us to establish our own.

9.3 MUSIMAT: A Simple Programming Language for Music

If we wish to use computers to operate on music, as Ada Lovelace suggested, we must find ways
to represent music that both composer and computer can understand. The representation must be
intuitive, and yet definite enough to be computable. It must provide expressive control over the
musical materials we wish to operate upon.

In order to study methodologies, we must have a completely definite language with which to
express them. A programming language is a specialized means of describing rule systems and
methods. MUSIMAT is a programming language designed specifically for the subjects presented in
this chapter. A tutorial introduction to MUSIMAT is given in appendix B.

It is possible to read this chapter without knowing MUSIMAT. However, I highly recommend
spending the time needed to understand it before proceeding. Many of the examples in this chapter
are expressed in MUSIMAT, and though I summarize everything in nontechnical language as well,
readers won’t be able to adapt and use this information without understanding the language in
which it is written.
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9.4 Program for Guido’s Method

With the MUSIMAT programming language we can program a version of Guido’s method.
First, we transform Guido’s vowel sequences to pitches:

PitchList guidoPitches =
{G3,A3,B3,C4,D4,E4,F4,G4,A4,B4,C5,D5,E5,F5,G5};

See section B.2.1 for a description of PitchList. 
Then we need a source of judgment for which of Guido’s three vowel sequences should be cho-

sen. We’ll use the integer Random( ) method to generate random values. Combining these, we
obtain the program for Guido’s method:

PitchList guido(String text) {
PitchList G; //place to put the melody
Integer k = 0; //indexes G
Integer offset; //indexes guidoPitches[ ]

//evaluate one character of the text at a time
For (Integer i = 0; i < Length(text); i = i + 1) {

Character c = text[ i ]; //get a character of the text

If ( c == ‘a’ ) { offset = 0; }
Else If ( c == ‘e’ ) { offset = 1; }
Else If ( c == ‘i’ ) { offset = 2; }
Else If ( c == ‘o’ ) { offset = 3; }
Else If ( c == ‘u’ ) { offset = 4; }
Else { offset = -1; } //the character is not a vowel

If ( offset != -1 ) { //if the character is a vowel. . .
Integer R = Random( 0, 2 );//returns 0, 1, or 2
Integer n = ( 5 * R ) + offset;
G[ k ] = guidoPitches[ n ];
k = k + 1;

}
}
Return( G ); //return the list of pitches composed

}

The program indexes one Character at a time of text. If Character c is a vowel, it cal-
culates offset based on which vowel it is. If it is not a vowel, the program sets offset to –1
so that the final step is skipped. If it is a vowel, the program chooses a random number 0, 1, or 2,
corresponding to the three possible outcomes for each vowel. This is multiplied by 5, correspond-
ing to the number of vowels, and added to offset to arrive at the index of the selected element
in the list of guidoPitches. The selected Character from that list is then stored in
PitchList G. The method is repeated until text is exhausted. PitchList G then contains
the list of pitches composed for this text. As its final action, the PitchList G is returned to the
calling program.

loy79076_ch09.fm  Page 291  Wednesday, April 26, 2006  4:33 PM



292 Chapter 9

To invoke the function guido(), we need a Latin text. I’ll use the first phrase of the text Guido
used to name the solfeggio syllables, the medieval hymn Sanctus Joharines (St. John). This pro-
gram fragment prints a list of pitches:

Print(guido("Ut queant laxis resonare."));

An example result of this method is shown in figure 9.3.

9.5 Other Music Representation Systems

There are a virtually unlimited number of approaches to the representation of music, depending
upon one’s aims. The aim of MUSIMAT is compactness and expressivity for composition. A short
list of some important music representation and programming systems, drawn from the extensive
literature on the subject, follows:

■ MIDI Musical Instrument Digital Interface, a still prevalent standard for encoding and trans-
mitting musical gestures between computers and music synthesizers (Loy 1985) provides a very
simple and concrete mapping from musical keyboards, nobs, and sliders to musical sounds. In
its original form no specific mapping of sounds was stipulated. One MIDI synthesizer might play
a particular note using string tones, whereas another would use bassoons. More recently, General
MIDI, a standard set of timbres, was adopted. This standard stipulates a common mapping
of timbres that every conforming synthesizer must implement. Scores played on any General
MIDI synthesizer realize a similar orchestration (Jungleib 1996). MIDI presents a normative and
limiting conception of music (F. R. Moore 1988), but it is very widespread.
■ CHARM Common Hierarchical Abstract Representation of Music provides a way of looking
at music that is useful for musicological analysis (Wiggins, Harris, and Smaill 1989).
■ SCORE A music printing system developed over the last 30 years by Leland Smith, SCORE
can be used for high-quality printing of common music notation, tablature, and other nonstandard
musical formats.
■ DARMS This is an early, overly ambitious (flawed but interesting) music description language,
developed by Ray Erickson (1975) and Stephen Bauer-Mengelberg.
■ GUIDO An extensible text-based score representation language for notation software, com-
position, analysis, and performance developed by the Salieri Project at the Technical University
in Darmstadt (Hoos et al. 1998).
■ DMIX Developed by Daniel Oppenheim (1996), DMIX combines graphical sound editing,
algorithmic composition, computer programming, and real-time interaction and improvisation.
■ Kyma This is a sound specification language developed by Carla Scaletti (1991). It uses a gen-
eral specification of sounds as the building blocks of composition. “The structure of a composition
in this language is the set of traces left by the compositional process, that is, each composition
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contains within it a record of how it was composed. This record serves as one of the many possible
analyses of the composition” (Scaletti 1989, 43).
■ Max A graphical programming language developed by Miller Puckette, Max enables compos-
ers to create music-processing systems by connecting processing icons on a screen much the way
one would plug Moog or Buchla analog synthesizer modules together.

9.6 Delegating Choice

The agency of compositional choice (see figure 9.3) can be delegated from one person to another
or from a person to an objective process such as rolling dice.

9.6.1 Subjective Choice

A composer may delegate choice of musical elements to an assistant or amanuensis. This is a com-
mon practice, for example, among famous Hollywood movie composers. Although the head com-
poser may stipulate criteria, the actual composing is done by assistants. By delegating, the head
composer loses some control over the result.

Even if a composer writes every note in the score in minute detail, its realization will neces-
sarily include many chance elements introduced by the performer. Conventional rules for clas-
sical performance interpretation are just one of the uncertainties affecting the composer’s music.
Others include who performs it, the venue, the choice of instrumentation and equipment,
whether it is broadcast or recorded, other compositions on the program, their order in the pro-
gram, and so on. The composer’s instructions may be ignored altogether. Most of these uncer-
tainties remain even if the realization consists of playing prerecorded music. Of course, there
are many forms of music, such as American jazz, where uncertainty predominates because the
music is more-or-less improvised.

Even some classically trained twentieth-century composers experimented with delegating addi-
tional elements of the composition process to performers. An early piece of this type was Karlheinz
Stockhausen’s Klavierstük XI (1956), where the score for piano solo consists of 19 disjointed frag-
ments of music notation of varying lengths, placed on a large sheet of cardboard with plenty of
empty space between them. Stockhausen indicated that the performer should play the fragments
in any order “that catches his eye” and should also choose tempo, dynamic level, and type of attack
during the performance.

Other composers of that era, including John Cage, Earle Brown, and Pierre Boulez, devised
pieces that invite performers to determine some part of the structure of the music they are playing.
One can make an analogy between such open compositions and the mobile sculptures of Alexander
Calder (figure 9.4). Calder’s mobiles are fixed structures, but the parts can move relative to one
another. The possible shapes are determined by the artist, but virtually infinite configurations
are possible. The compositions of Stockhausen, Cage, Feldman, and others raised some serious
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questions about the future of Western classical music. Potter (1971) writes,

Many questions arise regarding formal openness: Is a composer abdicating his responsibility when he relin-
quishes formal control? Is formal determination an (the) essential task of the composer? Should a group of
unordered musical segments be considered a single piece? What purpose is served by allowing the performer
to order the material he performs? Is a listener aware of the formal openness? Should he be? Can a single per-
formance (live or recorded) be a self-sufficient artistic statement, or is more than one performance necessary
to expose the formal variation possible? (120)

Though these are excellent questions that deserve answers, I have a slightly different agenda to pursue
here, which will nonetheless lead back to these kinds of questions, but from a broader perspective.

9.6.2 Objective Choice

The time-worn approach to delegating choice to an objective process is to use dice or an urn of
numbered balls: a ball is pulled “at random” from the urn, and the color or number on the ball is
used to determine the choice. But more fanciful ways have been advanced specifically for com-
posing music by chance. Mauritius Vogt (1719) suggested a method of composing by bending hob-
nails into various shapes, then casting them on the ground and interpreting the rise and fall of the
music by the way the hobnails fell. William Hayes (1751) suggested that the composer spray ink
from a brush onto music manuscript paper, then add note stems, staves, barlines, and all the rest
according to signs drawn from a pack of cards.

In fact, any objective process can be used whether it is random or not. Employing chance as an
agent of choice has a very long history in human culture. For example, wind chimes and aeolian
harps harness random natural forces to create pleasing—dare I say musical?—sounds.

Have you ever used a coin toss to decide what to do? This can help get you unstuck if you are
truly undecided or really don’t care about an outcome. But after the coin was tossed, did you really

Figure 9.4
Alexander Calder mobile: Untitled, 1942 (Cat. A15493).
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follow the coin’s dictate, or did you back out and choose the outcome yourself after all? Perhaps
the coin’s choice just didn’t feel comfortable? A chance process is unlikely to make the same qual-
ity of choices that a person would. Actually, this could be good or bad. 

On the plus side, chance decisions can help prevent a student of composition from being over-
whelmed by the vastness of possible outcomes. Guido may have had this point in mind. Or a com-
poser might look to an objective process to suggest a novel direction to take to get past unconscious
biases. The composer Herbert Brün (1970) wrote about using computers to provide a random
choice-making element while composing:

Whereas the human mind, conscious of its conceived purpose, approaches even an artificial system with a
selective attitude and so becomes aware of only the preconceived implications of the system, the computers
would show the total of the available content. Revealing far more than only the tendencies of the human mind,
this nonselective picture of the mind-created system should be of significant importance.

The composer David Cope (1996) reported that overcoming composer’s block was one reason he
developed his ambitious Experiments in Music Intelligence (EMI) system (see section 9.24). The
results of a chance process can provide a welcome new perspective that gets a composer out of a rut.

On the minus side, pure chance has no regard for what a composer thinks or would prefer. Con-
straining pure chance so that it does what composers want (mostly) occupies a great deal of the
effort on automatic composing systems.

9.6.3 The Role of Interest in Music

Music is a delicate balance between what is familiar and what is surprising. And the ultimate source
of surprise is chance. But this approach is not without risk. A truly random process such as flipping
a coin displays neither skill nor taste at composing because it has no awareness of the music it is
being used to create. It does not, in and of itself, learn from its mistakes or make inferences about
its experiences. It does not favor particular outcomes, and as a consequence, its results have an
undesirable “wandering” quality.

If we want to incorporate chance into composition—and if we care about the interest of our
listeners—we must become students of interest and look for ways to increase the likelihood that
the choices made on our behalf are interesting, because without interest there is no music, only
noise. This problem was solved very cleverly in the antique automatic composing system
described in the next section.

9.6.4 Musikalische Würfelspiel

Whereas Guido’s composing method was intended to be driven by human choices, a related tech-
nique, Musikalische Würfelspiel, which arose during the European classical era, was intended to be
driven by a throw of the dice. The music engineering problem solved by this system was how to direct
unregarding chance operations to make musically suitable choices and compose interesting music.

In 1757 in Berlin, Johann Philipp Kirnberger published Der allezeit fertige Polonaisen und
Menuetten Komponist, roughly translated as “The Ever-Ready Composer of Polonaises and
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Minuets.” Like Guido’s, Kirnberger’s intent was to provide a simplified means of composing
music. In his preface Kirnberger states that the reader “will not have to resort to professional
composition.” Although using the technique required no musical training, it required consider-
able compositional skill to create it in the first place. Composers of preeminent stature, including
Wolfgang A. Mozart, Joseph Haydn, and C.P.E. Bach, developed Würfelspiel techniques (Potter
1971).

Because the aesthetics of the European classical era were so strict, it was possible to construct
a simple music-making game for composing minuets, trios, and other incidental works. The
method consisted of applying the outcome of throwing dice (or spinning a spinner, or similar
actions) to choosing which of several possible musical motives would be selected from tables of
precomposed musical figures. A well-formed piece of music in the classical style would result. The
reason that chance does not cause the resulting musical composition to wander is because the com-
positions are prestructured to be musically interesting by the master composers who set up the
tables.

Figure 9.5 shows a fragment of Würfelspiel minuet trios attributed to Joseph Haydn (O’Beirne
1968). Only the first two phrases of two of the six original minuet variations are shown, enough
to give an idea of how the method works. Variations a and b can be played as perfectly acceptable
minuet trios. But the composer cleverly arranged for all variations to have the same harmonic plan
and close-enough voice leading so that others could create new minuet trios by interleaving mea-
sures from any of the variations so long as they are taken in order across the page. We can create a
derivative variation, for example, by alternating measures of a and b, {a1, b2, a3, b4, a5, b6, a7, b8},
which sounds like a pleasant minuet trio.

Altogether, there are six variations of 16 bars in the full score, which by the rule of enumeration
would mean there are 616 variations. However, because some of the measures are identical in some
of the variations, there are actually “only” 940,369,969,152 enumerations. O’Beirne (1968) lays

Figure 9.5
Musical dice extract, attributed to Joseph Haydn.

{

{

a1 a2 a3 a4 a5 a6 a7 a8

b1 b2 b3 b4 b5 b6 b7 b8
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out the case for Haydn’s authorship in an article that publishes all six of these minuet trios in full.
He writes that if attribution to Haydn is correct, “One question remains: have we found one new
Haydn item? or six? or—in view of the intended permutation possibilities—something more like
1,000,000,000,000 new Haydn trios!”

There was one other ingredient in the typical Würfelspiel setup: the measures were not laid out
as obviously as in figure 9.5. Instead, the variations were chopped up into one-measure chunks and
entered in an indexed table in random order. This served no purpose other than to obscure the
underlying mechanism, to make the process seem more “magical” to the user.

Componium Diedrich Nikolaus Winkel (1773–1826), rightly the inventor of the metronome
(see section 2.6.2), is credited as the first to construct an automated music composing machine.
(Tiggelen 1987; Buchner 1956). In fact, it seems likely that what he did was to adapt elements of
Kirnberger’s Würfelspiel idea to mechanical form. Winkel’s Componium is basically a barrel
organ, an orchestrion, like the ones used to accompany merry-go-rounds. These instruments
encode music by pins protruding from the surface of the barrel that key organ pipes or other musical
instruments to play as the drum rotates.

Unlike a standard orchestrion, the Componium was equipped with a second barrel (see figure 9.6).
The first barrel encodes several variations of short musical works. A few barrels survive, containing
works by Mozart, Moscheles, and Spohr. The second barrel, in conjunction with a complicated gear-
ing apparatus, determines which of the variations will be played from measure to measure, providing
a large enumerative set of possible compositions.

Figure 9.6
Componium of D. N. Winkel. (Buchner 1956.)
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Origins of Würfelspiel Würfelspiel emerged from the era in which probability calculus was pio-
neered by Blaise Pascal and work on permutations and combinations was done by Jacob Bernoulli.
Gerigk (1934) writes,

This sort of musical game was in the air in the second part of the eighteenth century, though clearly regarded
as entertainment only. This is, e.g., expressed by Kirnberger, whom we should also regard as the father of
musical literature of this sort in the preface to his composition of this kind (1757). Every game is after all a
mirror of the ideas of the times: the rationalistic epoch considers the possibility of mechanical composition.

Many systems of this type were published, including one by Peter Weleker in London in 1775
under the amusing title, A Tabular System Whereby Any Person without the Least Knowledge of
Musick May Compose Ten Thousand Different Minuets in the Most Pleasing and Correct Manner,
which seems to follow Kirnberger’s lead (Köchel 1862).

Turning the Tables Würfelspiel uses chance as an alternative to personal choice for decisions
we do not wish to make or cannot make ourselves. But there are many other reasons to use chance
as a source of choice.

The American composer John Cage (1961) was well known for using chance techniques and
purposeful silence in his compositions. The way in which he incorporated chance operations in the
act of composition invited natural forces to speak directly through his music. Of course, the idea
of appreciating the aesthetics of natural forces channeled through the arts did not originate with
Cage. We listen to wind chimes and aeolian harps for much the same reasons. Some forms of
Japanese painting utilize imperfections in the paper to the same end.

For another example, Santillana and von Dechend (1969), in their landmark work Hamlet’s Mill,
discuss several games from ancient times in which the choice of piece to be moved in chess, for
instance, was determined by a throw of the dice. Called “The Game of the Gods” or “Celestial
War,” these games are documented in texts dating from the fourteenth and fifteenth centuries in
India and China.

Chance as Oracle In life, we are affected by natural forces that are beyond our ability to predict
and that appear to be utterly random. We observe the effects of our own willful actions and presume
by analogy that random natural events can be seen as the “will” of natural forces acting upon us.
We externalize our personal will and project it by analogy onto a “cosmic will.” If we ourselves
deliberately generate chance occurrences such as by throwing coins, we can endow the outcome
with prophetic value because the chance occurrences are presumably in alignment with this same
natural “cosmic will.” Perhaps this idea explains why chance is the basis of oracular methods such
as Tarot card readings and the Chinese oracular text, the I Ching.3

At the root of these oracular methods is the belief that the chance processes on which they are based
are synchronized with the “cosmic will”: the same force that determines outcomes in our lives deter-
mines the chance process used by the oracle. The psychologist Carl Jung coined the word synchro-
nicity, which he defined as “meaningful coincidence.” This is a purely descriptive term that denotes
an association between an objective event and its subjective significance; Jung did not imply a
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necessary causal association between an objective event and any personal subjective meaning. Of
course, many people through the ages have believed that they (or their local soothsayer) knew how
to interpret the synchronistic thread between an event and its subjective meaning. But interpreting
an oracle requires a way of decoding the message that is supposedly implied by the “cosmic will.”
As the histories of supplicants at Delphi can attest, this is generally very difficult to do.

However, even if we don’t use an oracle in an interpretive way, we can still consider that chance
operations incorporated into an art form allow nature to speak to us through that art, and we can
appreciate the message aesthetically even if we don’t claim to understand it.

9.7 Randomness

Randomness is literally in the eye of the beholder. We can derive randomness from any natural pro-
cess, such as the flood tides of the Nile, drawing numbered balls from an urn, the motion of wind
or waves, the distribution of ink splotches on a page, the motion of atoms near an electrode, or
throwing dice.

Heitor Villa-Lobos used the skyline of New York City to create the melody for his composition
New York Skyline. John Cage composed Atlas Eclipticalis using astronomical charts. Charles
Dodge used fluctuations of the earth’s magnetic field to create a large work of electronic music
titled The Earth’s Magnetic Field.

Are the New York skyline, the contents of astronomical charts, and fluctuations in the magnetic
field random processes? Aren’t building heights in New York a function of the building codes?
Isn’t the distribution of stars a function of the laws of gravitation? True, but the central question
is epistemological, not physical: can we determine a formula that exactly characterizes the phe-
nomenon? If not, it is a random process to the observer. Note that this implies there is no random-
ness without an observer.

9.7.1 What Constitutes Randomness?

The crucial characteristic of useful random processes is that chance events must be independent
of each other. By independent I mean that even knowing a very large set of outcomes does not help
us guess any other outcomes. If the outcomes of a random process are absolutely independent, then
the process is infinitely random and aperiodic. Such a sequence constitutes an inexhaustible source
of surprise and novelty.

A random process can be viewed as distributed in time or in space. For example, the location
of stars in the night sky constitutes a very slowly changing random function of position, one that
evolves over millions of years. More typically, we examine the sequential outcomes of a spatially
localized random process like a coin toss, which we view as a function of time. This in turn suggests
additional qualities of a random process:

■ Uniform distribution Does the sequence enumerate all possible outcomes? Are all values more
or less equally likely, or are some regions favored over others? 
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■ Uniformity over ranges What are the permutational characteristics of the sequence? Are there
patterns in the data—ranges of numbers that resemble each other in some predictable way? Are
subsequent values correlated somehow with previous values?
■ Uniformity over frequency What is the rate of change of values in the sequence? Do the mag-
nitudes change slowly or quickly? If magnitudes change quickly, the data form a jagged series of
abrupt peaks and valleys, corresponding to high frequencies. If magnitudes change slowly, the next
number in the sequence won’t be very far from previous values, and the data form a smoother, less
jagged curve, corresponding to low frequencies.4

9.7.2 Pseudorandomness

Computers can only execute methods that are strictly algorithmic, and the effectiveness require-
ment for algorithms rules out anything that depends upon unknowns; hence computers cannot be
a source of true random sequences by design. If a computer ever did anything genuinely random,
it would have to go in for repairs. Nonetheless, mathematicians have spent a fair amount of effort
trying to develop computable sources of randomness. John von Neumann (1963), mathematician
and pioneer in computer science, recognized this contradiction and is widely quoted as having said,
“Anyone who considers arithmetical methods of producing random digits is, of course, in a state
of sin.” This is a droll remark, coming as it does from a pioneer of deterministic methods of gen-
erating random numbers.

By the principle of independence, we only know that a sequence is perfectly random if it never
repeats its choices in whole or in part. But in practice a sequence does not have to be perfectly ran-
dom to be useful. It need only be “random enough” to surprise us. So randomness is essentially
an empirical criterion that we use to characterize processes we can’t predict.

Although computers can’t generate pure random sequences, there are numerical techniques that
allow computers to generate number sequences that are “random enough” for practical use. How-
ever, all such computer-generated sequences eventually repeat, so they are pseudorandom. I
present a simple but effective approach to generating pseudorandom numbers in section 9.7.3, but
a brief digression into polynomials is required first.

Polynomials We can express any number N as a polynomial of integers in base b, for instance,
123 in base 10, written as

123 = (3 × 100) + (2 × 101) + (1 × 102).

The ratio of some numbers in some bases produces an infinite polynomial expansion, such as 

 = (3 × 100) + (3 × 10−1) + (3 × 10−2) + . . . = 3.33333. . . .

Sometimes a cyclic polynomial is produced, such as

 

10
3
------

13
7

------ = 1.857142857142 . . .
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Irrational numbers represented as polynomials in any base produce an infinitely noncyclic
sequence of digits. For instance, the irrational number π = 3.1415927 . . . shows no apparent pattern
in its infinite polynomial expansion. New techniques are available to calculate arbitrary digits of
π with good efficiency and without having to know the preceding digits, making this a possible
source of random values.5 We can calculate successive random digits from the fractional values
of an irrational number. Cyclic polynomials are quite easy to calculate, and we can generate
sequences that are quite long and have good uniformity.

Converting Polynomials to Digit Sequences We can convert any polynomial sequence into
a  sequence  o f  d ig i t s  as  fo l lows .  For  some rad ix  base ,  b ,  l e t  f  be  a  f rac t ion :
f = a1b−1 + a2b−2 + . . . + anb−n. All the values of a must lie within the radix, that is, they must
satisfy . (For instance, the decimal system has radix 10, and so values must lie between
0 and 9.) If we multiply the fraction f by b, we will shift the first fractional digit, a1, out of the
fraction and into the units place: 

. 

In this way we have isolated a1 in the units place. If we repeatedly multiply the result of the pre-
vious step by b, we push the next digit out of the polynomial’s fractional value into the units place.
For example, let f = 0.2615, and b = 10:

We can use this technique to extract successive digits to form random number sequences.

9.7.3 Linear Congruential Method

Equation (9.1) shows the linear congruential method for generating random numbers, introduced
by D. H. Lehmer in 1948 (Knuth 1973, vol. 2):

, . (9.1)

The notation ((x))n means “x is reduced modulo n.” The result is the remainder after integer division
of x by n (see appendix A).

Equation (9.1) is a recurrence relation because the result of the previous step (xn) is used to cal-
culate a subsequent step (xn+1). It is linear because the ax + b part of the equation describes a
straight line that intersects the y-axis at offset b with slope a. Congruence is a condition of equiv-
alence between two integers modulo some other integer, and refers here simply to the fact that
modulo arithmetic is being used.

0 ai b<≤

bf = a1 + a2b 1– + a3b 2– + . . . + anb n– +1

0.2615 . 10 = 2 .615

2.615 . 10 = 2 6.15

26.15 . 10 = 26  1.15

261.5 . 10 = 261 5.0

xn+1 = axn b+( )( )c n 0≥
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For successive computations of x, the output will grow until it reaches the value c. When c is
exceeded, the new value of x is effectively reset to x – c by the modulus operation. A new slope
will grow from this point, and this process repeats endlessly.

The result can be quite predictable depending upon the values of a, b, c, and x0. For instance,
if a = b = x0 = 1, and c = ∞, an ascending straight line at a 45° slope is produced. However, for other
values, the numbers generated can appear random.

In practice, the modulus c should be as large as possible in order to produce long random
sequences. On a computer, the ultimate limit of c is the arithmetic precision of that machine. For
example, if the computer uses 16-bit arithmetic, random numbers generated by this method can
have at most a period of 216 = 65,536 values before the pattern repeats.

The quality of randomness within a period varies depending on the values chosen for a, x, and b.
Much heavy-duty mathematics has been expended choosing good values (Knuth 1973, vol. 2).
For 32-bit arithmetic, Park and Miller (1988) recommend a = 16,807, b = 0, and c =
2,147,483,647.

The linear congruential method is appealing because once a good set of the parameters is found,
it is very easy to program on a computer. The LCRandom() method returns a random number by
the linear congruential method each time it is called:

//Constants from Park and Miller
Constant Integer a = 16807; // a, b, c and x are global constant values
Constant Integer b = 0;
Constant Integer c = 2147483647;
Integer x = 1; // x stores the value produced by

// LCRandom between invocations

Integer LCRandom(){
x = Mod(a * x + b, c); // update x based on its previous value
Integer r = x; // x may be positive or negative
If (r < 0) // force the result to be positive

r = -r;
Return(r);

}

The parameters a, b, and c are constant (time-invariant) system parameters. Parameter x is ini-
tialized in this example to 1, but it can be initialized to any other integer. The value of a * x + b
is calculated, the remainder is found modulo c, and the result is reassigned to x.

While the value of x is less than c, x grows linearly. When the expression a * x + b eventually
produces a value beyond the range of c, then x is reduced modulo c. The random effect of this
method comes from the surprisingly unpredictable sequence of remainders generated by the mod-
ulus operation, depending upon careful choice of parameters.

The calculation of x ranges over all possible positive and negative integers smaller than the
value of ±c. But it is generally preferable to constrain its choices to a range. To make this con-
version easier, we force the result to be a positive integer.
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Seeding the Random Number Generator Unlike the natural sources of randomness, LCRandom()
will always produce the same sequence with the same initial parameters. Different sets of pseu-
dorandom sequences can be generated by varying the initial value of x, as with the following
function:

SeedRandom(Integer s) { x = s; } // set global variable x to seed s 

This function allows us to set the initial value of x. If we initialize x to a parameter such as the cur-
rent time in seconds from some fixed moment, then we start at a different place in the pseudoran-
dom cycle each time (although, of course, this is finite, too, because the sequence length is
necessarily limited).

The linear congruential method is simple and efficient, but it is hardly the best source of random
values. Even ignoring the fact that it repeats, its uniformity is not wonderful. Knuth (1973, vol. 2)
cautioned, “Random number generators should not be chosen at random.” For superior techniques,
see Press et al. (1988, 210). However, this method is very simple to implement and has the advan-
tage over natural random processes of providing the same pseudorandom sequence if seeded with
the same values.

Random Real Numbers The LCRandom() method returns integers between 0 and c. It is
straightforward to map its output to any range of Real values between an upper bound U and a
lower bound L:

Real Random(Real L, Real U) {

Integer i = LCRandom(); // get a random integer value
Real r = Real(i); // convert it to a real value
r = r/Real(c); // scale it to 0.0 <= r < 1.0
Return(r * (U - L) + L); // scale it to the range L to U

}

First, we use LCRandom() to get a random integer. Recall that LCRandom() forces the result
to be positive. We promote its random integer result to Real and store it in r. Next, we divide it
by c so its range is 0.0 <= r < 1.0. Finally, we scale it by the difference between U and L,
and add L, so that the random value is bounded above by U and below by L. That way we can get
a random result from a particular range of values that we can stipulate.

Random Integer Numbers Scaled to an Arbitrary Range We can adapt the Random()
function to return integers within a specified integer range. When a real value is converted to an
integer, we truncate (discard) the fractional part, leaving the integer part. For example,

Real x = 3.14159;
Integer i = Integer(x);
Print(i);

prints 3. Truncation is equivalent to the floor function, written .3.14159 = 3
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Here is a method to generate integer random values over an integer range.

Integer Random(Integer L, Integer U) {

Real rL = L; // convert L to Real
Real rU = U + 1.0; // convert U to Real, add 1.0
Real x = Random(rL, rU); // get a real random value
Return( Integer(x)); // return it as an integer

}

Note that I added 1.0 to the upper real boundary. Truncation of the random result necessitates
slightly increasing the top end of the range of choice. For example, in order to choose a value in
the integer range 0 to 9, we must generate a random real value x that lies in the range 0.0 ≤ x < 10.0.
This gives an equal chance of obtaining an integer in the range 0 to 9.

9.8 Chaos and Determinism

Dynamics is a field of classical mechanics that studies how force affects motion of material bodies
through time. A system is dynamical if its subsequent state depends upon its current and previous
states. A flying airplane is an example of a dynamical system. Suppose xn represents the current
position of an airplane, and xn+1 represents its next position. Then the relation between these two
positions, 

, (9.2)

is dynamical because its subsequent state (xn+1) is a function f of its previous state (xn). Equation (9.2)
is another example of a recurrence relation because it shows the relation between subsequent
values of a function.

A dynamical system may depend upon its current inputs as well as its past outputs. For exam-
ple, the airplane’s position will also depend upon the operation of its controls and the forces of
the air.

A system is deterministic if every cause has a unique effect. The uniqueness requirement goes
from cause to effect but not necessarily from effect to cause. For example, the function  is
deterministic because y can be predicted given x, but one can’t necessarily deduce x given y because
there may be two choices.

Because the LCRandom() method is a deterministic way of generating what appear to be ran-
dom values, it is a chaotic system. The term chaotic has been taken by physicists to mean a deter-
ministic system that appears to be random, such that it is impossible to make long-range
predictions about its behavior. Although it repeats over large spans of time, a simple system like
LCRandom() can behave so unpredictably in the short run that it would be very difficult to deduce
its rather simple generating structure from its output alone.

A chaotic system is one that we know to be deterministic but that appears to be random. A truly
random system is nondeterministic. Therefore, pseudorandom systems are chaotic, not random.

xn+1 = f xn( )

y = x2
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9.8.1 Sensitivity to Initial Conditions

A key characteristic of chaotic systems such as LCRandom() is their sensitivity to initial condi-
tions. Even the smallest changes to variable x, the random seed, can lead over time to totally dif-
ferent behaviors of the system to a point where the differences far overshadow the similarities.

Natural examples of chaotic dynamical systems include the earth’s atmosphere and the vibrations
of virtually all sources of musical sound, such as the scrape of a bow on the strings or the turbulent
flow of air from the player’s lips over the fipple of a flute. Small differences in initial conditions can
be amplified by such systems to such an extent that any error in measuring the initial conditions can
render any long-range forecast of system behavior wildly inaccurate, even if there is no further dis-
turbance to the system. The weather from day to day is never exactly the same. Notes played on a
flute, though they may sound alike, are never exactly the same. Our ears gloss over these differences,
hearing sound categorically. But if we wish to understand the precise mechanism of a dynamical sys-
tem so as to accurately predict its behavior over time, the initial conditions must be known exactly.

By using more accurate measurements on such natural systems, we can reduce but not eliminate
measurement uncertainty. But only if we measured with infinite precision—an impossible
task—would we be able to eliminate all uncertainty, and only then would the initial conditions allow
us to obtain utterly predictable behavior from a model of a dynamical system. The implicit Western
scientific assumption has been that we can continue to shrink the uncertainty of a dynamical sys-
tem’s outcome by measuring its initial conditions with ever greater precision. Thus, we assume that
more nearly perfect predictions could be made by supplying more precise initial conditions.

However, through the work of the mathematician Henri Poincaré (1854–1912), we know that
there are systems whose long-term predictions are not improved by increased precision of the ini-
tial conditions. While studying the gravitational influences of three bodies upon each other, he dis-
covered that under certain circumstances, even if the initial uncertainties are infinitesimal, the
predicted outcomes can be so different that the deterministic prediction is really no better than if
the prediction had been made by chance. This is how sensitivity to initial conditions is tied to the
appearance of randomness.

To illustrate this point, Edward Lorenz (1972), another pioneer in chaos theory, wrote a paper
titled “Predictability: Does the Flap of a Butterfly’s Wings in Brazil Set off a Tornado in Texas?”6

Unlike the debate about the number of angels that can dance on the head of a pin, the answer to
Lorenz’s question (yes) has dramatic consequences for the limits of epistemology. Many if not
most of the basic systems in life, such as the weather, are chaotic dynamical systems, and we are
unable to predict the long-range behavior of any such system whose initial conditions we don’t
know with infinite precision. Alas for the human condition, this explains why we are blind to the
future until it is upon us. This is the glass cage that confines our Faustian desires.

9.8.2 Complexity Theory

Complex dynamical systems such as clouds can be seen from a reductionistic perspective as
merely disorganized collections of water droplets. However, these systems also have an evident
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self-organizing flow. For example, the shape of a cloud will grow and transform in a manner that
reveals an emergent internal structure. We can summarize this by saying that unconstrained com-
plex dynamical systems have a natural and innate tendency to move toward complexity.

A complex system contains elements that are both differentiated (specialized or compartmental-
ized) and integrated (connected or unified) on all levels of scale. Its complexity comes about through
the interaction of internal and external constraints. For example, the internal constraints of a cloud
are the molecular forces of the air and water, and the external constraints are the winds that drive
it. The internal constraints of the brain are the synaptic connections, and the external constraints are
the flow of information from outside events and other minds. The internal constraints of music are
the criteria of musical perception and cognition, and the external constraints are the flow of expec-
tation from musician to listener and the return flow of interest from listener to musician.

When a system is not in complexity, it tends toward monotony (saturated integration) or cacoph-
ony (disintegration).

What benefit does complexity provide to a system? Why do clouds not make geometric pat-
terns in the sky or devolve into utter randomness? The reason is that when a system moves toward
complexity, it is in its most stable, adaptive, and flexible state. When a brain is stuck in linear
thinking or lost in confusion, it may not thrive. When music is not in complexity, we stop lis-
tening.

These characteristics of self-regulation are cornerstones of healthy responsiveness to life and
mental well-being. How appropriate that stability, adaptability, and flexibility are also hallmarks
of successful music. How interesting it is that these qualities emerge through the dynamic inter-
play of differentiation and integration on all levels of scale in a musical work. How natural it
seems to think of music as embodying these core principles of stamina and health. Here is the
foundation for a music theory that weaves together information theory, chaos theory, complexity
theory, cognitive psychology, and nonlinear dynamics in a way that honors music’s therapeutic
capacities.

9.9 Combinatorics

The discussion now shifts to more practical concerns. If composing is about methodologies of
choice, it is worth wondering about the range of choices that various musical systems provide to
the composer. These questions are studied by the field of combinatorics.

As the name suggests, combinatorics is the study of how sets can be combined in patterns. This
includes enumerating all the possible permutations of a set. Some musical questions opened up by
combinatorics include the number of orderings of musical motives within a scale, the total number
of diatonic scales, and the number of possible melodies of a certain length. In the early twentieth
century, composers of the second Viennese school associated with Arnold Schoenberg borrowed
ideas from the mathematics of combinatorics to construct a radically different kind of music
than had ever been heard before. This brief study of combinatorics leads to an overview of their
techniques.
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9.9.1 Enumeration

If we examine the possible outcomes of Guido’s method, we see that there are three choices at each
step. For a one-vowel text there are 3 possible one-note melodies; for a two-vowel text, there are 32 mel-
odies of two notes; and for an N-vowel text there are 3N melodies. Thus the number of possible melodies
grows exponentially for longer texts (figure 9.7). This demonstrates the principle of enumeration:

If there are m outcomes of operation 1, and then n outcomes of operation 2, the composite num-
ber of outcomes of operation 1 followed by operation 2 is m times n.

For instance, for Guido’s method, m and n are both 3. So for step 2, the number of outcomes is
3 . 3 = 9 (see figure 9.7).

Enumerating the possibilities of something means itemizing all possible outcomes. Counting all
such outcomes is to enumerate them. For instance, how many 12-note melodies can be formed from
the dodecaphonic scale? By the principle of enumeration, there are 12 possibilities for the first
note, and then 12 possibilities for the second note, and then . . . through 12 steps. So the answer
is 12 ⋅ 12 ⋅ 12 ⋅ . . . = 1212 ≈ 8.9 × 1012, which is nearly nine trillion. The set of melodies includes,
for instance, the ascending and descending chromatic scales, the first 12 notes of Antonio Carlos
Jobim’s One Note Samba transposed to all 12 pitches, and the first 12 pitches of every part of every
symphony, and opera that has ever been written, or could ever be written, in a dodecaphonic scale.
There are more 80-note chromatic melodies than there are subatomic particles in the universe
(assuming there are 1080 or so such particles). I suppose this makes it pretty unlikely that future
composers will run out of material to work with!

9.9.2 Permutation

The principle of enumeration answers the question, How many total outcomes are possible? The
principle of permutation answers the question, How many unique orderings are possible?

For instance, how many ways are there to order the sequence, a, b, c? We find out by swapping
the elements around until we run out of unique orderings. Let’s use the method where we swap the
last two elements, then the previous two elements, and so on (figure 9.8). We can create six per-
mutations this way before the reordering procedure recreates the original ordering. So there can
be six permutations of three things. But how could we discover the number of possible permuta-
tions without having to reorder and inspect them?

Figure 9.7
Guido’s method expressed as a tree of possibilities.

...

Start � 30

1st note choice � 31

2d note choice � 32

Nth note choice � 3
N

...

loy79076_ch09.fm  Page 307  Wednesday, April 26, 2006  4:33 PM



308 Chapter 9

Let’s find the solution through another musical example. How many unique 12-tone rows
are there in the set of dodecaphonic scales? Recall that when we enumerated all the 12-note
melodies, we could pick from all 12 pitches at every step. That led to melodies with repeated
notes. But a tone row is defined as a melody of 12 nonrepeating pitches, so we must exclude
whatever pitch is chosen from subsequent choices. We can choose from 11 pitches for the sec-
ond note, 10 for the third, and so on. Otherwise, the process is just like enumeration. Thus
the number of unique orderings is 12 ⋅ 11 ⋅ 10 ⋅ 9 ⋅ . . . = 12! ≅ 4.7 × 108, or slightly more than
470 million 12-tone rows in the dodecaphonic system. As one might expect, there are substan-
tially fewer permutations of 12 tones than there are enumerations of them. Thus there are n!
permutations of n objects. Going back to the first example, there are 3 ⋅ 2 ⋅ 1 = 6 permutations
of three objects.

9.9.3 Circular Permutation

A circular permutation, or rotation, occurs when the element at one end is lopped off and attached
to the other end circularly (figure 9.9). There are n circular permutations of n objects. Rotation can
be to the left or right by one or more places.

Here is a method that rotates a list by an arbitrary number of places either to the right or left:

Rotate(IntegerList Reference f, Integer n, Integer i = 0){

n = Mod(n, Length(f)); //constrain rotation to length of list

Figure 9.8
Permutation of three objects.

Figure 9.9
Example of circular permutation.

a b c
a c b
c a b
c b a
b c a
b a c
a b c

Original
order
returns

6

a b c
b c a
c a b
a b c

3
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Integer x = f[i]; //store f[i] for use after recursion
If(i < Length(f)–1) // reached the end?

Rotate(f, n, i+1); // no, call Rotate() recursively

// continue from here when the recursion unwinds
Integer pos = PosMod(i+n, Length(f)); // index list modulo its length
f[pos] = x;  // assign value of x saved above

}

This example uses recursion to perform its function. It takes three arguments, a list f, the number
n of positions to rotate by, and i, the index for where to begin, usually set to zero. If n is positive,
the list is rotated to the right that many places; if n is negative, the list is rotated that many positions
to the left. The first step is to constrain n modulo the length of the list so that any amount of rotation
can be handled.

The declaration IntegerList Reference f requires a bit of explanation. We want
Rotate() to modify the list that is supplied. But functions are ordinarily supplied only with cop-
ies of the value of the actual arguments (see appendix B, B.1.22). The word Reference in the dec-
laration tells MUSIMAT that it should supply Rotate() with the actual variable named when the
function is invoked. Thus changes to the list handed to Rotate() will persist after the function
is finished.

We need to make sure the variable pos stays within the range of valid list elements, which nat-
urally suggests the use of Mod(), except that Mod() can return negative values. But list indexes
must be strictly positive. So we use a function called PosMod(), which returns only the positive
wing of modulo values (see appendix A.6).

Table 9.3 shows left and right rotation by various amounts for a list L defined as

IntegerList iL = {0, 1, 2, 3, 4, 5}; 

9.9.4 Partitioning

Suppose we want to create a 12-tone row consisting of the 12 pitches partitioned into three motives
of six notes, three notes, and three notes each. How many different motives could there be? Clearly,

Table 9.3
Left and Right Rotation

Rotate(iL, –n, 0) Rotate(iL, n, 0)

n = −0

n = −1

n = −2

n = −3

n = −4

n = −5

n = −6

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5 

0 

1 

2 

3 

4 

5 

n = 0

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

0

5

4

3

2

1

0

1

0

5

4

3

2

1

2

1

0

5

4

3

2

3

2

1

0

5

4

3

4

3

2

1

0

5

4

5 

4 

3 

2 

1 

0 

5 
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the total number of unique tone rows is still 12!. But the number of unique motives should be fewer
than 12! because the tone row space is divided into groups.

Here’s a possible way of doing it: 

1. Assign pitches to the motives. For instance, assign pitches C–F to the six-note motive, pitches
F# – G# to the first three-note motive, and pitches A–B to the second three-note motive.

2. Order the pitches in the first motive.

3. Order the pitches in the second motive.

4. Order the pitches in the third motive.

We don’t know how many outcomes are possible for step 1 yet, so let’s call this the unknown, x,
for now.

Steps 2, 3, and 4 are ordering operations. Because ordering operations are permutations, there
are 6!, 3!, and 3! orderings in steps 2, 3, and 4, respectively.

Note that steps 1–4 enumerate the steps of creating a tone row according to the motivic arrange-
ment. Remembering the rule for enumeration, that means the total number of unique tone rows
would be 6!3!3!x. But since the total number of unique tone rows is 12!, we can equate these
two pieces of information, yielding 6!3!3!x = 12!. Solving for x yields the number of unique
motives:

. (9.3)

Thus 12 pitches can be partitioned into 55,440 motives of three subsets of six, three, and three
notes. The rightmost term in (9.3) shows how partitioning is notated. It is read as “the number of
ways 12 objects can be partitioned into groups of six, three, and three.”

Generalizing from this particular solution, we can express partitioning N objects into p subsets
of rp elements as

. Partitioning (9.4)

9.9.5 N Objects R at a Time

Suppose we select seven pitches from the 12 semitones and order them into a seven-note melody.
How many such melodies are there? How many ways are there to select seven notes out of 12?
We can think of this as a kind of partitioning because ordering the melody partitions it into eight
subsets: the first note, the second note, and so forth, up to the seventh note. The eighth subset is
the unchosen pitches out of the original 12, which is 12 – 7 = 5 pitches. So we can use the parti-
tioning formula, (9.5), as follows:

, 

x = 12!
6!3!3!
--------------- = 55,440 = 12

6, 3, 3 
 

N
r1 r2 r3 . . . rp, , , , 

  = N!
r1!r2!r3!. . . rp

-----------------------------------

12
1 1 1 . . . 5, , , , 

  = 12!
5!

-------- = 3,991,680
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that is, 3,991,680 melodies of 12 pitches taken seven at a time. Because 5! = (12 – 7)! we can
express the same thing this way:

.

This is convenient because 12 represents the total number of elements and 7 represents the size of
the partition. Abstracting based on this example, in general there are

(9.5)

permutations of n objects taken r at a time.

9.9.6 Combinations

How many seven-note scales are there in the 12 pitches of the dodecaphonic system? This is like
taking N unordered objects R at a time. It seems reasonable to expect that there will be fewer scales
of seven pitches than melodies of seven pitches because melodies can repeat a note whereas scales
cannot.

We divide the pitches into two groups: seven chosen pitches, and five unchosen pitches. By (9.4),
there must be

,

or 943 such scales. This is a rather large number in comparison to the dozen or so of those com-

monly in use. So, in general, a partitioning of  possible outcomes equals  actual

outcomes.
This is used commonly enough to have its own notation and is usually written

. Taking n Unordered Objects r at a Time (9.6)

9.10 Atonality

Combinatorics can guide us to a deeper understanding of the compositional aims of atonal music.
I examine this in some depth because composers of atonal music pioneered the use of explicit
compositional methodology to a degree that had not previously been attempted in music. Thus
atonal music is a fruitful field of study for compositional methodology.

In the early part of the twentieth century, Arnold Schoenberg, Alban Berg, and Anton Webern,
the composers of the so-called second Viennese school, developed a compositional method based
on note patterns that contain all 12 pitches (see section 3.16).

12!
12 7–( )!

--------------------- = 3,991,680

n!
n r–( )!

------------------

12!
7! 12 7–( )!
---------------------------

n
r n r–, 

  n!
r! n r–( )!
----------------------

n!
r! n r–( )!
---------------------- = n

r 
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In Schoenberg’s original method, each composition was organized around a particular ordering
of the 12 pitch classes of the chromatic scale that he called a tone row (see section 2.4). No pitch
appears more than once within the row, so none of the 12 pitch classes is favored. Schoenberg’s
idea was to use this method to remove any vestiges of tonal harmony from his music, hence to com-
pose atonal music. 

For example, the row shown in figure 9.10 appears in Schoenberg’s Fantasy for Violin and
Piano, Opus 47. The pitch classes can be numbered in two ways:

■ Absolute pitch numbers, indexed by chromatic half steps above C
■ Relative pitch numbers indexed by half steps from the first pitch in the row

Relative indexing has some advantages that will become evident later, so I use that from now on. 
The basic method is as follows. Each time a new tone is needed in the composition, the com-

poser picks the next pitch class in the row, circling back to the first pitch class when the list is
exhausted.

Since the primary aim is to remove tonal references, and other considerations are secondary, the
way in which each pitch class is projected into the composition is left up to the composer. The pitch
classes can be freely applied to any octave, assigned to any instrument, and given any desired
dynamic level, rhythmic value, or performance articulation. Some pitch classes derived from a row
might be used to generate a musical line while others might be used to spell a chord, for example.

The tone row and the plan for how it is to be projected into the composition are separate steps
taken prior to actual composing. This planning stage is called precomposition. The following sec-
tions describe some of the theory of sets and sequences upon which atonal music theory is based.

9.10.1 Series

In general, a set is an unordered collection of any size. A series is a particular ordering of a set.
A tone row is a series based on a set of pitch classes (Forte 1973). A tone row may contain all or

Figure 9.10
Tone row for Schoenberg’s Fantasy for Violin and Piano, Opus 47.

A A B F G D E C D G F

0 11 3 1 7 9 5 6 2 4 10 8

10 9 1 11 5 7 3 4 0 2 8 6

C

m2: D# - E
M2: C - D
m3: 
M3
P4
TT

P5
m6
M6
m7
M7

Absolute:

Relative:
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part of the available pitch classes. Since the distinguishing characteristic of each pitch class is its
chroma (see figure 6.5), the pitch classes can be characterized circularly (figure 9.11).

There are over 470 million 12-tone rows in the dodecaphonic system (see section 9.9.2). If we
add to this all rows of less than 12 tones, there are a great many more. But many of them share char-
acteristics that make them seem related. How can we tell them apart, and how can we characterize
their similarities?

For example, consider the set of pitch classes {4, 6, 7, 10}. By octave equivalence as well as by
circular permutation, we could relate this set to the sets {6, 7, 10, 4}, {7, 10, 4, 6}, and {10, 4, 6,
7}. These sets are equivalent except for their starting points (figure 9.12). They are equivalent
under circular permutation. It would be nice to give them a name that reflects their equivalence.
We could name the whole collection after just one of them, but which of these permutations should
we consider to be the principal one?

Since the distinguishing characteristic of a row is the placement of different-sized intervals, let’s
arbitrarily make a rule that the normal form of a set lists the pitch classes in ascending numeric
order (corresponding to counterclockwise motion around the circle) in the intervallically most
compact form. A set is most compact whose interval size between the first and last pitch class is
smallest, modulo 12. For example, with the preceding set permutations, and using the notation

 to denote x modulo 12, we have

Figure 9.11
Chroma.

Figure 9.12
The set {4, 6, 7, 10}.

1

0

2
34

5

6

7
8 9 10

11

1

0

2
34

5

6

7
8 9

11
10

x( )( )12

{4, 6, 7, 10} {6, 7, 10, 4} {7, 10, 4, 6} 10, 4, 6, 7{ }

10 4–( )( )12 = 6 4 6–( )( )12 = 10 6 7–( )( )12 = 11 7 10–( )( )12 = 9
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Because the order {4, 6, 7, 10} yields the smallest difference (6) between first and last pitch, this
is the normal form for this set. The name for this set of permutations is then [4,6,7,10]. (The set
name is written with brackets and commas without spaces.) This is the way to name all sets that
are equivalent under circular permutation.

If multiple orderings tie for compactness, we need another rule to break the tie. In this case let’s
make a rule that the normal form for a set is the one most compact to the left. So, for example, for
the set {0, 3, 6, 7, 9},

so we name this set [6,7,9,0,3].
If a set is so regular that there is no tie breaker, then pick the ordering that begins with the low-

est number. For example, {2, 6, 10} has permutations {6, 10, 2} and {10, 2, 6}. Name this one
[2,6,10].

Let’s denote the operations required to normalize a set as N(x), where x is the set to be normal-
ized. Then, for example, we can write

.

Set Classes In the previous example, several sets were seen to be related in an algorithmic way
(by circular permutation), so we grouped them together under the name of one of the sets that had
a particularly elegant form: [2,6,10]. A set class is a named group of sets that are equivalent under
specific conditions. In the example, the sets

{{2, 6, 10}, {6, 10, 2}, {10, 2, 6}}

form a set class named [2,6,10] of sets that are equivalent under circular permutation. There are many
ways in which sets can be related into set classes, but the following relations are particularly useful.

Transposition The sets {4, 6, 7, 10} and {9, 11, 0, 3} are related by transposition because if we
transpose each pitch class in the first set up by five semitones (modulo octave equivalence), it
equals the second set. Therefore, these two sets are equivalent under transposition (see section
2.5.4). We can define transposition as

, Transposition (9.7)

where x is the pitch class to be transposed, and n is the number of degrees by which to transpose
it. To transpose up by 5 we can write

.

Tied

Tied

Most compact

0 3 6 7 9, , , ,{ } 3 6 7 9 0, , , ,{ } 6 7 9 0 3, , , ,{ } 7 9 0 3 6, , , ,{ } 9 0 3 6 7, , , ,{ }

9 0–( )( )12 = 9 0 3–( )( )12 = 9 3 6–( )( )12 = 9 6 7–( )( )12 = 11 7 9–( )( )12 = 10

7 0–( )( )12 7= 9 3–( )( )12 = 6 0 6–( )( )12 = 6

7 3–( )( )12 = 4 9 6–( )( )12 = 3

N {0, 3, 6, 7, 9}( ) = 6, 7, 9, 0, 3{ }

Tn x( ) = x + n( )( )12

T5 {4, 6, 7, 10}( ) = {9, 11, 0, 3}
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To transpose down by 4,

.

There are 12 unique transpositions (including the zeroth) of 12 pitch classes. We collectively name
them after the transposition with the smallest initial value, so this set class would be named
[0,2,3,6].

Inversion We can create a mirror image of a set by subtracting each pitch class from the number
of elements it contains. We can define inversion as

, Inversion (9.8)

where N is the number of available pitch classes, in this case, 12. The modulo operation is needed
to handle the case where x = 0. For example, the sets {4, 6, 7, 10} and {8, 6, 5, 2} are equivalent
under inversion because

So we can write I({4, 6, 7, 10}) = (8, 6, 5, 2}. Because of this relation, we can also classify
{8, 6, 5, 2} as a member of the set class [4,6,7,10].

It is easy to visualize the effect of inversion by imagining a line bisecting the circle of pitch
classes horizontally (figure 9.13). Pitch classes related by inversion are mirror opposites above and
below this line. This figure shows the original form {4, 6, 7, 10} being inverted by reflection across
the bisecting line into {8, 6, 5, 2}.

Retrograde Sets that are related by having their members in reversed order are equivalent under
retrogression. If R(x) denotes the retrograde of a set x, then we can write, for example, R({4, 6, 7,
10}) = {10, 7, 6, 4} and also classify {10, 7, 6, 4} as a member of set class [4,6,7,10].

Figure 9.13
Inversion.

T 4– {4, 6, 7, 10}( ) = {0, 2, 3, 6}

I x( ) = N x–( )( )N

12 4–( )( )12 = 8

12 6–( )( )12 = 6

12 7–( )( )12 = 5

12 10–( )( )12 = 2.
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Prime Form All the sets that are equivalent under circular permutation, transposition, retro-
gression, and inversion can usefully be grouped into a single set class because they can all
be derived from each other using these operations. But which set should we select as the
primogeniture—the “mother of all sets”—in its class? The standard convention is to choose the
set that

■ Is in normal form
■ Is most compact to the left
■ Is transposed so that its first pitch class starts at zero.

This set is the prime form of the set class. All other members of the set class are derived from the
prime form.

We find the prime form of {4, 6, 7, 10} as follows. Make its first pitch class start at 0: T–4({4,
6, 7, 10}) = {0, 2, 3, 6}, and make sure the result is in normal form, which it is. We must compare
this with its inversion to see which is more compact, so: I({4, 6, 7, 10}) = {8, 6, 5, 2}, and its normal
form is N({8, 6, 5, 2}) = {2, 5, 6, 8}.

Finally, we must transpose it, so T–2({2, 5, 6, 8}) = {0, 3, 4, 6}. Since {0, 2, 3, 6} is more compact
to the left than {0, 3, 4, 6}, we name this set complex [0,2,3,6].

Interval Classes So far we have examined just the pitch class content of sets, but a set’s interval
content is what provides its musical signature. The interval content is the set of interval classes
between all pitch classes of the set. For example, the interval classes for the set {4, 6, 7, 10} are 

Interval 4–6 4–7 4–10 6–7 6–10 7–10

Distance 2 3 6 1 4 3

This set of intervals, {2, 3, 6, 1, 4, 3}, is the intervallic signature of this set. These interval distances
appear in every member of the set class, giving all members of the class the particular sound of the set
class. To borrow an example from tonal harmony, the triads sound like triads because they share the
same interval distances: major third, minor third, and perfect fifth (see section 3.10.2). Similarly, aug-
mented and diminished triads are distinct to our ears because of their characteristic interval distances.

We can characterize the intervallic profile of a set by making a histogram (a simple ordered
tally) of the number of intervals it contains. In the preceding example, there are two instances of
interval distance 3, and all the rest of the intervals appear only once. If we think of the various inter-
val classes as making up a set of orthogonal dimensions in interval space, we can consider the num-
ber of repetitions of each interval as the length of a vector in that interval’s dimension. The
combination of all these vectors makes a single, unique multidimensional vector characterizing the
intervallic content of the set. For example, the interval class vector for the set shown above is:

Interval class 1 2 3 4 5 6

Quantity 1 1 2 1 0 1
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so the interval class vector is [1,1,2,1,0,1], which is the profile of its unique intervallic content and
hence the signature of its unique sound.

Cardinality The number of unique pitch classes in a set is its cardinality. The maximum car-
dinality in the dodecaphonic system is, of course, 12, and there is only one class in this set:
the aggregate set, containing all 12 pitch classes. The minimum cardinality of a set of intervals is
2. Cardinalities between 2 and 11 have the following Latin names: diad, trichord, tetrachord, pen-
tachord, hexachord, heptachord, octachord, nonachord, decachord, and undecachord.

Complement Relation If a set class contains fewer than 12 pitch classes, the pitch classes that are
left out are its complement set class. For example, the whole-tone scale has two versions: {0, 2, 4,
6, 8, 10} and {1, 3, 5, 7, 9, 11} that are complement set classes (see section 2.5.7).

9.11 Composing Functions

In mathematics a function is composable with another if it can be the other’s argument. For
instance, if , and , then  is the composition of g with f. Consider the
definitions , and . If , then . To be composable,
the range of f must be a subset of the domain of g.

Following Ada Lovelace’s train of thought quoted at the beginning of this chapter, let’s use
MUSIMAT to create a short excerpt of atonal music using function composition.

9.11.1 Precomposition

The process of composing atonal music is typically divided into two parts.

■ Precomposing: assembling the musical materials
■ Composing: applying the assembled materials in a design

MUSIMAT already has a number of data types and operations, but a few more are needed:

■ To represent pitches as symbols with integer values:

Integer C = 0, Cs = Db = 1, D = 2, Ds = Eb = 3 . . ., B = 11;

■ To represent motives as lists: 

IntegerList a = {F, F, G, A}; IntegerList b = {F, A, G}; IntegerList c = {F, E};

IntegerList d = {Bb, A, G, F}; IntegerList e = {E, C, D, E, F, F};

■ To combine motives and concatenate lists:

IntegerList y = Join(a, b, a, c, a, d, e);

(y is defined as the list of pitches of the tune “Yankee Doodle.”)

y = f x( ) z = g y( ) z = g f x( )( )
f x( ) = x + 1 g x( ) = x2 z = g f x( )( ) z = x2 + 2x + 1
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■ To transpose a pitch set:

IntegerList transpose(IntegerList L, Integer t) {

For(Integer i = 0; i < Length(L); i = i + 1)

 L[i] = Mod(L[i] + t, 12);

Return(L);

}

■ To invert a pitch set:

IntegerList invert(IntegerList L) {

For(Integer i = 0; i < Length(L); i = i + 1)

 L[i] = Mod(12 – L[i], 12);

Return(L);

}

■ To take the retrograde of a set:

IntegerList retrograde(IntegerList L) {

Integer n = Length(L);

IntegerList R = L; // make a new list as long as L

For(Integer i = 0; i < n; i = i + 1)

R[i] = L[n – i – 1];

Return(R);

}

9.11.2 The Set Complex

Using these tools, we can create a matrix containing the prime form, inverse, retrograde, and all
transpositions of any row, called the set complex. The purpose of these transformations is to gen-
erate variants that are related to the original intervallic structure of the prime row, to be used as
material in developing compositions.
Matrix is simply a two-dimensional grid, or list of lists, all of the same length. The individual

elements of Matrix can be accessed by extending the index operator [�]. The first operand is the
matrix, the second is the row position, and the third is the column position. (Whether row or column
comes first is arbitrary. The following order is called row/column order.)

For example, for this matrix, M[0][0] == A, M[0][1] == B, M[1][0] == C, and
M[1][1] == D. The following is a method for creating a set complex. It basically copies the prime

0 1

M = 0 A B

1 C D
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form to the zeroth row, then copies the inverse form to the zeroth column, then for each other cell in
the matrix sums the corresponding row and column value modulo the length of the prime form:

Matrix setComplex(IntegerList prime) {

Matrix M;

Integer len = Length(prime);

IntegerList inverted = invert(prime);

For (Integer i = 0; i < len; i = i + 1) {

 M[0][i] = prime[i];

 M[i][0] = inverted[i];

}

For (Integer i = 1; i < len; i = i + 1) {

For (Integer j = 1; j < len; j = j + 1) {

 M[i][j] = Mod(M[i][0] + M[0][j], len);

}

}

Return(M);

}

To demonstrate these tools, table 9.4 shows the set complex for Schoenberg’s Opus 23 #5, Five
Piano Pieces. The prime set {C#, A, B, G, G#, F#, A#, D, E, D#, C, F} is shown in numeric form along
the top row. Prime rows are read left to right, retrograde rows right to left, inverse rows top to bot-
tom, and retrograde inverse rows bottom to top.

This completes the precomposition phase. Now it’s time to look at methods to traverse the rows
created with the preceding techniques to generate a composition.

9.12 Traversing and Manipulating Musical Materials

Having arranged the materials from which a composition is to be derived, we now consider meth-
ods to traverse these materials in structured ways. Following are a few ways rows can be traversed
to structure tonal or atonal melodies, rhythms, dynamics, articulation, instrumentation, or anything
else that can be parameterized.

9.12.1 Deterministic Serial Methods

This section demonstrates some methods for iterating through tone rows. They are deterministic
because their outcomes do not rely on chance. They are serial because they iterate through lists.
Their use is not limited to tone rows but can be extended to arbitrary lists of data.

The basic idea is to supply a list of musical materials to a method that will select and return list
elements one at a time in a chosen order.

Cycle This method iterates a sequence either forward or backward. It can either select successive
elements or skip through the list. When it reaches the end of the list (either end), it starts over at
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the other end. Its inputs are

■ The list to traverse
■ The previous position in the list
■ Whether to move forward (prime) or backward (retrograde)

Its output is the next element in sequence based on its previous position in the list. As a side
effect, it updates its position in the list.

If it traverses the list forward, it returns to the head of the list when it goes past the tail. If it
traverses the list in retrograde, it returns to the tail of the list when it goes past the head.

In the following code example, setting inc to 1 moves forward one element every time
cycle() is called, and setting inc to -1 moves backward one element at a time. Setting inc to
any other value skips through the list by that amount, wrapping around at the ends.

Integer cycle(IntegerList L, Integer Reference pos, Integer inc) {

Integer i = PosMod(pos, Length(L)); // compute current index

pos = PosMod(pos + inc, Length(L)); // compute index for next time

Return(L[i]);

}

Table 9.4
Set Complex for Schoenberg’s Opus 23 # 5

In
ve

rs
e 

Prime 

R
etrograde Inverse

0 8 10 6 7 5 9 1 3 2 11 4

4 0 2 10 11 9 1 5 7 6 3 8

2 10 0 8 9 7 11 3 5 4 1 6

6 2 4 0 1 11 3 7 9 8 5 10

5 1 3 11 0 10 2 6 8 7 4 9

7 3 5 1 2 0 4 8 10 9 6 11

3 11 1 9 10 8 0 4 6 5 2 7

11 7 9 5 6 4 8 0 2 1 10 3

9 5 7 3 4 2 6 10 0 11 8 1

10 6 8 4 5 3 7 11 1 0 9 2

1 9 11 7 8 6 10 2 4 3 0 5

8 4 6 2 3 1 5 9 11 10 7 0

Retrograde
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The pos argument keeps track of the position in the list. We wish to delegate to cycle() the
job of managing the list position, so we declare pos as a Reference argument. Thus, when
cycle() updates pos, the corresponding actual argument is changed. (If pos were not a
Reference variable, any changes cycle()made to its value would be lost when it returns (see
appendix B, B.1.22).

Here’s an example of invoking cycle():

IntegerList L = {10, 11, 12};

Integer myPos = 0;

Integer n = 2 * Length(L) -1; // go 1 less than two times through list

For (Integer i = 0; i < n; i = i + 1)

Print(cycle(L, myPos, 1)); // 1 = forward direction

Print("myPos=", myPos);

This program prints 10, 11, 12, 10, 11. Last, it prints myPos=2, proving that cycle() is
changing the myPos parameter.

Palindrome We can iterate a sequence in prime order until the last element in the sequence is
reached, then iterate the sequence retrograde until the first element in the sequence is reached, then
repeat.

Integer palindrome(IntegerList L, Integer Reference pos, Integer 

Reference inc) {
Integer curPos = pos;

Integer x = cycle(L, pos, inc);

If (curPos + inc != pos){

inc = inc * (–1); // change direction

pos = curPos;

}

Return(x); 

}

This method calls cycle() to do most of its work. Like cycle(), this method updates pos,
but it also must update its increment argument, inc, because whenever it hits the end of the list,
we want it to reverse the direction of traversal rather than start over. The extra work done by this
method is to change the increment and reset the position when either end of the list is reached. Here
is an example of invoking palindrome().

IntegerList L = {10, 11, 12};

Integer myPos = 0;

Integer myInc = 1; // can be any positive or negative integer

For (Integer i = 0; i < 2 * Length(L); i = i + 1)

Print(palindrome(L, pos, inc));
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prints 10, 11, 12, 12, 11, 10. Note that the end of the list is printed twice. This makes it a
so-called even palindrome. It would be an odd palindrome if it were 10, 11, 12, 11, 10. It is left
as an exercise for the reader to adapt palindrome() to generate odd palindromes.

Permutation Iterate the supplied sequence in prime order until exhausted, then permute the
entire row by inc steps and repeat from the beginning.

Integer permute(IntegerList L, Integer Reference pos,

Integer Reference count, Integer inc) { 

Integer curPos = pos; // save current position

Integer x = cycle(L, pos, 1); // update pos and get list value

count = count + 1; // increment counter

If (count == Length(L)){ // have we output L items from list?

count = 0; // reset count

pos = curPos + inc; // permute position for next time

}

Return(x); 

}

Here is an example of invoking permute().

Integer inc = –1;

Integer pos = 0;

Integer perm = 0;

For (Integer i = 0; i < 3 * Length(L); i++)

Print(permute(L, pos, perm, inc));

prints 10, 11, 12, 11, 12, 10, 12, 10, 11. Because inc = –1, it skips back one place in the
row every time. The trigger for it to skip is when it has output as many elements as are in the list.

Transpose The dodecaphonic pitch classes are not tied to any octave. In order to realize music
from a tone row, its intervallic content must be translated to actual pitches of the musical scale.
One way to do this is to supply a pitch offset that transposes across pitch space (i.e., without lim-
iting it just to the range of pitch classes).

Integer transpose(Integer p, Integer off){

Return(p + off);

}

The C major diatonic scale in the fourth piano octave can then be given as follows:

IntegerList Cmaj = {C, D, E, F, G, A, B}; // define C major scale

For (i = 0; i < Length(Cmaj); i = i + 1){ 

 L[i] = transpose(L[i], 4 * 12); // shift all up 4 octaves

Print(Pitch(Cmaj));
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This prints {Cn4, Dn4, En4, Fn4, Gn4, An4, Bn4}.

Interpolated Tendency Mask We can produce a new row that is a mixture of two other rows.
Let’s have a variable that varies continuously between 0.0 and 1.0 such that when it is 0.0, the out-
put row is exactly the same as the first row; when it is 0.5, the output is exactly halfway between
the first and second; and when it is 1.0, the output is exactly the second row. For example, suppose
the first pitches in each row are 3 and 9, and the interpolation parameter is 0.5. Then the expected
result would be 6 because 6 lies halfway between the two values. If the interpolation parameter
were 0.0, we’d select 3, and if it were 1.0, we’d select 9.

Table 9.5 shows what happens if row A = {0, 2, 4, 6, 8, 10, 12} and row B = {12, 10, 8, 6, 4,
2, 0}, and f is set successively to 0.0, 0.25, 0.5, 0.75, and 1.0. When f = 0, we select the prime row,
when f = 1.0, we select the retrograde row, and in between, we select weighted mixtures.

We use unit interpolation to find intermediate values that lie a certain distance between two
known points. If u is the upper bound and l is the lower bound and f  is a control parameter in the
unit distance from 0.0 to 1.0, then

Unit Interpolation (9.9)

sets y to a value close to u if 0 � f; it sets y to a value close to l if f � 1; it sets y to a value exactly
halfway between u and l if f = 0.5. Here is the function for unit interpolation:

Real unitInterp(Real f, Integer l, Integer u){

Return(f * (u – l) + l);

}

This is a Real function because f must be a Real to take on fractional values. When we use it
as follows, we convert the Real result back to an Integer by rounding:

Integer interpTendency(

Real f, // factor ranging from 0.0 to 1.0

List L1, Integer Reference pos1, // list 1 and its position parameter

List L2, Integer Reference pos2, // list 2 and its position parameter

Table 9.5
interpTendency Example

Row A 0 2 4 6 8 10 12

f = 0.00

f = 0.25

f = 0.50

f = 0.75

f = 1.00

Row B

 0

 3

 6

 9

12

12

2

4

6

8

10

10

4

5

6

7

8

8

6

6

6

6

6

6

8

7

6

5

4

4

10

8

6

4

2

2

12 

9 

6 

3 

0

0

y = f . u l–( ) + l
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Integer inc // amount by which to adjust position

) {

Integer x = cycle(L1, pos1, inc);

Integer y = cycle(L2, pos2, inc);

Return(Integer(Round(unitInterp(f, x, y))));

}

This function can perform a couple of neat tricks. First, we can have the function return exactly L1
or L2 by setting f = 0.0 or f = 1.0, respectively. By setting f = 0.5, we get the average of the
two rows. By gradually changing the value of f from 0.0 to 1.0, we mutate L1, transforming it grad-
ually until it becomes L2. Also, the lengths of L1 and L2 need not be the same. If L1 has a length of
5 and L2 a length of 6, it will take 5 ⋅ 6 iterations before the pattern repeats. Both lists use the same
increment, but redesigning this to use separate increments would provide for even more possibilities.

Linear Interpolation Linear interpolation allows us to map a range of values so that it covers
a proportionately wider or narrower range. Figure 9.14 shows linear interpolation from the range
1–4 on the left being mapped to the range 3–9 on the right. The value 3 on the left corresponds by
linear interpolation to 7 on the right. Linear interpolation maintains the linear proportions of the
two number lines: 3 is two-thirds of the way from 1 to 4, and 7 is two-thirds of the way from 3 to 9. 

Linear interpolation is a slight generalization of unit interpolation, as follows. If  is
the upper bound and  is the lower bound, and x is a parameter in the range xmin ≤ x ≤ xmax, then 

Linear Interpolation (9.10)

sets y to a position within the range  that is proportional to the position of x within
its range. Here’s the definition of linear interpolation in MUSIMAT:

Real linearInterpolate(

Real x, // value ranging from xMin to xMax

Figure 9.14
Linear interpolation.

xmax

xmin

y =
x xmin–

xmax xmin–
------------------------- . ymax ymin–( ) + ymin

ymin y ymax≤ ≤

1

4

3 3

9

7

x y
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Real xMin, // minimum range of x

Real xMax, // maximum range of x

Real yMin, // target minimum range

Real yMax // target maximum range

) {

Real a = (x – xMin) / (xMax – xMin);

Real b = yMax – yMin;

Return(a * b + yMin);

}

We also can use linear interpolation to map an entire function to a different range. We do so by
applying linear interpolation to every point on the function. For example, we can scale a chromatic
melody to occupy a wider or narrower tessatura as follows:

IntegerList stretch(IntegerList L, Integer yMin, Integer yMax) {

Integer xMin = Min(L); // find the list’s minimum

Integer xMax = Max(L); // find the list’s maximum

For (Integer i = 0; i < Length(L); i = i + 1) {

L[i] = linearInterpolate(L[i], xMin, xMax, yMin, yMax);

}

Return(L);

}

For example, invoking stretch() with these arguments

IntegerList x = stretch(L, 24, 47);

will scale the row to cover a two-octave range and offset it upward by one octave. If the input is

IntegerList L = {0, 8, 10, 6, 7, 5, 9, 1, 3, 2, 11, 4},

then x will be {24, 40, 44, 36, 38, 34, 42, 26, 30, 28, 47, 32}. It can also be used to com-
press rows. With the same input, stretch(L, 0, 5) will produce {0, 3, 4, 2, 3, 2, 4, 0,

1, 0, 5, 1}.

9.12.2 Deterministic Rhythmic Techniques of Joseph Schillinger

Joseph Schillinger, a refugee from Soviet Russia, became a prominent music theorist in New York
in the 1930s and counted among his students the famous jazz musicians George Gershwin and
Benny Goodman. In his book The Mathematical Basis of the Arts (1948) he was highly critical of
art theory, writing, “It is time to admit that esthetic theories have failed in the analysis as well as
the synthesis of art. These have been unsuccessful both in interpreting the nature of art and in evolv-
ing a reliable method of composition.”

He was looking to establish a scientific theory of art and to put practical methods into the hands
of artists, giving them a mathematician’s vision of the nature and extent of their domain. This, he
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hoped, would help free musicians from the deadening weight of musical tradition, much as
Schoenberg hoped atonal composing techniques would do the same.

Schillinger envisioned development of “instruments for the automatic composition of music,”
including rhythm, melody, harmony, harmonization, counterpoint, and timbre. His name for such
instruments was Musamaton. He collaborated with Leon Theremin to create a device he dubbed
the Rhythmicon, which he used for “the composition and automatic performance of rhythmic
patterns.” He looked toward the use of such devices by anyone, not requiring special training, “suit-
able for schools, clubs, public amusement places, and homes.”

He wrote a large, deeply flawed, two-volume tome, The Schillinger System of Musical Composition.
Some of his ideas seem banal, others are incomprehensible, and he expressed his musical formalisms
using a pseudomathematical notation of his own design, accompanied by often cryptic explanations
that usually served to mystify the reader. He criticized the work of famous composers such as
Beethoven, rewrote compositions of J. S. Bach to “improve” them, and in general displayed an arro-
gance that undercut his message (Backus 1961). Nonetheless, for the intrepid, there are interesting
ideas in his work, particularly regarding rhythm, an otherwise quite neglected subject in music theory.

He began with the observation that music is a time-based art where continuous time is broken
into pulses. Schillinger’s idea is that rhythm arises through the “interference” of two sources of
pulse. For example, consider two harmonically related pulse generators (figure 9.15). The major
generator produces three pulses in the same time as the minor generator produces two. Schill-
inger called the resultant pattern pulse interference, although this is a confusion because
the result is actually the product of the two functions, whereas interference implies addition
(see section 7.7).

All the pulse interference patterns that can be produced by the ratio of any two integers form an
inversely symmetrical pattern around their midpoint. Transitions in the pulse interference func-
tions represent rhythmic stress points in the resulting rhythmic pattern. Their interpretation
depends upon the musical context. For example, the interference pattern shown in figure 9.15 can
be interpreted trivially in any of the three ways shown in figure 9.16.

Figure 9.15
Pulse interference.
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Such patterns can be applied to many musical contexts. For example, we can create a melody
using the pulse interference pattern shown in figure 9.15 as a trigger function to select a pitch from
another function representing pitch displacement (figure 9.17). The function shown in the grid is
an arbitrary shape that determines the melody; the function labeled Rhythm is an independently
generated interference pattern that determines the rhythm. Applying the interference pattern to the
melody shape produces the sequence of notes shown to the right in figure 9.17.

The pulse interference pattern is projected across the x-axis, and the diatonic scale is projected
across the y-axis. Notes are placed where the transitions in the rhythmic pattern intersect the pitch
displacement function. The interference pattern determines the note’s duration. The composer
John Myhill adapted this technique in his 1965 composition Scherzo a Tre Voce for computer-
synthesized tape alone (Ames 1967).

9.12.3 Representing Music with Functions

The basis of Schillinger’s compositional idea is to map an arbitrary curve to musical notation by
quantization (see volume 2, chapter 1). Of course, the process works in reverse as well: the grid
in figure 9.17 can be used to generate the corresponding pitch curve and rhythmic function of any
piece of notated music. Mathews and Rossler (1968) developed a graphical language for repre-
senting scores of computer-generated sounds that uses this approach. They represented music with
continuous time functions that were quantized to obtain pitch and discretized to obtain time.

Mathews produced an interesting demonstration of the flexibility of this approach for composing.
He began by generating pitch and rhythm functions for two traditional tunes, the English military

Figure 9.16
Schillinger’s pulse interference patterns.

Figure 9.17
Generating a melody with Schillinger’s interference patterns.

C
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G

A

B
c

Rhythm

The melody rises and falls as the function in the grid rises and falls.
The rhythm starts a new note on each transition.
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anthem The British Grenadiers and the American tune When Johnny Comes Marching Home.
Then he created a new melody by performing linear interpolation on the two sets of functions.
When the interpolation parameter was set at 0.0, the method produced The British Grenadiers, and
set at 1.0, it produced When Johnny Comes Marching Home. In between, one heard something that
sounded like a mutated combination of both. In his example, he varied the interpolation parameter
gradually from 0.0 to 1.0, with the result that the synthesized melody first resembled Grenadiers,
but Johnny gradually emerged from the chaos in the middle and took over. Though it is graceless
as a musical étude, Mathews’s effort nonetheless is a startling demonstration of how malleable
music can be under these kinds of transformations.

9.12.4 Nondeterministic Serial Methods

Deterministic methods produce the same result every time they are presented with the same inputs.
The methods discussed in this section rely on randomness, so they are nondeterministic methods.

Sampling without Replacement We can generate a randomly selected 12-tone row, for example,
by putting 12 balls in an urn, each marked with one of the chromatic pitch classes, and draw them out
one at a time without replacement, thereby guaranteeing that no pitch class is chosen more than once.
Random(0, 11) returns a random integer between 0 and 11 with equal probability. But it could

return the same value multiple times, so we must keep track of which pitch classes have been cho-
sen to ensure that it eventually picks one of each. This function takes one argument, N, determining
the length of the row.

IntegerList randomRow(Integer N) {

IntegerList L; // keep track of pitches chosen so far

IntegerList M; // used to build up random 12-tone row

Integer i;

// set all list elements to zero, which means "unused"

For (i = 0; i < N; i = i + 1) {L[i] = 0;}

// build up M, marking off elements in L when they are chosen

i = 0;

While (i < N) {

Integer x = Random(0, N – 1); // returns integer random value

If (L[x] == 0) { // hasn’t been chosen yet?

 L[x] = 1; // mark it "used"

 M[i] = x; // save result

 i = i + 1; // increment control variable

}

}

Return(M);

}
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Note that the second loop keeps repeating over and over until Random() has finally selected
all N pitch classes. It then returns the newly created 12-tone row in M. Here is an example row cre-
ated by randomRow(): 

{0, 6, 2, 9, 7, 5, 4, 10, 8, 3, 1, 11}; 

Every pitch class is represented exactly once.

Shuffle We can create a random permutation of a row rather as one would shuffle a deck of cards.
If we distinguish between the cards and their position in the deck, shuffling consists of swapping
the positions of all cards a pair at a time. First, we need a way to swap the position of two cards
in the deck. We can swap the position of two elements in IntegerList like this:

IntegerList swap(IntegerList L, Integer from, Integer to) {

Integer x = L[to]; // save target value

L[to] = L[from]; // swap from → to

L[from] = x; // swap to → from

Return(L);

}

To shuffle an entire deck of cards (or row of pitch classes), we visit each position in the list from
first to last in order and swap the card at each position with a card at a randomly chosen other
position. Because we use Random() to choose the position of the other card to swap, the “other”
position can be any position in the deck, including the currently selected position; thus we may
occasionally swap a card with its own position, leaving it where it was. However, in a subsequent
step, that card might be chosen to be swapped elsewhere.

IntegerList shuffle(IntegerList L) {

IntegerList M = randomRow(Length(L)); // elements to swap

For (Integer i = 0; i < Length(L); i = i + 1) {

Integer j = M[i];

L = swap(L, i, j);

}

Return(L);

}

The first step is to generate a new row with randomRow(), which is stored in IntegerList M.
Successive values of i and successive elements of M give the indexes of the elements in L that are
to be swapped. Suppose we have

L = {0, 6, 2, 9, 7, 5, 4, 10, 8, 3, 1, 11}; // source row

M = {5, 1, 0, 4, 6, 7, 9, 3, 10, 8, 11, 2}; // row created in shuffle

Then each row in table 9.6 shows the intermediate values of L as its elements are being swapped. The
pattern starts out like this: swap the value in position 0 and the value in position 5; swap the value
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in position 1 with itself; swap the value in position 2 and the value in position 0; swap the value in
position 3 and the value in position 4; and so on. The result is that every element of the input row is
swapped randomly with another element, but there’s a chance it might be swapped with itself.

Random Tendency Mask We can use a row to specify an upper boundary and another row to
specify a lower boundary, and then pick a pitch in this range. We can pick any pitch in the range, either
the median pitch or a random pitch or even all pitches, depending upon what we want to use it for. This
example returns a random value lying between two rows that act as fences to limit the random range.

Integer randTendency(IntegerList L1, Integer Reference pos1,

IntegerList L2, Integer Reference pos2, Integer inc) {

Integer x = cycle(L1, pos1, inc);

Integer y = cycle(L2, pos2, inc);

If (x < y)

Return(Random(x, y));

Else

Return(Random(y, x));

}

Table 9.6
An Example of Shuffling a Set

i = 0 1 2 3 4 5 6 7 8 9 10 11

L = 0 6 2 9 7 5 4 10 8 3 1 11

0 5 6 2 9 7 0 4 10 8 3 1 11

1 5 6 2 9 7 0 4 10 8 3 1 11

2 2 6 5 9 7 0 4 10 8 3 1 11

3 2 6 5 7 9 0 4 10 8 3 1 11

4 2 6 5 7 4 0 9 10 8 3 1 11

5 2 6 5 7 4 10 9 0 8 3 1 11

6 2 6 5 7 4 10 3 0 8 9 1 11

7 2 6 5 0 4 10 3 7 8 9 1 11

8 2 6 5 0 4 10 3 7 1 9 8 11

9 2 6 5 0 4 10 3 7 9 1 8 11

10 2 6 5 0 4 10 3 7 9 1 11 8

11 2 6 8 0 4 10 3 7 9 1 11 5
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For example, if L1 and L2 are as shown in the following table, the values in the middle row are
random values chosen from between.  

9.12.5 Serialism

Schoenberg and his school were amplifying musical trends of their time to deconstruct tonal expec-
tation and key-centeredness in European art music. Rows and their treatment were chosen to defeat
the tendency to hear tonal centeredness of any kind. Functional harmony was banished; even the
too frequent repetition of a pitch was taboo lest it lend a tonal center to the music.

But it would be a disservice to Schoenberg and his school to imply that their music followed a decon-
structionist agenda to the exclusion of all else. They offered the intervallic structure of the row and the
organization of set forms as the new ligatures holding their music together. Perle and Lansky (1981)
write,

Perhaps the most important influence of Schoenberg’s method is not the 12-note idea in itself, but along with
it the individual concepts of permutation, inversional symmetry and complementation, invariance under trans-
formation, aggregate construction, closed systems, properties of adjacency as compositional determinants,
transformations of musical surfaces through predefined operations, and so on.

But deconstructionism, once set into motion, rarely stops until it has devoured everything. Some
composers of the post–World War II era observed vestiges of other traditional techniques in the
music of Schoenberg and Berg. They noted that Schoenberg and Berg treated the 12-tone row as
a theme to be developed, a practice that harked back to the classical technique of theme and
variations—thematicism. They idolized the work of Schoenberg’s pupil Anton Webern because he
eschewed thematic development, building up compact, jewel-like compositions from as few
as three notes. For example, in his Concerto for Nine Instruments written in 1934, all pitches
are derived from the simple motive B-Bb-D (prime form) and its retrograde, inversion, and
retrograde-inversion. His systematic treatment of pitch, rhythm, dynamics, and articulation was
taken by these younger composers as a model for a new form of music.

The composer Olivier Messiaen in France extended the 12-tone pitch-ordering technique of
Schoenberg’s school to all other parameters of music, although he was working with modal pitch
structures, not 12-tone rows (Messiaen 1942; Drew 1954/1955). Inspired by Webern and Messiaen,
other composers, including Pierre Boulez in France and Milton Babbitt in the United States, adapted
Messiaen’s ideas back to atonal practices, and totally organized music, or serialism, was born.
According to Stuckenschmidt (1969), “Serial techniques are essentially a systematic transference
of Schoenberg’s 12-tone technique to elements of musical sound other than pitch.”

This idea interlocked with two others. Just as the tones in a 12-tone row were decoupled in sig-
nificance from each other, the serialist composers decoupled all parameters of the musical note

Row L1 0 8 10 6 7 5 9 1 3 2 11 4
Output row 0 1 8 6 7 5 5 3 5 4 9 7
Row L2 4 0 2 10 11 9 1 5 7 6 3 8
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from each other. Pitch, register, tone color, and dynamic level became independent. Just as all
tones were used in a 12-tone row, the serialist composers employed the entire available range
of every other musical parameter—high to low, loud to soft, fast to slow, bright to dull—without
preference.

The dodecaphonists observed the tonal equivalence of the equal-tempered scale and sought to
construct a new musical aesthetic that reflected this equality. To do so, they developed a 12-tone
method that deconstructed tonal expectation and key-centeredness. The notion of tonal equiva-
lence was extended by the serialists to project a uniform proportionality between all musical
parameters and all combinations of musical parameters.

Stuckenschmidt (1969), who witnessed the premiers of the European serialist composers in the
1950s, wrote, “The impression made by all these works, even on a listener who had read the com-
mentaries beforehand, was one of chaos” (214).

The composer György Ligeti (1965) wrote, “Now that hierarchical connections have been
destroyed, regular metrical pulsations dispensed with, and durations, degrees of loudness, and tim-
bres have been turned over to the tender mercies of serial distribution, it becomes increasingly dif-
ficult to achieve contrast” (16). These compositions often projected a static quality, a musical
equivalent of alphabet soup (see section 9.15 for why these effects occur). Ligeti (1965) summed
it up: “Serial music is doomed to the same fate as all previous sorts of music; at birth it already har-
bored the seeds of its own dissolution” (14).

9.13 Stochastic Techniques

With every musical parameter now serially ordered, there was even less familiar structure for lis-
teners to rely upon to orient themselves in the music. The composer Iannis Xenakis (1955) criti-
cized serialism as follows:

Linear polyphony destroys itself by its very complexity; what one hears is in reality nothing but a mass of notes
in various registers. The enormous complexity prevents the audience from following the intertwining of the
lines and has as its macroscopic effect an irrational and fortuitous dispersion of sounds over the whole extent
of the sonic spectrum. There is consequently a contradiction between the polyphonic linear system and the
heard result, which is surface or mass.

Echoing the same sentiment, the composer Gottfried M. Koenig (1970) wrote, “The trouble taken
by the composer with series and their permutations has been in vain; in the end it is the statistical
distribution that determines the composition.”

Believing that the listener experiences only the statistical aspects of serial music, these com-
posers reasoned that a better approach would be to compose directly using probabilistic instead of
serial techniques. Xenakis (1955) writes,

This contradiction inherent in [serial] polyphony will disappear [and] what will count will be the statistical
mean of isolated states and of transformations of sonic components at a given moment. The macroscopic
effect can then be controlled by the mean of the movements of elements which we select. The result is the
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introduction of the notion of probability, which implies, in this particular case, combinatory calculus. Here
in a few words, is the possible escape route from the “linear category” in musical thought.

Xenakis (1971) was reacting against serialism and also aligning himself with a worldview then
developing in the physics of quantum mechanics: “It is a matter here of a philosophic and aesthetic
concept ruled by the laws of probability and by the mathematical functions that formulate that the-
ory, of a coherent concept in a new region of coherence.” Xenakis’s attempt to align music aes-
thetics with a natural theory is not a new enterprise, of course, but dates back at least to the early
Renaissance music theorist Gioseffo Zarlino, who championed the view (as did others) that music
imitates nature (see section 9.17.5).

While some of Xenakis’s examples in his book Formalized Music describe methods for orga-
nizing music for traditional instruments, elsewhere in this work he presents a more abstract kind
of sound organization. He asserts, “All sound is an integration of grains, of elementary sonic par-
ticles, of sonic quanta.” Xenakis was influenced by the seminal work of Dennis Gabor, who in 1947
observed an isomorphism between the Fourier series and a quantum analysis of sound (see volume 2,
chapters 9 and 10).

Given the burden of computation required by a statistical approach to composition, it is not sur-
prising that composers like Koenig and Xenakis turned to computers to help compose musical
works. Xenakis (1971) enthused, “With the aid of electronic computers the composer becomes a
sort of pilot: he presses the buttons, introduces coordinates, and supervises the controls of a cosmic
vessel sailing in the space of sound, across sonic constellations and galaxies that he could formerly
glimpse only as a distant dream.” These composers believed that statistical composing systems
using computers would allow them to shift their attention from the surface of the music to its inner
structure.

9.14 Probability

Suppose a player with eyes closed strikes a piano key at random. What is the chance that the struck
key will be middle C? A standard piano has 88 keys, so to a first approximation, we’d expect the
possibility to be 1 out of 88. But because the white keys are larger than the black keys, all outcomes
are not equally likely. To study this more closely, let’s define some terms.

■ Sample space The set of possible outcomes.
■ Event The outcome of a random process, such as a roll of the dice.
■ Probability The relative liklihood of an event, usually expressed as a real number in the range
0 < p < 1.
■ Probability distribution A function, graph, or listing of the probabilities of the sample space
that shows how probability is distributed among the possible events.
■ Uniform distribution If all events in a sample space are equally likely, the resulting distribution
is said to be uniform.
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■ Discrete distribution A distribution is discrete if the events in the sample space can be indi-
vidually distinguished. Tossing coins or dice or picking a note on a keyboard are examples of dis-
crete distributions.
■ Continuous distribution A distribution is continuous if the events in the sample space cannot
be individually distinguished. Temperature and frequency are examples of continuous distributions.
■ Random variable Let s be the sample space consisting of both sides of a coin, which can be rep-
resented as the set {Heads, Tails}. When a coin is flipped, outcome R must be one of Heads or Tails.
In order to construct the probability distribution, we set a random variable x in turn to each possible
outcome of the sample space s and determine the probability that x is equal to outcome R, as follows:

which is read as “The probability distribution function f of random variable x is defined as the prob-
ability that x equals outcome R, which is .5 if x is heads and .5 if x is tails.” The random variable
indexes the probability distribution function in order to determine the value of the function at that
index.

We can use these terms to classify chance operations for further study. For example, tossing a
coin has a sample space consisting of two outcomes, Heads or Tails, and the probability is 1/2 for
either Heads or Tails if the coin is true, so its discrete probability distribution is uniform. Tossing
a single die has six possible outcomes; if the die is true, each outcome has a probability of 1/6, so
its discrete distribution is also uniform.

9.14.1 Discrete Distribution

The sample space of one die has d = 6 outcomes. Suppose we roll a white die dw and a black die
db. If we distinguish the event {dw = 1, db =  2} from the event {dw =  2, db = 1} and tally up the
combination of all possible outcomes, we find that the sample space is the product:

. The states are enumerated in table 9.7. Each number in the table grid is the

Table 9.7
Sample Space: Sum of Two Dice

White Die

Black Die

1 2 3 4 5 6

1

2

3

4

5

6

2

3

4

5

6

7

3

4

5

6

7

8

4

5

6

7

8

9

5

6

7

8

9

10

6

7

8

9

10

11

7

8

9

10

11

12

f x( ) P x R=( ) = .5,   x =  Heads
.5, x = Tails




≡

dw
. db = 6 . 6( ) = 36
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sum of the two dice. Note that only one dice combination sums to 2, one sums to 12, and six com-
binations yield 7. We’d rightly expect that the more combinations sum to the same value, the more
probable those outcomes will be. So we’d expect a roll of two dice to be most likely to sum to 7
and least likely to sum to either 2 or 12. The corresponding probability distribution for the sum of
the dice is shown in figure 9.18.

Interestingly, if we roll two dice and tally them separately, the probability distribution of all
faces is uniform. But if we sum two dice, some combinations are more likely because some com-
binations are more numerous than others, as shown in figure 9.18.

A fundamental insight of probability theory is that if a random variable x has distribution f(x)
and a random variable y has distribution f(y), then the distribution of the sum of the two random
variables f(x + y) is the convolution of f(x) and f(y) (F. R. Moore, 1990). (To understand the math-
ematical reason for this, see volume 2, chapter 4.) Figure 9.18 shows the convolution of two
uniform distributions.

9.14.2 Continuous Distribution

Suppose a violinist with eyes closed stops the G string (which is pitched a fourth below middle C)
somewhere along its length. What is the chance that the violinist stops the string at exactly mid-
dle C, 261.626 Hz? Because the string is continuous, there are in fact an infinite number of fre-
quency gradations along its length, just as there are an infinite number of points along its length.7

So the likelihood that the violinist will stop the string at any particular pitch is infinitesimal. How
do we study continuous distributions if every event is infinitely improbable? We finesse
this problem by assigning probabilities to subsets of the sample space, effectively breaking the
continuous space into discrete regions. We ask questions like, What is the probability that the
violinist stops the string within a half step of middle C? A positive probability can be assigned
to such an event.

This example shows that probability only operates on discrete sample spaces, and if we must
operate on a continuous variable such as frequency or temperature, we must first break the con-
tinuum into a discrete sample space. If we take this region size to the infinitesimal limit, we are
in effect operating on a discrete sample space of infinitesimal dimensions. But then we are back
to the situation where the probability of each infinitesimal outcome is infinitely small.

Figure 9.18
Probability for the sum of dice.
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6/36

5/36
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9.14.3 Uniform Distribution

Let’s return to the example of striking piano keys at random. Assume (incorrectly) that the out-
comes are all equally likely and that the probability of actually striking a key is 1. Then the prob-
ability of striking a particular key (such as middle C) is the probability of striking any one key
divided by the number of keys, or 1/88.

If the events in a sample space are all equally likely, we can define the uniform probability dis-
tribution function f(x) as

, (9.11)

where R is a particular outcome (e.g., the struck key is middle C), s is the number of events in the
sample space, x is the random variable, and P(x = R) is the probability that x is R.

The number of keys s on an organ keyboard is 60, so striking middle C in a random attempt is
somewhat more likely on this instrument. Along the same lines, the chance of striking any key in
the middle octave of the piano is 12/88. The probability of striking any pitch class C is 8/88 because
there are eight C keys on the standard piano.

9.14.4 Nonuniform Distributions

It’s time to face up to the fact that more area on a piano keyboard is covered by white keys than
black, so the likelihood of striking a black key at random is less than striking a white one. The ratio
of the area occupied by all the white keys kw to the total keyboard area ka expresses the probability
of striking a white key:

, (9.12)

where p(w) is the probability of striking a white key. There are n = 2 kinds of keys. If p(w) ≠ 1/n,
the probability distribution is not uniform. If p(w) > 1/n, striking a white key is more probable.

By inspecting a piano keyboard, we can estimate that the ratio of white key area to total key area is
pw ≈ 3/4. By this analysis, the odds are that a white key would be randomly selected about 75 percent
of the time and a black key the remainder of the time (figure 9.19). This plot is a probability distribution
function because it expresses how probability is distributed over the sample space.

Let s be the sample space of all white and black piano keys, which can be represented as the set
{White, Black}. The outcome R must be one of White or Black. We construct the probability dis-
tribution function by setting a random variable x in turn to each possible outcome of the sample
space s and determining the probability that x is equal to outcome R. Unlike in the coin example,
this distribution is not uniform:

f x( ) P x = R( ) = 1
s---≡

p w( ) =
kw

ka

-----

f x( ) P x = R( ) =
.75, x = White
.25, x = Black




≡
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In general, if the sample space }, the probability that some event R is equal to
a particular x in s is the function

(9.13)

for any x. This is read as, “The probability that a random event R will result in an outcome x is
defined by the function f.” For example, f(Black) ≡ P(R = Black) = 25 percent, and
f(White) ≡ P(R = White) = 75 percent. 

9.14.5 Generating Outcomes from Probability Distributions

Probability distributions allow us to analyze random systems like dice and coins, but we can also
use them to synthesize random numbers that are distributed in probability according to our choos-
ing. We can use such systems to drive compositional processes to automatically generate music
according to rules that we supply.

Say, for instance, we wish to use a random system to create a melody so that it favors lower
pitches in the scale. Let’s limit the sample space to one octave of the chromatic scale. We can rep-
resent this as a probability inequality:

f(x) ≡ P(R = C) > P(R = C#) > P(R = D)  > . . . > P(R = B).

To be specific, suppose we want to create a probability distribution function that is 12 times more
likely to pick C than B, 11 times more likely to pick C# than B, 10 times more likely to pick D than
B, and so on. The probability distribution function would look like the one in figure 9.20.

We know what we want, but how do we get it? So far, the only things we have to work with are
a random number generator, Random() (see appendix B, B.1.27) and a probability distribution
function (figure 9.21).

9.14.6 Cumulative Distribution Function

Let’s rotate each of the weights in figure 9.21 and then concatenate them. Their sum is 78, so we divide
the length of each weight by 78 so that the weights sum to a length of 1.0 (figure 9.21). We have effec-
tively divided up the x-axis in the unit interval into 12 areas that are proportional to the weights in the

Figure 9.19
Piano key probability distribution.
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Sample space
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f x( ) P x = R( )≡
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original distribution. Now we pick a random number in the unit interval with the Random() function,
see which interval the number would fall in, and then determine the chosen pitch. The probability that
a particular interval will be chosen is proportional to the extent of its footprint on the x-axis.

How can we represent this formally so that a computer can do this? First, the statement

RealList f = {12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0};

defines the weights for each pitch, lowest to highest, left to right. Note that the type of list f is
RealList.

Next, we normalize the weights so that they sum to 1.0 (see appendix A, A.3):

. 

Normalizing is done in two steps:

1. Find the sum of all weights:

Real sum(RealList L){

Real s = 0.0;

For (Integer i = 0; i < Length(L); i = i + 1){

s = s + L[i];

}

Figure 9.20
Chromatic probability distribution.

Figure 9.21
Chromatic probability distribution.
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Return(s);

}

Given the definition of RealList f above, Print(sum(f)) prints 78.

2. Divide each weight by sum(f) so that the sum of the weights equals 1.0:

RealList normalize(RealList L, Real s){

For (Integer i = 0; i < Length(L); i = i + 1){

 L[i] = L[i]/s;

}

Return(L);

}

Given the definition of RealList f above, the statements:

RealList r = normalize(f, sum(f)); 

Print realToRational (r)); // realToRational is a built-in function

prints {12/78, 11/78, 10/78, 9/78, 8/78, 7/78, 6/78, 5/78, 4/78, 3/78, 2/78, 1/78}.

After these two steps, r will look like figure 9.20 except that all values are scaled down by 78. (The
built-in realToRational() function is described in appendix B, B.2.2.) 

Next, we create a function such that each step along the x-axis accumulates all the weights to
its left with its own weight (figure 9.22). The first column has a height of 12/78, the second of
12/78 + 11/78, the next of 12/78 + 11/78 + 10/78, and so on. This function is called a cumulative
distribution function.

Figure 9.22
Cumulative distribution function.
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If we index the y-axis of figure 9.22 with a random value in the unit interval, the corresponding
x-axis value will be one of the 12 pitches of the scale. Furthermore, the choice will more likely
fall on a step that occupies a wider footprint on the y-axis, corresponding in this case to the
lower pitches of the scale, just as we wanted. We can create the cumulative distribution function
in figure 9.22 as follows:

RealList accumulate(RealList L){

For(Integer i = 1; i < Length(L); i = i + 1){

 L[i] = L[i] + L[i – 1];

}

Return(L);

}

Starting with the second element in the list (indexed as 1), we replace this element with its original
value plus the value of the previous element. As we proceed through the list, each list element will
be equal to itself plus all previous elements. Given the preparation of the RealList r performed
above, Print(accumulate(r)); prints {0.15, 0.29, 0.42, 0.54, 0.64, 0.73, 0.81,
0.87, 0.92, 0.96, 0.99, 1.0}.

We have prepared the cumulative distribution function, and now we can access it with a random
value to select a pitch. Pick a number in the unit interval to be the next note of the melody: 

Real R = Random();

R will fall within the range of one of the 12 steps in figure 9.22 because both Random() and the
cumulative distribution function exactly span the unit interval, 0 to 1. For example, if R equals 0.1,
then by inspection of figure 9.22, we can see that R lies within the first step, which covers the inter-
val [0, 0.15], so the pitch that this value of R selects is C.

To automate this, we start at the top end of the cumulative distribution function and work
down. As we go, we compare the value of R to the current step size. We’ve gone one step too far
when the value of R exceeds the step size, so we return the previous step as the answer, and stop.

Integer getIndex(IntegerList L, Real R){

Integer i;

For (i = Length(L) – 1; i >= 0; i = i – 1){

If (R > L[i]){

Return(i + 1);

}

}

}

We can invoke getIndex() as follows:

Real R = Random();
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Integer p = getIndex(f, R); // where f was defined previously

Print(p);

If R is 0.1, then p prints 0. Now let’s bring all the pieces together. Here is a program that creates
a melody of 25 pitches favoring pitches that are at the low end of the chromatic scale:

RealList f = {12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0};

StringList n = {"C", "C#", "D", "D#", "E", "F", "F#", 

"G", "G#", "A", "A#", "B", "c"};

f = normalize(f, sum(f)); // replace f with its normalized form

f = accumulate(f); // calculate cumulative distribution function

StringList s; // a place to put the result

For (Integer i = 0; i < 25; i = i + 1){

Integer p = getIndex(f, Random());

s[i] = n[p];

}

Print(s); // print the melody

Running this program will generate something like figure 9.23, depending upon the values pro-
duced by Random(). As we see, lower pitches are favored in approximately the proportions we
specified. The longer the sample melody, the more likely the pitch choices would conform on aver-
age to the distribution function.

Unfortunately, this melody is dreadfully dull, but it strictly obeys our requirements. This goes to
show that one only gets back from an approach like this exactly what one specifies. A more graceful
melody might rise to its climax gradually, then fall at the end. The following example accomplishes
this by selecting among a set of probability distributions at different points of the melody.

Integer N = 13; //each list specifies 13 pitches

RealList a = { //force choice to be pitch C

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

};

RealList b = { //force C#, D, D#, E, or F

0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 

};

Figure 9.23
(Boring) musical example of weighted random values.

C  , G  , C, E, D, G, F, D  ,  F, A  , C  , D  , D, F  , E, D, C  , D  , E, B, A, F  , C, C  , G
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RealList c = { //force F#, G, G# A, A#, or B

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0 

};

RealList d = { // force pitch c an octave above

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 

};

// indicate what percentage of the score is completed

Real progress(Integer p, Integer L){

Return Real(p) / Real(L);

// L is the total number of notes and p is the current note

}

randomMelody(RealList a, RealList b, RealList c, RealList d){

Integer K = 25; // we’ll play 25 notes

Integer highPoint = Integer(K * 2.0/3.0);

normalize(a, sum(a)); normalize(b, sum(b));

normalize(c, sum(c)); normalize(d, sum(c));

StringList s; // a place to put result

For (Integer i = 0; i < K; i++){

RealList f;

If (i == 0 Or i == K – 1) // force first and last notes to

f = a; // be pitch C

Else If (progress(i, K) < 0.30)// less than 30% of the way?

f = b; // force lower hexachord

Else If (progress(i, K) < 0.60)// between 30% and 60%?

f = c; // force upper hexachord

Else If (i == highPoint)// force high point to be high c 

f = d;

Else If (progress(i, K) < 0.80) // between 60% and 80%?

f = c; // force upper hexachord

Else // otherwise force lower hexachord

f = b;

f = normalize(f, sum(f)); // replace f with its normalized form

accumulate(f);

Integer p = getIndex(f, Random());

s[i] = n[p]; // n is StringList defined in previous example

}

Print(s);

}
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Running this program will generate something like figure 9.24, depending upon the values pro-
duced by Random(). The distributions responsible for each section are shown in the figure.

The musical example in figure 9.24 is certainly an improvement, but I doubt it would win any
prizes. Certainly a composer of a melody takes its whole shape into consideration during writing,
but successive weighted random selections are completely independent of the past and future.
Many composers have used techniques like this to obtain freedom from predictable musical con-
texts. But we must have a way to correlate past and future choices to the present before random
choice techniques are of use in those musical styles that manipulate listener expectation. The next
section lays the foundations for a mathematics of expectation.

9.15 Information Theory and the Mathematics of Expectation

Information is a property of a message that is transmitted from a sender to a receiver via a signaling
system (see section 6.1). We know intuitively what information is, but when we look more deeply,
it has some unusual characteristics. For example, it is possible to quantify the amount of informa-
tion in a message.

Suppose you receive a letter from a friend announcing her engagement. The letter only contains
information if you don’t already know that she’s engaged, that is, if you were uncertain about the
contents of the letter. For example, if a friend had told you the news by phone before the letter
arrived, the letter carries no information; in fact, it is redundant. We see from this example that
information and redundancy have a curious relation to uncertainty.

Shannon and Weaver (1949) developed information theory to study the quantitative aspects
of information. They were not concerned with the qualitative meaning or value of information
but strictly focused on how much information was communicated by different kinds of mes-
sages. Consider the problem, for instance, of music dictation. Traditionally, music students are
taught music dictation by a professor who plays music that the students must learn how to write
down. Suppose we are students who are required to take a class that the syllabus calls Music
Dictation from Hell 101. Our sharpened #2 pencils are at the ready, poised over blank music
paper.

On the first day, the professor says, “Class, I am going to play one note, middle C, over and
over again for the next hour. Be sure to write them all down correctly.” He then goes to the piano
and plays C, C, C, C, C, C, . . . . Any time someone coughs or there is a loud disturbance, we

Figure 9.24
(Less boring) musical example of weighted random values.

C, D, C  , D  ,   E,  D, D  ,  F,  E, F , A  ,  B, G  ,  G,  G,  B,  c, A  ,  F ,  A,  D,  E,  E,  D  ,  C 

a ab c d c b
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can’t hear the piano, so we write C, C, ?, C, C, ?, C, . . . . No matter, we know that the missing
notes are C.

On the second day, only the students who need this class to graduate show up. The professor says,
“Class, I am going to play the C major scale for the next hour. Be sure to write them all down correctly.”
So we write C, D, E, F, G, A, B, C, D, E, . . . . Occasionally, we nod off, missing a note or two, so we
write C, D, ?, ?, G, . . . . No matter, we know exactly what the missing notes are. As before, the message
is almost totally redundant, but the redundancy allows us to recover from any transmission errors.

On the third day, a miserable handful of students straggles into the room. “Class, I am going to
play each of the 88 keys on the piano in random order, but you’ll be glad to know that I won’t repeat
any key until I’ve played every one of them. Be sure to write them all down correctly.” We scribble
furiously: C3, G#4, Bb5, F7, Gn1, . . . . It seems impossibly difficult at first. Any disturbance in the
room means we’ve irretrievably lost that note because we can’t predict what it will be. But we dis-
cover that it becomes easier as we go along because we know the professor won’t repeat any note
until he’s played all the others. By the time he has played 78 notes, if we miss a note it’s not too
bad because there are only ten possible notes left that he could play. And when he has played 87
notes, the eighty-eighth note is a certainty; we don’t even need to hear it to write it correctly. The
information content of each subsequent note declines while its redundancy increases because each
new note played narrows the choices of what notes can be played subsequently. 

On the fourth day, you and I are the only two students desperate enough to show up. The pro-
fessor says, “Class, I am going to play each of the 88 keys on the piano in random order, and I may
repeat keys any time I like. Be sure to write them all down correctly.” The only source of infor-
mation about what note will be played next is the note itself. Information in each note is very high,
redundancy is very low. But we hear patterns occasionally as we go along. We write, “Repeated
B b5 four times in a row” or “Played melody of Moonlight Sonata” as a shorthand. These shorthands
allow us to recover information and squeeze out redundancy in what we write, because otherwise
we’d have to enter all the notes or write out the melody of the Moonlight Sonata. (This kind of
information recovery, by the way, is similar to one stage in the process used by MP3 encoders to
compress musical sound.)

On the fifth day, the professor does not come, but there’s a note on the piano that says, “Go down
to the beach and write down every note you hear in the ocean’s waves. Be sure to write them all
down correctly.” We go to the beach. Overwhelmed by the multitude of frequencies in each splash
of the waves, we cannot write down anything.

Throughout the week, the professor played patterns that went from great certainty to great uncer-
tainty. We became aware that the amount of information carried by what the professor actually
played was a function of our uncertainty about what could be played. The more we knew about
what was coming, the less information was conveyed by what was communicated. Every con-
straint the professor imposed on his freedom of choice resulted in a decrease of information in the
music itself. We observed the value of redundancy to help prevent information loss when noise
disrupts the communications channel. We also learned that we have emotional reactions to dif-
ferent degrees of information and redundancy.

loy79076_ch09.fm  Page 344  Wednesday, April 26, 2006  4:33 PM



Composition and Methodology 345

9.15.1 Entropy and Redundancy

Shannon and Weaver (1949) formalized their ideas about information using the concept of entropy,
which they adapted to their purposes from the physical sciences. In chemistry, entropy is a measure
of the ways in which the energy of a molecular system is distributed among the motions of its particles,
its thermodynamic probability. In information theory, entropy is a measure of the ways in which the
information of a signaling system is distributed among its communications. A highly entropical micro-
particle distributes its energy widely among its possible motions. A highly entropical signal requires
a large number of independent facts in order to fully communicate it. In terms of the Music Dictation
from Hell example, days 1 and 2 were low-entropy days and the rest were high-entropy days.

9.15.2 Surprisal

On day 1 of Music Dictation from Hell, the probability that the next note would be the same as the
preceding note was 1.0, because there was no unexpectedness or surprisal about what note the pro-
fessor would play. As the probability of an event decreases from 1.0 toward 0, the surprisal goes
from zero to infinity. But what is the exact trajectory of this relation?

Recall day 4 of Music Dictation from Hell. As the professor plays notes at random over the entire
range of the keyboard, suppose you and your friends devise a game to pass the time, betting on
which key the professor will play next. You wager that the next note will be below the midpoint
of the keyboard.8 The probability is 44/88 = 1/2 that you will be right. If the professor’s next note
is as you predicted, you are pleasantly surprised, and your friends mark down 1; otherwise they
mark down 0. Since there are only two possible outcomes, the amount of surprisal requires one
binary digit, called one bit, to represent (see volume 2, chapter 1).

Suppose you take a bigger risk and wager that the next note will be in the bottom quarter of the
keyboard. The probability is 22/88 = 1/4. Since your risk has doubled, you’d be twice as surprised
in the event you guessed correctly. You’d need two bits to represent the amount of surprisal. With
two bits, you can represent a magnitude of 4.

Wagering that the next note is in the bottom eighth has probability 11/88 = 1/8, requiring three
bits to represent the amount of surprisal because you can represent a magnitude of 8 with three bits.
Probability of 1/16 requires four bits of surprisal; probability of 1/32 requires five bits. These
examples can be expressed as follows:

, Probability and Surprisal (9.14)

where p is probability and s is surprisal. Equation (9.14) finds probability given surprisal. To find
surprisal given probability, we solve (9.14) for s:

, (9.15)

where ln x is the natural logarithm to the base e.

p = 1
2s
----

s = 1
p
---2log = p2log– = pln

2ln
----------–

loy79076_ch09.fm  Page 345  Wednesday, April 26, 2006  4:33 PM



346 Chapter 9

For example, the probability p of predicting the next individual key the professor plays is 1/88,
and its corresponding surpisal is 6.46. One advantage of surprisal is that where probabilities mul-
tiply, surprisals merely add. For example, the probability of guessing two individual keys in suc-
cession is 1/882 = 1/7744, but the surprisal is merely 6.46 + 6.46 = 12.92.

We can extend (9.15) to represent the surprisal for every key. Let each key be labeled xi, i = 1,
2, . . ., M, where M = 88 is the number of keys. Let the probability that the ith key is pressed be
Pi. Then the surprisal of the ith key’s being played can be defined as

. Surprisal (9.16)

The negation in (9.16) reminds us that the surprisal of an event increases as its probability
decreases.

Suppose the professor plays a total of N notes. If the ith key is played Ni times, then the average
surprisal of all pitches in the melody would be

, Average Surprisal (9.17)

where X represents all possible keys on the piano keyboard.
As the total number of notes N increases to infinity, the ratio Ni/N  tends to Pi. By combining

this with the definition for si given in (9.16), we have

. Uncertainty (9.18)

H(X) is a measure of the uncertainty of the system, and K is a positive constant of proportion-
ality. By suitable adjustment of K, we may choose any base for the logarithm. Use of base 2 log-
arithms is fairly standard, but in general Shannon and Weaver defined the information in a system
X as

. Information (Entropy) (9.19)

They noted a striking resemblance of this equation to the equation relating thermodynamic prob-
ability to entropy:

, Thermodynamic Probability (Entropy) (9.20)

where Wi is the thermodynamic probability of each state, k is Boltzmann’s constant, equal to
1.3807 × 10−23 JK−1, and H is the resultant entropy. They then related entropy to information by
the simple expedient of the ratio k/K.9

si = log2 Pi–

H X( ) = Ni

N
-----si

i=1

M

∑

H X( ) = K Pi log2 Pi
i=1

M

∑–

I X( ) = K Pi Piln
i=1

M

∑–

H = k Wi Wiln
i=1

M

∑–
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When log2 x is used, the unit of entropy is called a bit (though this definition is more flexible
than the bits in a computer memory). When ln x is used, the unit is called a nat. For log10 x the unit
is called a hartley.10

Summarizing equations (9.19) and (9.20), Shannon (1948) makes the following points:

■ Entropy H of a communications channel will be zero “if and only if all the Pi but one are zero,
this one having the value unity. Thus, only when we are certain of the outcome does H vanish. Oth-
erwise H is positive.” This case corresponds to day 1 of Music Dictation from Hell. 

Only absolute certainty banishes entropy absolutely.

■ “For a given n, H is a maximum and equal to log n when all the Pi are equal (i.e., 1/n). This is
also intuitively the most uncertain situation.” This case corresponds to day 4 of Music Dictation
from Hell.

The most uncertain situation has the maximum entropy.

■ “Any change towards the equalization of the probabilities P1, P2, . . . , Pn increases H.” Con-
versely, any change that makes probabilities less equal reduces H. For example, on day 3 of Music
Dictation from Hell, H was gradually reduced as notes that were played were removed from the
pool of possible notes.

9.15.3 Department of Redundancy Department

We can use the definition of maximum entropy to show the relation of entropy to redundancy.
Redundancy relates the actual entropy H(X) to its theoretical maximum, log N, as follows:

. Redundancy (9.21)

Because redundancy is normalized for the length of the communication, it is actually more useful
than entropy as a way to compare sequences.

Information theory presents us with the somewhat counterintuitive outcome that the greatest
amount of information is associated with the greatest degree of uncertainty. But information is not
the same thing as knowledge. 

Information relates to the breadth of what could be communicated. Knowledge is a distillation 
of the regularity and order arising from a communication. 

9.16 Music, Information and Expectation

Ordinarily, music, like most systems, contains some entropy and some redundancy. In Music Dic-
tation from Hell, we saw that the extremes of entropy and redundancy kill our interest. If the degree
of redundancy is too high (as on days 1 and 2), the music is too predictable, and the listener even-
tually gets bored and stops listening. If the degree of entropy is too high (as on days 4 and 5), the

R X( ) = 1 H X( )
Nlog

-------------–
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music is too unpredictable, and the listener eventually gets frustrated and stops listening. In
between is where music happens: when entropy and redundancy sustain a fluid, dynamic balance,
there is enough regularity to orient the listener in the music but also enough novelty to preserve
interest. This suggests that, in general,

Composing is about the manipulation of interest, affect, and attention.

This shouldn’t be too surprising: after all, the human neocortex is a very refined organ of expec-
tation. A fundamental job of the neocortex is anticipating what may happen next. One of the ways
we entertain ourselves is by exercising this faculty in play.

Susan Langer (1953) characterized music as a kind of emotional algebra: “Music conveys gen-
eral forms of feelings, related to specific ones as algebraic expressions are related to arithmetic
[expressions].”

Leonard Meyer (1956) proposed an “affect theory of music,” writing “Emotion or affect is
aroused when a tendency to respond is arrested or inhibited. . . . What a musical stimulus or a series
of stimuli indicates . . . [is] not extramusical concepts and objects but other musical events which
are about to happen. . . . Embodied musical meaning is, in short, a product of expectation” [italics
added]. Meyer has precisely defined musical meaning, and it bears repeating: 

Expectation is a prediction based on current and past experiences. Musical meaning is a func-
tion of expectation.

Aristoxenus said much the same when he wrote,

Musical cognition implies the simultaneous recognition of a permanent and a changeable element . . . for the
apprehension of music depends upon those two faculties, sense perception and memory; for we must perceive
the sound that is present, and remember that which is past. In no other way can we follow the phenomenon
of music.11

If audition and memory are the engines that drive expectation in music, expectation itself is
the beginning and end of music. Freyd (1987) developed what she calls “representational
momentum” to characterize expectation of movement: “The perceptual system is geared to per-
ceive transitions in real time” (428). In other words, the brain constantly anticipates the future.
This must be so; how else would we catch a baseball, drive a car, or comprehend the rise and
fall of a melody? Freyd (1993) writes, “Just as time is a dimension in the external world, insep-
arable from the other physical dimensions, so might time be a dimension in the represented
world [in the mind]” (105).

Many traditional compositional practices are aimed at securing and maintaining the listener’s
interest through expectation. Consider the following musical motive:

If I then play

&##|
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you become aware that I am sequencing a motive rising by diatonic steps, and you may expect I
will repeat it. If I meet your expectation by extending the sequence

representational momentum increases and entropy decreases. I risk losing your attention because
you now recognize the pattern, and since there is hardly any new information in it, you may start
to lose interest. If instead of the previous motive, I play as a final motive

I have frustrated your representational momentum by shifting your attention from the horizontal
melodic sequence to the vertical harmonic resolution. Surprise renews interest. There is also the
satisfaction of arriving at a complete musical thought by cadencing.

9.16.1 The Golden Mean

Here is the entire phrase just described:

Notice that the sequence’s momentum is broken about two thirds of the way through by the
cadence. It is very common for musical patterns to veer off in a new direction near ratios of the
golden mean. This proportionality appears in musical structures of all kinds and all levels of com-
positional scope, ranging from motivic fragments to cycles of works. For example, the boundary
between the exposition and development section in many Mozart sonatas begins in the vicinity of
(and sometimes even exactly on) the measure that divides the movement by the golden mean (Putz
1995; Kay 1996). Similar arrangements appear in the works of Beethoven, Webern, and many
other composers (Novden 1964). Did these composers intentionally structure their music to have
these proportions? We know that Mozart was fascinated by mathematics, but there’s little hard evi-
dence one way or the other. On the other hand, in his work Music for Strings, Celeste and Percus-
sion, Béla Bartók used the golden mean so accurately, so often, and at so many structural levels
simultaneously that it is easy to assume he did so intentionally (Lowman 1971).

But proportional analysis of music only goes so far. Music more resembles objects shaped by
natural forces than objects shaped by axiom. For example, Putz (1995) found that large structures
in Mozart’s sonatas came statistically much closer to the golden mean than smaller structures. He
attributed this—correctly I believe—to the tendency of natural proportional structures, such as

&##

&[ ##

&[ ##

&[ # [

1 2 Cadence

#

|
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segment sizes of shells and branching patterns in plants, to become increasingly approximate at
the extremes of scale.

Another reason for the limited success of proportional analysis of music is that a high degree
of strict proportionality on many levels of scale is highly redundant, and this is inconsistent with
the compositional exploitation of expectation and surprise. Structural predictability can only be
useful to a composer up to a point because music is designed to gain and maintain interest, and this
requires a certain degree of structural ambiguity. Consequently, materials may be ordered, com-
bined, disordered, and recombined in a manner that defies easy analysis. Meyer (1956) writes,

Weak, ambiguous shapes may perform a valuable and vital function . . . for the lack of distinct and tangible
shapes and of well-articulated modes of progression is capable of arousing powerful desires for, and expec-
tations of, clarification and improvement. . . . some of the greatest music is great precisely because the com-
poser has not feared to let his music tremble on the brink of chaos, thus inspiring the listener’s awe,
apprehension and anxiety, and, at the same time, exciting his emotions and his intellect.

Information theory and its relation to expectation and surprise show up even at metalevels of
the composition process. Wherever there is a belief, there is an opportunity for its deconstruc-
tion, with all the same consequences for expectation and surprise. For example, it seems John
Cage’s primary aim was not to maintain an audience’s interest. Rather, he wanted to allow nat-
ural processes to manifest directly in his music, in part, I suppose, because this would decon-
struct compositional methodology based on interest and expectation. Where Schoenberg and his
school sought to erase the expectation of tonal harmony, Cage and others sought to erase the
expectation of expectation itself. (Note that this still requires a sense of expectation.) Thus,
deconstructionism can be seen as the play of information and expectation in the realm of belief
systems.

9.17 Form in Unpredictability

Music is like a field, bordered on one side by order and regularity and on the other by surprise and
irregularity, and the most effective musical domains lie in the middle ground between these bor-
ders. Redundant elements communicate a sense of order that is embodied, for example, in the reg-
ularities between the various parts of a musical composition. Taste is reflected in the entropical
elements, and style is revealed in the pattern of trade-offs made by the composer between order and
taste. If we appreciate the sense of order, taste, and style in music, we appreciate the intelligence
that informs the composer’s work.

The efforts in this chapter to generate compositions by rule have so far shown no particular musi-
cal intelligence. Because all values chosen by the Random() function are strictly independent,
the music created directly from it is unsatisfying; it lacks the glue—redundancy—that binds music
together. But there are mathematical forms, called fractals, that reveal a deep inner structure, very
similar to the complex inner structures of music, that combine varying degrees of predictability and
unpredictability in one contour.
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9.17.1 Self-Similarity

Consider the Weierstrass function shown in figure 9.25. Like ocean waves, it is shaped from point
to point with a balance of predictability and unpredictability. This balance extends across different
levels of magnification: the shape of the smaller parts resembles the shape of the larger parts, and
vice versa, demonstrating self-similarity at various scales. For example, the contours inside the two
boxed sections of the curve in figure 9.25 are similar. This calls to mind the proverb “The more
things change, the more they remain the same.” A structure is self-similar if, when magnified, its
structure remains similar to the original scale. But what defines similarity in this case?

Let’s examine how energy is distributed in the partials of the Weierstrass function. Figure 9.26a
shows the power spectrum of this function on a linear scale (see volume 2, chapter 3). A power
spectrum is basically a means to observe where there is energy in a signal. Most of the energy in
this signal is near 0 Hz, and energy drops off quickly with increasing frequency, but it’s a little hard
to see what’s really happening. A clearer picture emerges from figure 9.26b, which depicts the
same spectrum, but with log frequency and log amplitude shown on the x- and y-axes, respectively.
Viewing the power spectrum as a log-log plot reveals the essential detail of the spectral plot. The
lines through the peaks of both plots show the ratio of 1/f , where f  is frequency. The tips of the

Figure 9.25
Weierstrass function.

Figure 9.26
Weierstrass function power spectrum.
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spectral components seem to track this 1/f line. We say that the Weierstrass function has a spectral
tendency of 1/f, meaning that the intensity of frequency nf has 1/n the intensity of frequency f. This
corresponds to a roll-off of high-frequency energy at the rate of about −3 dBSIL per octave. So how
does this characterize similarity? And what does this form of similarity have to do with music?

9.17.2 Fractal Geometry

The ordinary materials of Euclidian geometry, such as lines, surfaces, and volumes, are organized
by their dimension, which can be intuitively defined as the number of numbers needed to uniquely
locate a point in space. To locate a point some distance along a line or curve, one number suffices,
so lines and curves are one-dimensional. One number also serves to measure the distance from a
point on the circumference of a circle, or to measure along the edge of an object.

For a point on a plane, two numbers are required, so a plane is two-dimensional. We can orga-
nize the two numbers in a variety of ways. Typically, we establish an orthogonal coordinate sys-
tem with linear dimensions and express points in Cartesian coordinates such as [x, y]. But we could
consider other non-Euclidian two-dimensional “spaces,” such as telephone numbers that consist
of a three-digit exchange number followed by a four-digit line number. We could also
consider the nonlinear two-dimensional surface of a Möbius strip (figure 9.27) or a deformed
surface such as a balloon. Three numbers are required to describe a point in 3-D space, and so
forth.

The characteristic size of objects in Euclidian spaces changes in a regular way as the extent of
their linear dimensions change. For example, if a line is doubled in length, its characteristic size
also doubles. Doubling the length of a square’s side multiplies its area by 4. Doubling the length
of a cube’s side multiplies its volume by 8. Abstracting from these examples, if D is dimension

Figure 9.27
M. C. Escher, Möbius Strip II, 1963.
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and L is a scaling coefficient, then the characteristic size s of an object is given by s = LD. Solving
for D, we have

. Dimension (9.22)

Euclidian geometry covers the cases where , . However, there are struc-
tures that look like curves, such as the one in figure 9.25, but that don’t behave like curves because
position along the curve can’t be described as a one-dimensional offset from some other point. Such
shapes do not yield integer values for D and do not obey the scaling rule for Euclidian geometries.
These shapes are not mere pathological12 curiosities. They reflect the structures of coastlines, the
branching of plants and blood vessels in the lungs, the annual flood tides of the Nile, and many other
natural phenomena, including music. To accommodate such geometrical anomalies, mathemati-
cians have had to devise more nuanced definitions of dimension, allowing for fractional dimen-
sions. Objects with fractional dimension were nicknamed fractals by Benoit Mandelbrot (1977).

The Koch Snowflake A simple fractal example is the Koch snowflake. To generate this shape,
begin with a triangle, such as an equilateral triangle with sides of length 1. Then, for each side,
divide the length by 3, and build another triangle with its base upon every middle segment and its
apex pointing outward. Last, discard the base segment, leaving only the sides. The first four
approximations are shown in figure 9.28.

The shape becomes ever more detailed, and in the limit as the number of iterations goes to infin-
ity, the distance between any two points along the curve becomes infinite, even though the area
bounded by the curve remains finite. Therefore, in the limit, it is impossible to determine a length
along the boundary. The structure shows similarities at all levels of magnification, so it is
self-similar, which makes sense, considering how it is constructed.

The Koch snowflake and the Weierstrass function are examples of deterministic fractals
because they are defined by an algorithm or mathematical formula. As shown in figure 9.28, the
regularities of deterministic fractals are self-similar. There are also nondeterministic fractals, or
random fractals, that more closely resemble the natural shapes of coastlines, mountain ranges, and
natural musical signals. The irregularities of random fractals are statistically self-similar.
Although deterministic fractals are infinitely self-similar, the self-similarity of natural fractal
shapes tends to break down at very large and very small scales.

Figure 9.28
Koch snowflake.
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9.17.3 Self-Similarity in Music

Richard Voss and John Clarke, when they were graduate students at the University of California
in Berkeley, observed that a great deal of music, when examined over a long enough time span,
appeared to have spectral tendency of , 1 < v < 2. They observed this by connecting a spec-
trum analyzer to the output of an AM radio. The frequency components revealed self-similar musi-
cal structure, especially for frequencies below 1 Hz. Since frequencies below about 50 Hz
correspond to rhythmic and structural elements in music, they reasoned that the compositional
structure of music—sections, phrases, motives, and note durations—exhibit a 1/f spectral ten-
dency, revealing an even balance between entropy and redundancy.

Figure 9.29 shows some of their results. The Scott Joplin piano rags were averaged over an entire
recording, perhaps an hour of music. Voss and Clarke (1974; 1978) attributed the high variation
in this curve between 1 and 10 Hz to strongly characteristic rhythmic elements in Joplin’s music.
The rock music station recorded over a 24-hour period shows a spectral bump at about an hour’s
duration, perhaps corresponding to station breaks. Wondering how universally this result would
hold, Voss and Clarke repeated the experiment with recorded music from a wide variety of musical
ages, locations, and styles. All their subjects showed 1/f spectral tendencies, especially at very
low frequencies. They believed they’d found experimental evidence that music favors this spectral

Figure 9.29
1/f spectra. (Voss and Clarke 1975; 1978.)
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tendency universally. Although the effect may not be universal, approximate self-similarity of
musical structures has been widely demonstrated.

9.17.4 Generating Scaling Signals

The work of Voss and Clarke has evoked a great deal of interest and some controversy. Musicol-
ogists have surveyed a great deal of music for fractal elements, and composers have experimented
with fractal designs. To do either requires a way to observe and generate fractals. Following are
some techniques to generate fractal signals.

Generating Deterministic Fractal Signals Although it appears to be random, the generating
equation for the Weierstrass function is strictly deterministic, like the Koch snowflake. In fact, it
is just a variation on Fourier synthesis, summing a number of sinusoids at various harmonics (see
volume 2, chapter 9). Unlike Fourier synthesis, the harmonics and their corresponding amplitudes
are in an exponential rather than a linear sequence:

. Weierstrass Function (9.23)

Figure 9.25 shows the Weierstrass function for r = 0.5, H = 1.0, and N = 32. If we could hear the
waveform in figure 9.26 it would sound like a rich pipe organ tone.

In equation (9.24) the parameter r, called the lacunarity, controls the texture of the spectrum.
It can usefully vary over the range 0 < r ≤ 1. H is called the Hurst exponent, or more intuitively,
the self-similarity parameter or long-range correlation parameter. It has the range 0 < H ≤ 1 and
controls the spectral tendency because it determines the amplitudes of the harmonic sequence. H
is related to the fractional dimension D = 2 − H (Falconer 1990). As H goes to 0, high frequencies
in the spectrum become stronger until, when H = 0, the spectrum no longer drops off in amplitude
with higher frequencies. The Weierstrass function varies in dimensionality between 1-D and 2-D
as H varies. Near H = 0 the curve is so dense that it seems to fill up the whole plane and so has
dimensionality near 2-D.

Brownian Noise and the Random Walk We can relate the independent values of a uniform
random number generator in such a way that they show interdependence and correlation across
time and so achieve self-similarity. As a model of this process, consider the random walk of a
drunk person who repeatedly stands up and stumbles off in an independent random direction,
falls down, and starts off again and again. Clearly, where the drunk was a moment ago deter-
mines the possible places he will fall next, so there is a sense of history, albeit a quixotic one,
to the process. If Us is a uniform real random sample and xn is the current point, then Brownian
noise is defined as

. Brownian Noise (9.24)

Because subsequent points depend upon current and previous points, this is a recursive process. 

w t( ) = r
kH πr

k–
t( )sin

k=0

N

∑

xn = Us xn−1+
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Brownian motion was first identified by Jan Ingenhousz in 1785, but it was named for Robert
Brown, who rediscovered it in 1827 while watching the dance of pollen grains in a drop of water
under a microscope. Albert Einstein identified this in 1905 as the effect of molecules of water,
excited by heat, striking the pollen grains. Brownian motion describes the movement of micro-
particles in liquids and gases. Their movement is subject to Newton’s first law of motion, so their
inertia would make them want to travel in a straight line, but they can move only so far on average
(the mean free path) without bumping into other microparticles, which sends them off in new
directions. (Calculus alert!) A function is integrated by adding each subsequent point on the func-
tion to its previous point. Brownian motion can be viewed as the integral of uniform random noise.
Figure 9.30 shows an example of Brownian motion in two dimensions.

Because this movement depends not on an absolute position but rather on its previous relative
position, the range of x is theoretically without bounds. For example, if Us happens to favor positive
outcomes in the long run, xn could grow toward positive infinity. Because computers have limited
precision, an adjustment must usually be made to keep the random walk within computable limits.
Here is a simple Brownian number generator (F. R. Moore 1990):

Real brownian(Real x, Real w, Real B){

Real R;

Do {

R = x + Random( –w, w );

} While ( R > B Or R < –B );

Return R;

}

Parameter x is either the initial value of the random walk or the value last calculated by brownian().
Parameter w is called the window parameter because it determines the maximum amount by which
the value of x can change at one time. Parameter B is the bounds, limiting the Brownian motion
to within its range. This method departs from strict Brownian motion by retrying the random
choice until the new value lies within this range.

Figure 9.30
Brownian motion.
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We call the brownian() method each time we want a new Brownian number, passing it either
an initial value or the value of its previous output. For example, the following code generated the
function shown in figure 9.30.

Real x = 0.0;

Real y = 0.0;

For (Integer i = 0; i < 1000; i = i + 1) {

x = brownian(x, 0.5, 0.5);

y = brownian(y, 0.5, 0.5);

PlotPoint(x, y); // plot a point on a graph at location [x, y]

}

A Brownian noise signal and its power spectrum on a log-log plot are shown in figure 9.31. The
straight line in the figure traces the contour of 1/f 2 for reference.

Fractional Brownian Motion The preceding Brownian number generator produces a high degree
of local similarity because subsequent points are constrained to remain relatively close to previous
points. But because the random increment at each step is independent, Brownian motion typically only
shows self-similarity in a region of its spectrum, so its fractal quality degenerates with scaling.

Fractional Brownian motion (fBm) is like Brownian motion, but the increments are no longer
independent. Instead, just as low-frequency ocean waves extend their influence over many cycles
of higher-frequency waves, in fBm, local rapidly fluctuating values are influenced by broader,
slower-moving values extending proportionately over the entire spectrum. As fBm is magnified,
it retains its statistically self-similar shape, and so it is fractal regardless of magnification.

Think of it this way. If we had an ideal tape recorder that accurately recorded all frequencies,
and we gradually increased the speed of a tape recording of Brownian noise, the character of the
noise would change (from a relatively low-frequency “whoosh” to a higher-frequency “whish”).
But a recording of fBm noise will sound the same regardless of playback speed. All speeds sound
the same because both the signal and the spectrum are self-similar at all levels of scale. A number
of methods can be used to generate fBm noises.

Figure 9.31
Brownian noise and its power spectrum.
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Randomized Weierstrass Method One way to generate fBm noise is to add a random phase
term to the Weierstrass function:

, (9.25)

where . In the function Φ, the parameter x allows us to set the strength of the
effect. The strength of phase randomization is scaled as frequency rises so that the overall spectrum
remains approximately 1/f, depending upon the choice of parameters.

Voss’s Method Martin Gardner (1978) reported a fractal noise generator attributed to Voss. A
set of random variables xk are summed on each sample n, and the result is output. The random vari-
ables are updated at different rates. If , then the kth variable is assigned a new random
number Us. The index k ranges from 0 to N – 1. So x0 is randomized every sample, x1 is randomized
every other sample, x2 is randomized every fourth sample, and so on, until finallyxN–1 is only
randomized every  samples. We can express the formula as follows:

(9.26)

where Us ia source of random numbers. We can code this method as follows:

Real VossFracRand( Integer n, RealList L ) {

Real sum = 0.0;

Integer N = Length( L );

For(Integer k = 0; k < N; k = k + 1) {

If (Mod(n, Pow(2, k)) == 0) {

 L[k] = Random(–1.0, 1.0);

}

sum = sum + L[ k ];

}

Return(sum);

}

The following creates and prints a list of 128 fractal noise samples over four octaves:

RealList L = {Random(), Random(), Random(), Random()};

RealList R;

For (Integer n = 0; n < 128; n = n + 1) {

R[n] = VossFracRand(n, L));

}

Print(R);

w t( ) = rkH πr k– t Φ x( )+( )sin
k=0

N

∑

Φ x( ) = πUsr
kH

x

n( )( )
2k = 0

2N 1–

f n( ) = n( )( )
2

k = 0( ) (xk Us←  else xk),{ }
k=0

N−1

∑
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Figure 9.32 shows how this noise is constructed by this method. Each function changes at a rate
twice as fast as the previous function, and the functions are summed. Random values in the rapidly
changing functions have only local influence, whereas values in the slowly changing functions extend
their influence over many samples of the summed result, giving the result a fractal characteristic.

Spectral Filtering Method We can generate noise with an arbitrary spectral tendency by scal-
ing the power spectrum of uniform noise. In fact, completely arbitrary noise functions can be
obtained this way, fractal and otherwise. The method is to compute the Fourier transform of a noise
signal, scale its power spectrum as we like, then retransform with the inverse Fourier transform
(see volume 2, chapter 4).

9.17.5 Composing with 1/f Noise

In their experiments Voss and Clarke (1978) showed that a 1/f spectral characteristic was widespread
in the structure of music. They conjectured that compositions created with a 1/f spectral characteristic
would sound the most like music. To test this hypothesis, they synthesized melodies of three types
using a computer: the first type made tone and rhythmic selections with a uniform 1/f 0 noise gener-
ator, the second type used an fBm 1/f 1 noise generator, and the last used a Brownian 1/f 2 noise gen-
erator. For each generator type, they created melodies of two octave compass, using pentatonic,
diatonic, and chromatic scales. They only conducted informal listening tests, but they reported that
the consensus of listeners was that the fractally generated examples sounded the most like music.

Mandelbrot’s (1977) reaction to the work of Voss and Clarke was to note that “[music] teachers
insist that every piece of music [should] be ‘composed’ down into the shortest meaningful subdivi-
sions. The result is bound to be scaling!” (375). Though the work of Voss and Clarke has drawn wide-
spread interest and seems self-evident, it has been subjected to some skeptical analysis by, among
others, the musicologist Nigel Nettheim (1992), who sought to evaluate and confirm their results.

Figure 9.32
Voss’s fractal generator.
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Nettheim complained, for example, that analyzing long swaths of music broadcast over a radio
would combine spectral contributions from many composers and ages, including announcer’s
messages, commercials, and other extraneous nonmusical material. For his own observations, he
limited the analysis window to the duration of individual musical works and observed greater
diversity of spectral tendency for different kinds of music. He also found that the fractal dimension
was often closer to 2 (Brownian) than 1 (fractal). Nettheim’s results were extended by Boon and
Decroly (1995). Neither Nettheim nor Boon and Decroly refuted the basic premise of Voss and
Clarke that there is an approximate self-similar structure to the power spectrum of music at low
frequencies, but they showed that there is greater spectral variation, and pointed the way to more
rigorous application of the technique in musicology.

Plato said, “For when there are no words (accompanying music) it is very difficult to recognize
the meaning of the harmony and rhythm, or to see that any worthy object is imitated by them.”13

By “any worthy object,” Plato meant any natural object. To Voss, the appearance of fractal
structure in music bolstered the theory that art imitates nature. This idea has been championed in
virtually every age from the ancient Greeks to the present. But few natural processes seem to be
inherently musical. So the question arises, If art imitates nature, exactly what is being imitated?
Voss’s answer is that musical signals, like so many other biological and natural signals, reveal a
self-similar character.

9.18 Monte Carlo Methods

Lejaren Hiller and Leonard Isaacson (1959) are generally regarded as the first to seriously study
composition of music with computers. They used the Illiac computer at the University of Illinois
to create an experimental composition entitled Illiac Suite for String Quartet in 1957. As with
Xenakis’s work, chance techniques play a large role in this work, though for quite different pur-
poses. Hiller and Isaacson (1959) write,

The process of musical composition can be characterized as involving a series of choices of musical elements
from an essentially limitless variety of musical raw materials. Therefore, because the act of composing can
be thought of as the extraction of order out of a chaotic multitude of available possibilities, it can be studied
at least semi-quantitatively by applying certain mathematical operations deriving from probability theory and
certain general principles of analysis incorporated in a new theory of communication called information the-
ory. It becomes possible, as a consequence, to apply computers to the study of those aspects of the process
of composition which can be formalized in these terms.

Hiller and Isaacson wanted to use computers to model the composing process itself unlike
Xenakis who saw them merely as an aid to human composers. So Hiller and Isaacson’s investi-
gation was conducted in the then-novel field of cybernetics. Their approach was to reduce the rules
of various compositional styles—ranging from rudimentary species counterpoint to free atonality—
into a set of numeric determinants that could be incorporated into programs running on the Illiac
computer.
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Any technique that uses probability to study complex systems can be called a Monte Carlo method.
These methods were so named because of the similarity of probabilistic simulations to games of
chance and because Monte Carlo, the capital of Monaco, was famous for gambling. These techniques
are now used in many of the physical sciences. Hiller and Isaacson pioneered their use in music. Two
notable methods they used are the random sieve method and Markov chains.

9.18.1 Random Sieve Method

With this method, choices made by a random number generator are accepted or rejected depending
upon whether they obey certain rules, rather as a sieve strains out some objects and allows others
to pass. One version of this method is outlined in figure 9.33. We begin at the Start state, and if
we are not done, we generate a random value that we subject to tests. If it passes all tests, we accept
the new value, and if we are not done, we go on to the next choice. If it does not pass all tests, we
check to see how many times in a row we’ve failed to pass the tests. If we’ve failed so often that
we believe we are stuck, we abort the process and restart. If we’re not stuck, we try again with a
different random choice.

For instance, Experiment One and Experiment Two (as movements of the Illiac Suite were
called) were based on the rules of species counterpoint that were formalized by Fux (1725) in his
work Gradus ad Parnassum. Fux’s method is still widely taught in counterpoint classes today.

Hiller and Isaacson expressed Fux’s rules in numerical terms that could be represented in a com-
puter program. If a random choice would construct a harmony that violates the encoded rules of
counterpoint, for example, movement by parallel or direct unisons, fourths, fifths, or octaves
(figure 9.34), then their system would discard the choice and try again until no rules were vio-
lated. The successful choices were then appended to the end of the musical composition being gen-
erated, and the process was repeated until the composition was of the desired length. They
conducted numerous tests of this kind at each step of the composing process.

Figure 9.33
Random sieve method.
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They found that for complex rule sets the situation can sometimes arise where there is no choice
that doesn’t break some rule. As a trivial example, suppose one rule establishes a range that the
melody must lie within, but another requires it to skip outside of this range. The program would
never finish running because no solution exists. The approach taken in figure 9.33 allows the pro-
gram to restart if the number of unsuccessful trials exceeds some predefined threshold.

9.18.2 Backtracking

A finer-grained recovery technique is to backtrack if forward movement seems impossible. To do
so, the current choice that appears to be stuck is aborted and the previous choice is repealed as well,
forcing a new choice for the previous state. Then progress is attempted from there. If this still
doesn’t work, the next previous choice is repealed, and so forth. Stanley Gill (1963) was apparently
the first to demonstrate the use of backtracking for composition in a 1963 piece composed for the
BBC in the style of Arnold Schoenberg.

Gill avoided stalemates between conflicting rules by prioritizing them. When evaluating the suit-
ability of a particular choice, his program calculated a score of demerits based on how many rules that
choice would violate and how important the violated rules were. The choice with the lowest demerits
was accepted unless no choice produced a score low enough, in which case the program would back-
track. Gill’s program extended a small number (eight) of competitive versions of a composition in
progress. At each step, one would be extended by a certain length (one beat), then evaluated for its
goodness. Versions that were unfruitful were eventually abandoned automatically by his method.

Prioritizing the rules allowed Gill to adjust the rate of composition. If the criteria for extending a
sequence were too severe, the program would make no progress; if they were too lenient, it would rap-
idly produce a composition of poor quality. He scaled the demerit score at each step by an adjustable
coefficient that allowed him to mediate the rate of composition. The adjustable coefficient was itself
determined by a negative feedback process so that the rate of composition remained relatively steady.

9.18.3 Searching

The random sieve method generates music much as one might try to find one’s way through a maze:
the rules are like the walls of the maze, and the random number generator is how one chooses a
new direction to try. Backtracking is a strategy for recovering from dead ends. In any event, what
these methods are doing is searching for solutions—looking for a way through the maze.

In general, two search strategies can be used, depending on the purpose (Ames 1983).

Figure 9.34
Parallel motion.
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Comparative Search We may be in the maze purposely in order to map it. In that case, we want
to systematically enumerate every possible solution from every possible entry point to every pos-
sible exit. We can then compare the goodness (in Knuth’s sense of the term) of all possible solutions
and arrive at the optimal one. In this case, we’d use a deterministic method of choosing a new
direction at each step to be sure we traversed the entire maze from every possible direction of
attack. We’d use backtracking to get out of dead ends.

Constrained Search We might simply want to exit the maze as quickly as possible without
having to compare all possible solutions. This is a good approach if the time to find a solution
is limited, if any solution will do, or if we believe good-enough solutions are plentiful. We may
be forced to use this approach if the maze is so extensive that comparative search is not feasible.
Composing music and playing chess can be thought of as very extensive mazes indeed, so this
technique is often used in these cases. We’d use a random method of choosing a new direction
at each step and employ backtracking to get out of dead ends. Gill’s method of scaling the demer-
its of each choice is rather like adjusting the height of the barriers of the maze, allowing us to
jump over low hurdles to speed progress (possibly to the detriment of the quality of the solution).

Bach Chorale Harmonization with Constrained Search One of the gold standards for mod-
eling composition with computers is to replicate or create new works in the style of J. S. Bach’s
389 chorale harmonizations.14 The chorales were originally simple unaccompanied melodies that
Bach arranged in a homophonic chordal style to be sung by church choirs. Because the style is so
definite and regular, and because virtually every composition student is required to study them,
these chorales have become a kind of standardized “laboratory rat” for such tests. 

Kemal Ebcioglu (1986; 1988) used constrained search with prioritized rules and backtracking
to model composing two-part species counterpoint, and he later used these techniques in his
impressive program for harmonizing the chorale melodies of J. S. Bach. He programmed a com-
puter with general rules about harmonic part writing based on the theories of Schenker (1935) and
added specific information about Bach’s chorales using a logic programming language. He created
new chorale harmonizations that emulated Bach’s style very closely. In fact, some of Bach’s cho-
rale harmonizations emerged verbatim from his system.

9.19 Markov Chains

Even if we were able to identify all the rules that characterize a particular musical style (and that’s
a big “if ”), there is still a great deal of difference between music that breaks no rules and music
that shows taste. Certainly a critical element of a composer’s aural sensibility is a sensitivity to
musical context, but none of the methods discussed so far take the surrounding music into account
to determine subsequent choices.

Markov chain techniques are sensitive to their immediately preceding context, so they
can create contextually appropriate outcomes. Markov chains use recently chosen states to

loy79076_ch09.fm  Page 363  Wednesday, April 26, 2006  4:33 PM



364 Chapter 9

influence the probability of subsequent choices. Another advantage of Markov chains is that the
rules driving the process can be readily discovered from existing compositions. Thus, it is possible
to use Markov chains to compose music that is like other music. Harry Olson (1952) used them to
construct musical examples that resembled the works of the composer Stephen Foster, and Hiller and
Isaacson (1959) used them to compose a movement of the Illiac Suite. The technique is widely used.

9.19.1 Markov Chain Orders

Markov chains are ordered by how much recent history is taken into account when determining
the next state. Following Olson’s lead, let’s analyze a Stephen Foster song, Oh Susanna, using var-
ious orders of Markov process. By focusing just on the chorus of the tune, we can keep the analysis
from becoming too long-winded. Figure 9.35 shows the chorus, which has 25 notes (not counting
rests), labeled R0 to R24.

9.19.2 Zeroth-Order Markov Process

Since the weighted choice technique (see section 9.14.4) takes no account of any previous states,
it is defined as the zeroth-order Markov process, H0. Even simple weighted choice is useful for
matching the static event frequency of data drawn from the real world.

We create the probability density function for Oh Susanna by counting how many times each
pitch is visited as a ratio of the total number of notes:

C D E F G A B

4/25 5/25 5/25 2/25 5/25 4/25 0

The counts are expressed as a fraction of the total number of notes. A table like this of event occur-
rences is called a histogram.

Feeding the Oh Susanna probability density function into the weighted choice technique would
generate a new melody with pitches in roughly the same proportions as Oh Susanna, but the new
melody would probably have little if any of the musical character of the original.

9.19.3 First-Order Markov Process

Since music unfolds in time, the context of each note consists of the note or notes that precede it.
If we want to incorporate context into our analysis, we must study how notes succeed each other
in the melody. For each note, let’s tabulate the note that follows it. We can distill from this infor-
mation what the probability of the next note will be, given the current note.

Figure 9.35
Chorus from Oh Susanna by Stephen Foster.

R0 R1 R24

“Oh  Su-  san-  na,  oh don’t you cry for me,   For I   come from Al - a - bam - a with  a   ban-jo   on   my   knee.
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Markov Analysis We create a first-order Markov analysis by the following steps:

1. Catalog the note transitions. We pair each note in the melody with the note that follows it.
If we let the first note (F) be the current note, then the second note (also F) is the next note. So
the first transition in the melody is F → F. If we now make note 2 (F) be the current note, then
the next note is note 3 (A). So the second transition is F → A. The third transition is A → A, and
so on.

The transition table (table 9.8) tabulates this information. Each cell stands for a transition from
a particular current note to a particular next note. The row indexes the current note, and the column
indexes the next note. Thus, the first transition, F → F, is indicated by a 1 in row F, column F. The
second transition, F → A, is indicated by a 2 in row F, column A. The third transition, A → A, is
indicated by a 3 in row A, column A, and so forth. 
2. Tally up the number of transitions in each cell (table 9.9). What we end up with is essentially
a set of zeroth-order Markov histograms in the rows. When we go to generate a melody based

Table 9.8
Markov Order 1 Transitions for Oh Susanna

Next

Current C D E F G A B

C

D

E

F

G

A

B

0

10, 24

8, 18

0

0

0

0

9, 11, 19

23

22

0

0

0

0

0

12, 20

21

0

7, 17

0

0

0

0

0

1

0

0

0

0

0

13

0

6, 14

5, 16

0

0

0

0

2

15

3, 4

0

0

0

0

0

0

0

0

Table 9.9
Markov Order 1 Tallies for Oh Susanna

Next

Current C D E F G A B

C

D

E

F

G

A

B

0

2

2

0

0

0

0

3

1

1

0

0

0

0

0

2

1

0

2

0

0

0

0

0

1

0

0

0

0

0

1

0

2

2

0

0

0

0

1

1

2

0

0

0

0

0

0

0

0
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on this analysis, we select a particular histogram row depending upon which note is the current
note.

3. Convert the rows into cumulative distribution functions. First we normalize each row. We want
to adjust each histogram so that the sum of its probabilities equals 1. (If any row sums to 0, we set
all elements of that row to 0.) This is shown in table 9.10.  
4. Transform each column into a cumulative distribution function by summing each cell with all
cells in the row to its right (table 9.11). The table is finally in a cumulative distribution format we
can use to synthesize a first-order Markov melody. It determines subsequent notes based on how
probable the transition is in the original melody. The method of traversing this function is the same
as that described in section 9.14.6.

Markov Synthesis When using table 9.11 to generate a melody, we pick a starting note at ran-
dom from the sample space, {C, D, E, F, G, A} (pitch B is ignored because nothing transitions to
or from it). Let’s make F the current note. Table 9.11 shows that there is a 50/50 chance that the

Table 9.10
Normalized Markov Order 1 for Oh Susanna

Next

Current C D E F G A B

C

D

E

F

G

A

B

0

2/5

2/5

0

0

0

0

3/3

1/5

1/5

0

0

0

0

0

2/5

1/5

0

2/5

0

0

0

0

0

1/2

0

0

0

0

0

1/5

0

2/5

2/4

0

0

0

0

1/2

1/5

2/4

0

0

0

0

0

0

0

0

Table 9.11
Markov Order 1 Distribution Function for Oh Susanna

Next

Current C D E F G A B

C

D

E

F

G

A

B

0

2/5

2/5

0

0

0

0

1

3/5

3/5

0

0

0

0

1

1

4/5

0

2/5

0

0

1

1

4/5

1/2

2/5

0

0

1

1

1

1/2

4/5

2/4

0

1

1

1

1

1

1

0

1

1

1

1

1

1

0
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next note will be F or A. (This may be easier to follow by reference to table 9.10.) Suppose A is
chosen; it is now the current note. Then there is a 50/50 chance that the next note will be G or A.
Suppose G is chosen; it is now the current note. Now it is twice as likely that E or G will be the
next note than that A will be. We proceed like this until we have enough notes. Figure 9.36 is an
example generated automatically from this data set with starting pitch F. Only the pitches were
synthesized; the rhythms were copied from the original to aid comparison. This method carries a
hint of the musical character of the original into the synthesized melody.

A first-order Markov process asks, Given the immediately preceding state , what is the like-
lihood that the current state R is xn? This is written using conditional probability notation,

,

which is read as “Given the condition that  is the preceding state, let q be the probability that
state R equals xn.” 

Directed Graph Another way to represent the first-order Markov transition information we have
developed is to show it as a directed graph, which illustrates the flow of possibilities from state to
state. States are represented by circles, and transitions from state to state are represented as arcs
(lines with arrows). The directed graph of the chorus for Oh Susanna is shown in figure 9.37.

Figure 9.36
Oh Susanna chorus synthesized by first-order Markov process.

Figure 9.37
Directed graph of Oh Susanna, first-order Markov analysis.

xn 1–

q = P R = xn xn−1 
 

xn 1–

“Oh  Su-  san-  na, oh don’t you cry for me,   For I   come from Al - a - bam - a with  a  ban-jo   on   my   knee.

C

D

E

FG

A

B

1/2

1/5
1/5

1/5

1/5

1/5

2/5

2/5

3/3

2/5

2/5

2/4

2/4

1/2
2/5
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The diatonic pitches of the scale are shown in circles. The arcs are labeled with their transition
probabilities.

When synthesizing a melody, notice that once we leave pitch F, we can never return to it,
because no pitch besides F ever transitions to F. Pitch B is unreachable. Markov synthesis is free
to cycle among the remaining pitches. Because it contains cycles, it is a directed cyclic graph
(DCG). If there were no cycles in the graph, it would be a directed acyclic graph (DAG).

9.19.4 Second-Order Markov Process

Second-order Markov analysis basically asks, Given two events in sequence, what is the proba-
bility of the next event? We express the probability as

,

which is read as “Let q be the probability that R equals xn, given that  and  precede it in
sequence.” We could represent the first few second-order transitions for Oh Susanna like this:

, , , , , , . . .

How many possible second-order transitions are there for the diatonic scale? First-order Markov
analysis involves two notes (current and next) and so has 72 = 49 orderings. Second-order Markov
analysis involves three notes (previous, current, and next), and by the rule of enumeration, there
are 73 = 343 possible orderings. We still want to represent the transitions as a two-dimensional
matrix so that, as before, each row represents a zeroth-order Markov density function that deter-
mines the probability of the next note. We can manage this by marking the rows as the pair of pre-
vious and current pitches, and the columns as the next pitch. For the diatonic scale, this requires
49 rows and 7 columns, still a pretty big table, but to save room we can leave out any rows that have
no transitions.

The analysis is shown in table 9.12. To conserve space, the transition event order and the nor-
malized probability distributions are shown in the same table. For example, the listing for the first
transition, , reads 2 (1.00), which means the target pitch A is the second note in the mel-
ody (counting from 0), and the probability of this transition is 1.00. Sometimes more than one note
shares the same transition. For example,  is shared by notes 9 and 19.

Figure 9.38 shows an example second-order melody synthesized from table 9.12. The melody
length and rhythms are the same as the original to facilitate comparison, although they could also
be synthesized from a Markov analysis. Note the direct quotation of the original in the first
six notes. Because it takes more of the preceding music into account when choosing the next note,
melodies created from higher-order Markov synthesis carry over more of the exact phrasing of the
original melody.

If we start the Markov synthesis on other than the F:F transition, we enter the analysis matrix
at a different position, and different patterns are synthesized. Table 9.13 shows a few example note
sequences generated from beginning table 9.12 at different initial transitions.

q = P R = xn xn−1 xn−2, 
 

xn−1 xn−2

F F A→: F A A→: A A A→: A A G→: A G G→: G G E→:

F:F A→

E:C D→
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Table 9.12
Second-Order Markov Analysis of Oh Susanna

Next

Current C D E F G A B

D:C

E:C

C:D

D:D

E:D

D:E

E:E

G:E

F:F

E:G

G:G

A:G

F:A

G:A

A:A

0

0

10 (0.33)

24 (1.00)

0

0

0

8, 18 (1.00)

0

0

0

0

0

0

0

11 (1.00)

9, 19 (1.00)

0

0

23 (1.00)

0

22 (1.00)

0

0

0

0

0

0

0

0

0

0

12, 20 (0.67)

0

0

21 (0.50)

0

0

0

0

7 (0.50)

17 (0.50)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

13 (0.50)

0

0

0

14 (1.00)

0

6 (0.50)

0

16 (1.00)

5 (0.50)

0

0

0

0

0

0

0

0

2 (1.00)

0

15 (0.50)

0

3 (1.00)

0

4 (0.50)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Table 9.13
Other Second-Order Markov Note Sequences from Oh Susanna

D:C

E:C

C:D

D:D

E:D

D:E

D

E

C

D

E

D

C

C

D

D

D

E

D

D

C

C

D

E

E

E

D

D

C

D

G

E

C

C

D

D

G

D

D

D

C

C

E

D

E

E

D

D

C

C

G

G

E

E

D

D

G

G

E

E

E

C

E

E

D

D

G

D

C

C

D

D

G

C

D

D

C

C

A

D

C

C

D

D

G

E

D

D

E

E

G

G

E

E

E

G

E

G

E

E

D

G

C

E

D

D

D

E

D

C

D

D

C

C

C

D

C

C

D

D

D

E

D

D

E

E

E

G

E

E

E

G

E

G

G

G

D

G

D

E

G

G

D

E

D

C

A

A

C

C

C

D

G

G

D

D

Figure 9.38
Oh Susanna chorus synthesized by second-order Markov process.

“Oh  Su- san- na,  oh  don’t you cry for me,  For I   come from  Al - a - bam - a with a  ban-   jo   on   my  knee.
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9.19.5 Third-Order Markov Process

Third-order Markov transitions require three notes of context. The first few transitions are

, , , , . . . . 

The analysis is shown in table 9.14. As in table 9.12, the transition event order and the normalized
probability distributions are shown in the same table to conserve space.

Figure 9.39 shows an example third-order melody synthesized from table 9.14. Again, the mel-
ody length and rhythms are the same as the original to facilitate comparison, although they could

Figure 9.39
Oh Susanna chorus synthesized by third-order Markov process.

Table 9.14
Third-Order Markov Analysis of Oh Susanna

Next

Current C D E F G A B 

C:D:C

G:E:C

D:C:D

E:C:D

E:D:D

E:E:D

C:D:E

D:E:E

G:G:E

A:G:E

D:E:G

E:G:G

A:G:G

G:A:G

A:A:G

F:F:A

G:G:A

F:A:A

A:A:A

0

0

0

10 (0.50)

24 (1.00)

0

0

0

8 (1.00)

18 (1.00)

0

0

0

0

0

0

0

0

0

11 (1.00)

9, 19 (1.00)

0

0

0

23 (1.00)

0

22 (1.00)

0

0

0

0

0

0

0

0

0

0

0

0

0

12 (1.00)

20 (0.50)

0

0

21 (0.50)

0

0

0

0

0

7 (1.00)

17 (1.00)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

13 (0.50)

0

0

0

14 (1.00)

0

0

0

6 (1.00)

0

16 (1.00)

0

5 (1.00)

0

0

0

0

0

0

0

0

0

0

0

15 (1.00)

0

0

0

3 (1.00)

0

4 (1.00)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

F F A A→: : F A A A→: : A A A G→: : A A G G→: :

A
C C

B

“Oh  Su- san-na,   oh  don’t you cry for me,  For I   come from  Al - a - bam - a with  a  ban-jo   on   my  knee.

loy79076_ch09.fm  Page 370  Wednesday, April 26, 2006  4:33 PM



Composition and Methodology 371

also be synthesized from a Markov analysis. The transition probabilities are now so constrained
that a major chunk of the original melody is quoted (motive A in the figure). Only the last measure
(motive B) is different. To see how this came about, note that the Markov synthesis simply repeated
the melodic fragment C. So B is really just part of C, which is part of A. What happened?

Basically, we hit a cycle in our analysis where a state returns back on itself (see section 9.19.3).
Cycles that can’t be escaped once they are entered are degenerate. The group {C, D, B} in figure 9.40
is a degenerate cycle. The other states are cyclic but not degenerate. This becomes an increasing
problem with higher-order Markov synthesis.

9.19.6 Nth-Order Markov Process

The general form of an Nth-order Markov process can be expressed as , where M is a
Markov analysis function of order N, x is the sequence to be analyzed, and X is the set of probability
distribution functions that result from the analysis. Nth-order Markov synthesis can be expressed
as  where y is the melody synthesized by the process.

As the order increases, we’re more likely to get significant chunks of the original in the syn-
thesized melody. At a sufficiently high order, depending upon the material, we will get the entire
original. This happens for our example melody with fourth-order Markov synthesis. Thus,
although arbitrary-order Markov processing is theoretically possible, for most realistic applica-
tions, analysis beyond about the fourth order may not be particularly meaningful.

9.20 Causality and Composition

On hearing Lejaren Hiller’s Illiac Suite, John Pierce (1983) reported that it “sounds pleasant, but
it wanders, and so does the listener’s attention.” Markov techniques are strictly reactive to the
immediately preceding events and do not lend themselves to following an overall plan.

Figure 9.40
Degenerate cycle.

C

D

E

FG

A

B

X = MN x( )

y = MN
1– X( )
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It is worth pausing for a moment to look at our assumptions about the role of causality in music.
A system is causal if it references only current and past input and past output. Causal systems may
not reference future input or current or future output. That is to say, a causal system can’t know
the future. (These ideas are formalized in the discussion of the canonical filter in volume 2, chapter 5.)
Certainly, listening to music we’ve not heard before is a causal process: we can’t know what we’ll
hear until we hear it, and we can’t know our reaction until we have it.

It is easy to assume that because listening is causal that composing must somehow be, too. Some
forms of composition, such as improvisation, are primarily causal, and many of the techniques dis-
cussed in previous sections, especially Markov chains, give the impression that composing
starts with the first note and proceeds to the last in a direct sequence. This is hardly ever the case
in practice.

If a role of the composer is to manipulate expectation, then the composer must be of two minds,
one part imagining what the listener’s expectations will be in time, and the other part keeping a
“timeless” plan of the composition in mind. We may think of such a plan as a static design, like
an architectural drawing of a building. But any such plan is itself the result of the composer’s pur-
suing an underlying goal: the aim, motive, or reason why the composer is writing the music. The
act of reducing one’s vision of a composition to a finished score is a teleological process, a process
that works backward from the composer’s goal.

Composer Herbert Bielawa and Paul Craner developed a teleological process to automatically
compose chorale harmonizations.15 Early in his harmony theory teaching career, Bielawa had stu-
dents tally the types of chordal root movements in the Euro-classic music they were studying. No
matter what the piece was, as long as it was Euro-classic, they would come up with very similar
graphs. He eventually boiled it down to a rule: good progressions are up a second, down a third,
and either way a fourth or fifth (dominant to tonic).16 The method Bielawa developed to embody
this rule was in essence a simple first-order Markov process, but with a twist. To overcome the aim-
lessness of Markov chains and solve some tricky problems with cadencing, his program composed
backward, beginning with the final cadence.

Ordinarily, one would want “good” root movements (up a fourth or down a fifth) to be selected
most often and down a third less often. And although “bad” root movements were rare, they did
happen occasionally in real music, so these also had small but nonzero probability. However, to
compose the music backward, Bielawa had to flip the probabilities so that all the “good” root
movements had to be temporarily “bad” ones, and vice versa. Ultimately, retrograding the gener-
ated composition automatically made good progressions out of the bad ones.

9.21 Learning

Hiller and Isaacson’s experiments were in the spirit of research efforts to embody expert knowl-
edge about real-world problems in computer programs, known as Artificial Intelligence (AI).

The classical AI approach attempts to reduce the subject knowledge domain to its essential rules,
much as Fux did for counterpoint. Based on what we’ve seen of Monte Carlo techniques, at least
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the following difficulties can be identified with using rule-building systems to model intelligence:

■ Determining appropriate rules can be difficult (or impossible), even for experts, if the knowledge
is not available to consciousness. Rule-building AI techniques are difficult to apply to subjective
elements such as taste, preference, and style.
■ Unlike people, rule systems cannot of themeslves adapt to new information or incorporate new
rules. That is, they cannot learn of their own accord but require the introspection and programming
skill of trained experts.
■ The more rules there are, the harder it can be to add new rules without breaking or distorting the log-
ical structures already encoded. As we saw with the random sieve method (section 9.18.1), it is easy
to introduce rules that contradict each other. The system becomes more fragile as rules are added.
■ True expertise means knowing the rules of a discipline as well as the exceptions that prove the
rules. So there must be rules about when the regular rules apply and when they don’t. This calls
for metarules that enable or disable other rules in certain contexts. This leads to hierarchies of rule
systems. As a system of rules grows more complex, it becomes progressively harder for it to
change or adapt to new information and novel circumstances. It becomes more brittle as the depth
of hierarchy increases.

Capturing real-life expertise by compiling lists of rules tends to create rule systems that are brit-
tle and fragile. In contrast, human knowledge remains relatively flexible in the face of novel
insights and developments. It does not seem likely that human learning happens by piling up lists
of rules. If that were true, then the more we know, the longer it would take us to react to circum-
stances, assuming some finite time to evaluate each rule. Rule-based classical AI is not a very prob-
able model of human cognition.

Whatever musical knowledge is, it certainly seems to arise from experience and is thus learned.
We appear to learn music by using cognitive strategies that are built into our brains. We apply these
cognitive strategies to our experience of music, and somehow the result is knowledge of music.
From this knowledge arises affinity for certain forms of music, and musical taste arises. What are
these cognitive strategies? What is learning, and how can we model it?

9.21.1 A Self-Learning Grammar

Teuvo Kohonen (1989) has described “a self-learning grammar, the rules for which are automat-
ically and systematically constructed on the basis of exemplary material.” The method, which he
calls dynamically expanding context (DEC), is like Markov analysis, but instead of fixed-order
analysis it uses an order of analysis that grows automatically as necessary to resolve conflicts in
the rules. Thus general rules are gradually replaced with specific ones, mastering the maximal
degree of complexity with the minimal amount of exemplary materials. This exhibits a form of
learning because the rules evolve with increased experience.

DEC is a form of unsupervised learning because no a priori knowledge of music is embedded
in the DEC method. However, to fully exploit the method, it is necessary to carefully formulate the
exemplary material. Like the Markov process, DEC can be driven to synthesize compositions.
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The method is best illustrated by considering an example that Kohonen provides. Consider a
melody as a sequence of musical elements to which letters have been assigned:

ABCDEFG . . . IKFH . . . LEFJ . . . .

As with first-order Markov analysis, we start by examining the transitions. We eventually notice
that there is a three-way conflict for which symbol may follow F: it may be G, H, or J. Using
Markov techniques, we would assign probabilities to the outcomes based on their frequency. But
Kohonen’s approach is to resolve this conflict by enlarging the context. We take the symbol in
front of F for additional context (like dynamically jumping to a second-order Markov analysis for
just this rule). But there is still a two-way conflict because the successor to E:F could be G or J.
Adding a second symbol before F fully disambiguates the three cases. While third-order analysis
is required for F, it is overkill for other symbols, such as H, which is fully defined by the
second-order rule , and for C, which is fully defined by a first-order rule . We
wish to avoid overspecifying the production rules because—as we saw with higher-order Markov
processes—too much context means the rules are too specific and rigid. DEC thus dynamically
expands rules only to the extent required to resolve conflicts.

DEC Analysis Kohonen’s method is to iteratively scan the training data starting with low-order
rules and apply progressively higher-order rules to problem cases until all conflicts are resolved.
When a conflict is observed, the existing rules are marked invalid, and new rules are substituted
that contain more context. Iteration over the input continues until no further changes to the rules
are necessary.

For example, consider rule construction for F. Its first appearance is . Because it is not
already in memory, we create an entry for it as follows: 

Rule no. Left part Right part Valid

1 F G  true

Next we find  in the input and observe that it conflicts with rule 1. This requires two
actions: first invalidate rule 1, then (because it is not already in memory) insert a second-order rule
for . Memory now looks like this: 

1 F G false

2 K:F H true

Finally, we find  in the input, and observing its conflict with first-order rule 1, we enter it
as a second-order rule: 

3 E:F J true

Having exhausted the input, we iterate again from the beginning. When we come to F, we search
memory and discover the invalid rule . We now expand its context by one order, creating

K F H→: B C→

F G→

F H→

K F H→:

F J→

F G→
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a new rule . However, we now observe conflict between  and .
We must invalidate rule 3 and enter a new third-order rule 4, as follows: 

3 E:F J false

4 D:E:F G true

As we continue to scan the input for F, we’ll eventually discover the invalid rule 3, which we eval-
uate at a higher order and enter as a new rule 5:

5 L:E:F J true

Further iterations over the input do not cause any changes to the rules, so we are done, and we
observe that rules 2, 4, and 5 remain valid.

DEC Synthesis Suppose so far we have generated the sequence CDEF. To extend the sequence
with a valid next symbol, we first search through memory for first-order rules . We find
rule 1, , which is invalid. Finding no other valid first-order rules, we try second-order rules

 and find rule 3, , which is also invalid. Having exhausted second-order
rules, we look for third-order rules  and finally find rule 4, , which
is valid, so the next new symbol we generate is G.

Like Markov synthesis, the output is made up of subsequences of the original material, so that
the flavor of the original is preserved, but not its ordering. DEC synthesis, like Markov synthesis,
contains a random element, but unlike in Markov synthesis, the occurrence of successive notes
does not follow their probabilities in the input. DEC synthesis proceeds as though we always used
the highest-order Markov analysis available for each rule. Kohonen suggests that if the results gen-
erated this way are too normative, more variance in the productions can be achieved by using
lower-order rules, ignoring their validity.

9.21.2 The Nature of Learning

One could say that Markov techniques and Kohonen’s DEC technique “learn” to recognize the fea-
tures of the materials they are given. But they are unable to generalize from what they know to what
they do not. If we study a corpus of music, say, the fugues of J. S. Bach, we not only learn the indi-
vidual works, but as an automatic by-product our cognitive apparatus also distills out a sense of what
a fugue is, so that if we later hear a fugue by Mozart, we recognize its form; we don’t have to be
retrained. The Markov and DEC techniques, like all methods considered so far, fail to generalize at all.

There are other important characteristics of natural learning that are also missing, such as pat-
tern completion, for example, our ability to identify major or minor harmonies from a fragment
of melody. If I show you a letter that is partially occluded, you are still able to recognize it (fig-
ure 9.41a). If it is too occluded to narrow it down to one letter, you can still easily identify the possi-
bilities (figure 9.41b). In my college music appreciation classes, the professor would often test our
knowledge of the musical repertoire we were studying by playing a randomly selected excerpt of
music by “dropping the needle” (a phrase referring to the days of vinyl records). Even if we had

E F G→: E F G→: E F J→:

F ?→
F G→

E F ?→: E F J→:
D E F ?→: : D E F G→: :
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listened to a piece only a few times or the excerpt lasted no more than a second or two, we would
instantly be able to identify it. It’s an incredible skill our brains have, if you think about it.

Another difference between natural cognition and the kinds of machine cognition described so
far is that people can apply multiple simultaneous constraints, but standard computers act sequen-
tially. When improvising music, a multitude of constraints operate simultaneously, guiding the
musician’s choices in the moment.

Our ability to handle multiple simultaneous constraints allows us to mediate the influence of
syntax on semantics, and vice versa (McClelland, Rumelhart, and Hinton 1986). Consider the sen-
tence “I saw the Grand Canyon flying to New York.” We see that syntax constrains the assignment
of meaning but does not determine it. We understand through the interplay of multiple sources
of knowledge. Such structures of knowledge have been variously called frames (Minsky 1974),
schemata (Bobrow and Norman 1975), and scripts (Schank and Abelson 1976). But rather than
being static objects in memory, scripts appear to interact with each other to capture meaning in
novel situations. How do we do this? And can machines do it, too?

9.22 Music and Connectionism

We have all learned skills, such as playing a musical instrument, juggling, or riding a bike, that
we can do without understanding how we do them. We usually learn and teach these skills by
example, not by rule. How do we learn to improvise music? How do we develop a personal musical
style? How do we learn to distinguish the characteristic musical swagger of Beethoven’s music
from Schubert’s? We know what we know, but we don’t necessarily know how we know it. Since
we are clearly able to learn these things, an obvious place to look for solutions is the brain.

9.22.1 Neural Models of Cognition

Neurobiology has shown that the brain can be modeled as a massively interconnected set of neurons
operating in parallel. Cognitive psychologists and computer scientists have studied the properties of
brain models using artificial neural networks. These models store knowledge in the connection
strengths between simple processing units, much as our brains store knowledge in the connections
between neurons. Because many neurons are acting concurrently in parallel, these models are called

Figure 9.41
Occlusion.
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parallel distributed processing (PDP) or connectionist models of cognition. Because the connection
strengths between neurons is quantifiable, knowledge in a network is represented in a quantifiable
way. Whereas knowledge in rule-based systems tends to be brittle, knowledge in networks can
change and adapt as new knowledge is acquired and old knowledge is forgotten.

9.22.2 Artificial Neural Networks

An artificial neural network is simply an interconnected set of simple computational units (fig-
ure 9.42a). Usually, the processing performed by all units is the same. Each unit receives inputs
from other units and produces a single output, which can be connected to one or more other units.
Each connection between units has a unique strength that can be adjusted, so the influence of
the units upon each other can vary. In the network shown in figure 43b, the connection strength
between units i and j is called wij, and the connection strength between units i and k is wik. A
strong positive output from i would tend to inhibit k if wik is negative and to excite k if the weight
is positive. If the weight wij is zero, then the driving unit i has no influence on the driven unit j.

A simple feed-forward network having three layers is shown in figure 9.43. The output of each
unit is fanned in to the input of each unit in the next layer. Each unit in the input layer xi is connected
through weights Mij to hidden units hj, which connect to the output unit yk through weights Wjk.
The hidden layer is so named because its values are not directly observable from outside the net-
work. (There are always weights on the lines connecting units, but conventionally they are not
explicitly drawn so as to keep down the clutter in the interconnection diagrams.)

The processing performed within the individual units can be as simple as just summing all inputs
to produce the output. More typically, the units will use the sum of their inputs to index a nonlinear

Figure 9.42
Networks.

Figure 9.43
Simple feed-forward network.
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function of some kind. The function result is then output from the unit. We can express the input
to each unit hj from the input row of the network xi as follows:

, (9.27)

where wij is the weight from the ith to the jth unit, Ni is the number of input units, and f is some
nonlinear function (Dolson 1989). Equation (9.28) also describes the connection from the hidden
units to the output.

The nonlinearity of the function in each unit is the key to giving neural networks the ability to
make decisions. Without this feature, the output of a unit would simply be proportional to its input.
A nonlinear function allows quantitative changes in the input to result in qualitative changes in the
output, such as turning a unit on or off. This capability allows neural networks to translate from
subsymbolic activation levels to symbolic knowledge. The two most common choices for nonlin-
ear functions are the hard-limiting signum function:

 (9.28)

and the soft-limiting logistic function (figure 9.44):

. Logistic Function (9.29)

The logistic function played a role in the development of modern neural network theory because
it was a component of the proof of an important neural learning technique, back propagation
(Rumelhart, Hinton, and Williams 1986). In practice, it is just one of many possible “squashing
functions” that map real values into a bounded interval.

There are many ways of connecting units. If there are only feed-forward connections (figure 9.45a),
there are no loops in the network, and the computation of the output is fairly straightforward. If
there are feedback connections (figure 9.45b), computation of the output can get complicated

Figure 9.44
Logistic function.

hj = f wijxi
i=1

Ni

∑ 
 
 

sgn x( )
x 0,< 1–

x = 0, 0
x 0,> 1






≡

f x( ) = 1
1 e x–+
----------------

1.0

0.0
0

loy79076_ch09.fm  Page 378  Wednesday, April 26, 2006  4:33 PM



Composition and Methodology 379

because the output of unit A could depend upon unit B, which depends upon C, which in turn
depends upon A, and so on. Feedback networks may be partly interconnected (figure 9.45b) or fully
interconnected (figure 9.45c) so that all outputs go to all inputs.

Feedback networks can go into oscillation unless they are carefully designed. For every recur-
rent network, there is a corresponding feed-forward network (Minsky and Papert 1969), so I focus
on feed-forward networks here.

Finally, there is the question of assigning weights to the connections. This is where things get inter-
esting. It is possible to assign weights directly to configure a network to perform a particular
calculation if we know what the weights should be. More often, we don’t know what weights to assign,
but we would like the network to discover them. Some networks allow a supervised learning method
to be employed that automatically adjusts the weights in the network until a training pattern applied
to the network’s inputs produces the desired value on the output. These networks can learn to produce
a desired outcome from a pattern that is applied to their inputs. We only have to show such networks
what to do, not how to do it. “Here we have a mechanism whereby we do not actually have to know
how to write the program in order to get the system to do it” (Rumelhart, Hinton, and Williams 1986).

As with musical taste and related subjects, we know what we like without necessarily knowing
why we like it. If we can show a network examples of good and bad taste, then we can train it to
share our taste in music. Once these associations are learned, we can use the network synthetically,
to mimic our aesthetic judgments, for example, as a component in a composing program, or ana-
lytically, to understand the structure of our aesthetic choices by studying the network’s solution.

So far, this is not much different than Markov and DEC techniques, which can also mimic. But
what a network can do that Markov and DEC techniques cannot is spontaneously generalize from
experience. If we show a trained network an input pattern that it has not previously encountered,
it will make an educated guess based on the examples it has seen so far. Thus, knowledge in a suit-
ably trained PDP network can retain a degree of flexibility and adaptability to the unknown.

Pattern completion is another form of generalization that networks can perform. If I play you
a few notes from the middle of a familiar tune, you can generally pick up the tune and sing the rest
of it. Pattern completion is crucial to our experience of music because this is how we perceive

Figure 9.45
Network topologies.
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regularity and novelty. We can even model creativity as generalization if we think of it as providing
novel responses to novel conditions.

9.22.3 Computing Taste, a Neural Evaluator of Intervals

As a simple example, let’s teach a network to appreciate our taste in musical intervals. Of course,
for a simple task like this we could simply write out a table, such as table 3.5, stipulating which
intervals we find consonant and dissonant. But suppose we know what we like without knowing
why. We provide a trainable network with example intervals and provide additional input that
gives approval or disapproval based on our preferences, which the network will learn.

Once the network is trained, we can inspect its interconnection strengths to deduce what it
knows about our preferences, thus aiding our ability to capture hard-to-explain knowledge. How-
ever, the interpretation of trained networks is usually nontrivial. Network analysis may be straight-
forward for simple networks and simple problems. But for more complicated tasks, the network’s
solution will tend to be distributed throughout the network, carried in the overall pattern of activity,
rather than being localized in any particular unit, so the network as a whole must be analyzed for
these cases (Rumelhart, Hinton, and Williams 1986). Also, the network may not necessarily find
the optimal solution.

The following example uses an effective training method called back propagation of error,
which is available for feed-forward networks like the one shown in figure 9.43. Remarkably, even
fairly trivial-looking networks like that one can learn and retain multiple independent facts, just
as humans can.

We must specify the significance of the network’s inputs and output, which range numerically
from 0.0 to 1.0. There are many possibilities to choose from, but the best network designs show
a clear relation between the problem at hand and the network topology, and use no more units than
necessary. For this example, we use 13 input units: one for each degree of the chromatic scale
plus the octave, plus one extra to indicate whether we judge the interval consonant or dissonant
that is used during training. When an input unit’s activation is 1.0, that degree of the scale is
sounding. The consonance/dissonance judgment can be represented as a single output unit. Con-
sonance is associated with 1.0, and dissonance with 0.0. For the purposes of this experiment, let’s
say that we’re not aware that the perfect and imperfect intervals are consonant and the rest are dis-
sonant (see table 3.5). Instead, we train the network with examples of judgment and “discover”
this.

Having specified the input and output units, we must decide about the hidden units. Three layers
are generally sufficient to compute any function of interest with this method, so although multiple
hidden layers can be used, they are not necessary. At present, there is no straightforward method
to decide how many hidden units to use. It is generally best to choose the smallest number that is
effective, both to simplify the calculations and to make the result as general as possible. So we
choose two hidden units for this example.

Overall, we have 13 input units, two hidden units, and one output unit, for a total of 16 units con-
nected by 28 weighted lines. Next we must train the network.
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Back Propagation of Error To start, we set all the weights to random values, rather as one
shuffles a deck of cards before starting a game. If we then apply a pattern corresponding to some
musical interval to the network inputs xi, the output yk can be computed directly. Each hidden
unit hj receives the sum of all input units times their respective weights Mij. Each hidden unit
uses this weighted sum as an index into the logistic function to produce its respective output.
The output unit yk similarly receives the sum of all hidden units times their respective weights
Wjk (figure 9.46).

Because we randomized the weights, it is highly unlikely that the output of the network will ini-
tially agree with our judgment of an interval’s consonance. Let us call the judgment we’d prefer the
network to learn the target, τk. The network’s error in judgment is the difference between
the network’s actual output and the target: . If the output unit’s activation level is less
than the target level, the error can be reduced by connecting the output unit more strongly to hidden
units that are producing a positive value. If the output unit’s activation level is greater than the tar-
get level, the output unit needs to be connected more strongly to hidden units that are producing
a negative value. We can adjust the weights connecting the output unit to the hidden units, but
this will not fix the problem by itself because the hidden units themselves also contribute to the
error.

Adjusting the hidden units is more challenging because we don’t have explicit target values for
them—only the output units have targets. Nonetheless, the same basic strategy can be employed.
We determine the proportion of error each hidden unit is responsible for and adjust weights con-
necting them to the input units to minimize this error. The general strategy is to propagate the error
backward through the network, adjusting the weights as we go in proportion to their responsibility
for the error in judgment at the output, which is how this learning technique came to be called back
propagation of error.17

Figure 9.46
Back propagation.
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We can obtain the total error on a set of k output units by summing the squares of the individual
errors. Squaring the error eliminates the problem of negative errors canceling positive ones. For
some input pattern p, the mean squared error is

.

Every time we apply pattern p to the network, we compute εp, then make small incremental
changes to the weights to reduce εp. We continue the process as long as each step continues to
reduce εp. Eventually, for a well-designed network, εp will become quite small. When it has
reached a predetermined threshold, we stop the training.

There are things that can prevent εp from becoming as small as desired. The network may not
be able to find a solution if it has fewer degrees of freedom than the problem space. There may not
be enough hidden units, or the problem may not be suitable for the type of network chosen.

A subtler difficulty can arise where the back propagation technique finds an answer but fails to
find the optimal answer. To visualize this, imagine letting a marble roll down the side of a basin
with a shallow region and a deeper region beyond, separated by a ridge (figure 9.47). The marble
might be captured by the upper region of the basin if it does not have enough momentum to ride
up over the ridge into the deeper region.

Making small incremental adjustments to the weights of the network is akin to the marble’s roll-
ing down the basin. Once the network learns a suboptimal solution, it is unlikely to find a more
optimal one because we’d have to allow the error to grow for the network to make it up over the
ridge, but we typically stop training if the error starts growing. The shallow basin in this example
is called a local minimum. This problem can be serious but is rarely fatal. The suboptimal solution
the network finds still may be optimal enough. Or we can simply try again with different random
weights, which would be like placing the marble in a different part of the basin.

Training the Network to Recognize Consonance of Intervals Because there are 13 inputs to
this network, there are a total of  possible interval patterns we could present to the net-
work. While we could train the network on all possible patterns, we should not need to do so. Neu-
ral networks not only learn by example but also generalize from a limited set of examples, so the
solution they find to a subset of the total pattern space can remain valid for patterns the network
was not trained on. The network accomplishes this by automatically discovering statistical regu-
larities in the patterns on which it is trained.

Figure 9.47
Local minimum.
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In this example, we train the network on the 13 chromatic diads (intervals of two tones) in
table 3.5. We assume that the perfect and imperfect intervals are consonant, corresponding to an out-
put of 1.0 and the rest are dissonant, corresponding to an output of 0.0. We use two hidden units.
When the network has learned our consonance judgments for these intervals, we’ll “surprise” it with
more complex chords to see how well it can generalize. If the network has done its job, its judgments
about these complex chords should be reasonable, even though it has never “heard” them.

The network was trained to recognize the 13 interval training patterns until the normalized mean
squared error of all patterns was below 0.001. This required about 14,300 adjustment cycles, using
only a few seconds of real time on my notebook computer. At that point, training was stopped. The
weights between the inputs and hidden units were as shown in table 9.15.

The rows show the weights connecting the input units to the first hidden unit, h0, and the second
hidden unit, h1. The weights between the hidden units and the output unit were as follows:

W 0 1

y0 −6.5 7.5

So, the connection strengths from the first and second hidden units to the output unit were –6.5
and 7.5, respectively.

How the Network Learned the Training Patterns Let’s apply a couple of training patterns to
get an idea of how the network solved the problem.

Units C and c the octave above are activated. For the octave interval, the network output was
 for a target of , representing consonance (table 9.17). Referring back to equa-

tion (9.27), table 9.16 shows how the network computed the output from the training pattern. The outputs
of the two hidden units are 0.25 and 0.93 for this example. The calculation for the output unit is shown
in table 9.17. The octave produces a strong reading of consonance  on the output. 

The results of applying the tritone interval to the input units (units C and G b are activated) are
shown in table 9.18. The outputs of the two hidden units are 0.82 and 0.15 for this example. The
calculation for the output unit is shown in table 9.19. The tritone produces a strong reading of dis-
sonance  on the output.

Analysis of the Network’s Solution Recall that the weights between consonant intervals and
the hidden unit h0 are negative, and those between dissonant intervals and h0 are positive (see
table 9.15). By contrast, the weights between consonant intervals and the hidden unit h1 were
positive, and those between dissonant intervals and h1 were negative. This means that consonant

Table 9.15
Weights for Interval Consonance Learning Test, Hidden Units

M C C# D Eb E F Gb G G# A Bb B C

h0

h1

–0.69

1.14

2.12

–2.98

2.22

–2.90

–0.55

1.21

–0.84

1.07

–0.55

1.14

2.22

–2.90

–0.86

1.09

–0.87

1.01

–1.03

0.86

2.23

–2.90

2.05

–3.07

–0.40

1.38

yk = 0.99 τk = 1.0

y0 = 0.99 1.0≅( )

y0 = 0.01 0.0≅( )
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Table 9.16
Training the Network on the Octave

Degree
Input

C
1.00

C#
0.00

D
0.00

Eb
0.00

E
0.00

F
0.00

Gb
0.00

G
0.00

G#
0.00

A
0.00

Bb
0.00

B
0.00

C
1.00

1st Hidden Unit

Weight

Product

Sum

h0

2d Hidden Unit 

Weight

Product

Sum

h1

–0.69

–0.69

–1.08

0.25

1.14

1.14

2.52

0.93

2.12

0

–2.98

0

2.22

0

–2.90

0

–0.55

0

1.21

0

–0.84

0

1.07

0

–0.55

0

1.14

0

2.22

0

–2.90

0

–0.86

0

1.09

0

–0.87

0

1.01

0

–1.03

0

0.86

0

2.23

0

–2.90

0

2.05

0

–3.07

0

–0.40

–0.40

1.38

1.38

Note: Using the sum as the index into the logistic function produces the result.

Table 9.17
Hidden Units for the Octave

Unit
Input

h0
0.25

h1
0.93

Weight

Product

Sum

y0

–6.46

–1.63

5.35

0.99

7.54

6.98

Table 9.18
Training the Network on the Tritone

Degree
Input

C
1.00

C#
0.00

D
0.00

Eb
0.00

E
0.00

F
0.00

Gb
1.00

G
0.00

G#
0.00

A
0.00

Bb
0.00

B
0.00

C
0.00

1st Hidden Unit

Weight

Product

Sum

h0

2d Hidden Unit

Weight

Product

Sum

h1

–0.69

–0.69

1.54

0.82

1.14

1.14

–1.75

0.15

2.12

0

–2.98

0

2.22

0

–2.90

0

–0.55

0

1.21

0

–0.84

0

1.07

0

–0.55

0

1.14

0

2.22

2.22

–2.90

–2.90

–0.86

0

1.09

0

–0.87

0

1.01

0

–1.03

0

0.86

0

2.23

0

–2.90

0

2.05

0

–3.07

0

–0.40

0

1.38

0

Note: Using the sum as the index into the logistic function produces the result.
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intervals make the sum of h0 more negative and the sum of h1 more positive. Also, the weights
feeding the output unit negate activation from h0 but not from h1. From the shape of the logistic
function, if the sum of the activation from the hidden units is greater than 0.0, the output will
be turned on, and if it is less than 0.0, the output will be turned off. So the weights on the hidden
units have been trained to make the hidden units sum to a positive value for consonance and a
negative value for dissonance. Unit h0 is turned on strongly for dissonance, and h1 is turned on
strongly for consonance. This is just what we wanted, and we didn’t have to program the network
to find the solution; it figured it out by itself.

Testing the Network—Can It Generalize? Let’s see how well the network generalizes to
other intervals and chords. Although we only trained it on diads, the network provides encourag-
ingly good-quality guesses about the consonance of some more complex chords (see table 9.20).
The diminished seventh chord is arguably the only bad guess, but maybe it’s not really so bad after
all. That chord is considered dissonant because of its tritone, but it can also be viewed as three
minor thirds stacked up, and the interval of a minor third is considered consonant.

So this worked pretty well. But remember that the network looks for statistical regularity, and
all our training examples and test examples have the pitch C in them as the lower tone of the inter-
val. How does the network handle intervals and chords starting on another degree of the scale?
Let’s test the fifths between F and C and E and B (table 9.21). Both F–C and E–B should be con-
sonant. The fact that they are not suggests that the network has relied on the scale degree rather
than the interval to determine consonance.

Like all learners, networks tend to search for regularity. But the most regular solutions are not
necessarily the best. For example, a child might incorrectly rely on the regularity of English verbs
and say “I swimmed today” instead of “I swam today.” The network appears to have stumbled for
the same reason. It appears to have associated consonance and scale position instead of consonance
and interval size because our limited training set failed to provide examples that would have vio-
lated this assumption. This network has not discovered all the underlying relations that account for
our consonance judgments, and so it can’t generalize correctly in all cases.

We can improve the ability of a network to generalize by increasing the ratio of training exam-
ples to hidden units. The greater this ratio, the more the network is forced to generalize. For the
preceding examples, the ratio is 13/2 = 6.5. Reducing the number of hidden units to one is not

Table 9.19
Hidden Units for the Tritone

Unit
Input

h0
0.82

h1
0.15

Weight

Product

Sum

y0

–6.46

–5.31

–4.20

0.01

7.54

1.11
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an option because the network would no longer be able to learn. But it would be appropriate to
expand the training set to include all the rest of the diad intervals. If we expand the training set
to include every diad on every possible scale degree, we have 80 training patterns, 44 consonant
and 36 dissonant. This is still a small fraction of the 8196 total intervals. In practice, the mini-
mum number of hidden units that can solve this set of training patterns appears to be four, for a
training ratio of 80/4 = 20. With these adjustments, the network correctly handles all the
judgments.

Table 9.20
Network Consonance Guesses for Complex Chords

Pattern

Chord C C# D Eb E F Gb G G# A Bb B C′ Output Analysis Quality

Major 
triad

1.0 0 0 0 1.0 0 0 1.0 0 0 0 0 0 0.99 Strongly 
consonant

Good

Minor 
triad

1.0 0 0 1.0 0 0 0 1.0 0 0 0 0 0 0.99 Strongly 
consonant

Good

7th 1.0 0 0 0 1.0 0 0 1.0 0 0 1.0 0 0 0.83 Fairly
consonant 
despite
dissonant 
major 7th

Good

Dim. 
triad

1.0 0 0 1.0 0 0 1.0 0 0 0 0 0 0 0.13 Fairly 
dissonant
despite 
consonant
minor 3d

Good

Dim.
7th

1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0 0 0.77 Should 
not be 
consonant

Poor

Cluster 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.01 Highly 
dissonant

Good

Table 9.21
Network Performance Starting on Other Degrees

Pattern

Chord C C# D Eb E F Gb G G# A Bb B C′ Output Analysis Quality

F–C 0 0 0 0 0 1.0 0 0 0 0 0 0 1.0  0.99 Strongly 
consonant

Good

E–B 0 0 0 0 1.0 0 0 0 0 0 0 1.0 0 0.17 Should be 
consonant

Poor
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9.22.4 Generalization as Creativity: Composing with Networks

To use a network to understand musical structure in time, we must have a neural representation
of time. Let’s say we wanted the network to learn melodies. One approach would be to have as
many network inputs as there are notes in the longest melody. Or the network input could be a
fixed-size time window that slides over a region of the melody. In either case, this kind of win-
dowing approach represents time as position and converts the problem of learning music into
learning spatial patterns. 

For example, we could train a network such that when one measure is played, the network pro-
duces the next measure in sequence. Or we could train a network to generate the next note in
sequence by supplying it with some number of previous notes for context. This would require a
feedback arrangement in the network design so that previous outputs could influence subsequent
choices. The windowing and context methods could be combined so that the feedback units pro-
vide context for whole musical phrases. This could be used to study the motivic structure of mel-
odies, for example.

Peter Todd (1989) describes a process whereby a network was trained using the feedback con-
text method to learn a set of melodies. His approach used the back propagation method but also
included a set of feedback units that stored context information about the notes played most
recently (figure 9.48). Once trained, it could play back the melodies when keyed to do so by a set
of plan network inputs that acted like the buttons on the front of a juke box to select the desired
melody. 

First, he trained the network to play several melodies correctly. He then experimented with set-
ting the plan inputs to untrained values so as to force the network to generalize from the melodies
it was trained to reproduce and thereby to compose new melodies. In this way, Todd used gener-
alization as a model of creativity.

Figure 9.48
Feedback context method.
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Todd used very simple folk melodies as training examples, but he could easily have used anything
else, including examples composed by a stochastic process or some rule-based approach. Although
Todd’s network learned only the surface of the melodies, it would be straightforward to extend it
to a hierarchical set of networks such that a low-level network responsible for the note-by-note pro-
cess interacts with higher-level networks responsible for an overall compositional plan.

9.22.5 Bach Chorale Harmonization with Connectionism

A common criticism of connectionist research is that neural network techniques seem to work well
on relatively simple proof-of-concept problems but do not scale well to realistic-sized problems
traditionally studied in Artificial Intelligence such as playing chess and composing music. The
challenge of composing realistic music with neural nets was taken up by Hild, Feulner and Menzel
(1991), who developed HARMONET, a program to harmonize chorale melodies in the style of
J. S. Bach.18 Their aim was not only to demonstrate parity with more traditional AI techniques but
to exploit the potential for net-based solutions to go, as it were, beyond the rules and penetrate more
deeply into the core of a composer’s style.

In fact, their approach turned out to be a hybrid of symbolic expert system for some parts of the
problem and neural networks for other parts. In particular, they did a fair amount of manual parsing
of the chorales to structure the data to create their training set. Then they trained a network with
this set to create a “harmonic skeleton” of several chorales. The chorale melody then provided the
soprano line, and the harmonic skeleton provided a bass line. Then they had to synthesize the alto
and tenor lines, which they did using a standard AI “generate and test” approach. Last, they added
passing eighth-note figures characteristic of Bach’s style using another network. All networks
used a standard back propagation architecture with context units to remember recent events, sim-
ilar to Peter Todd’s approach.

Because Hild and his colleagues don’t just use networks throughout, it’s not clear that this is the
breakthrough realistic-sized problem for connectionist research in music. Nonetheless, they stated
that an audience of music professionals had determined HARMONET’s output to be “on the level
of an improvising organist,” and indeed printed scores of their harmonizations seem quite good.

9.22.6 Genetic Programming

We have considered compositional processes over the last thousand years of human history. Time
and again, we see a trade-off between generating music and critiquing music. We see it at all levels
of the process, from the smallest local detail of a private act of composition to the most public pro-
nouncements of music critics.

In every age, composers put forward their ideas in the context of culture, and critics evaluate
them in the same context. Successful works, ideas, and methods survive; unsuccessful ones are
scrapped and forgotten. Both composition and criticism adapt to cultural changes. Successful
adaptation may mean reproduction (in the sense that children are reproduced from their parents),
crossover (swapping elements between successful adaptations the way parents pass their charac-
teristics along to their children), mutation (where novel elements are introduced), permutation, and
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other reordering processes. What composers do in subsequent days and in subsequent epochs can
generally be seen as an evolution from antecedents. Thus, composition can be likened to a natural
selection process.

Any process that we can identify we can also model, and a useful computational model for
this view of composition is provided by genetic programming (Koza 1992). This technique
adapts some of the principles of biological natural selection to allow programs to evolve
spontaneously.

Suppose we start with a collection of primitive functions to generate and modify basic musical
data (such as algorithms to generate and transform a tone row). These are supplied to a genetic
programming system, which creates a population of programs that invoke these primitive func-
tions in various random ways. The genetic programming system then executes the population of
programs, and their results are evaluated for how well they succeed. This critique is provided by
yet another function we must supply that determines how well the programs perform their task,
that is, their fitness. Because they were generated randomly, most of the programs probably won’t
perform very well, but we take those that perform best for subsequent development and discard
the rest.

A new set of programs is created from those that survived the previous round by reproduction,
crossover, mutation, permutation, and so on. These are tested as before, and the process repeats
until some criterion of fitness is achieved.

The good news is, this approach, like artificial neural networks, avoids the requirement of know-
ing what the solution should be in advance. The bad news is that the solutions may not be optimal;
and for realistic-sized problems, solutions may not be scrutable (see especially Todd and
Werner 1998).

9.22.7 Summary of Connectionism

A promised advantage of artificial neural networks is that the composer need not invent rules to
express preferences. Such preferences are an emergent property of the network. The fact that no
music theory is implied in the structure of a network is a benefit because it allows any theory
embodied in a model to arise. The ability of a network to generalize from examples provides the
composer with ways to go beyond the model in a musically reasonable way.

Such networks can be used to study the psychophysics of sound, the perception of timbre,
pitch, and rhythm, tonal analysis, musical instrument fingering, sound synthesis, automatic
music classification, recognition directly from the waveform, emotion in music, musical phras-
ing and interpretation, automatic music manuscript transcription, and many other areas (Todd
and Loy 1989).

But both conventional AI and connectionist approaches seem to run out of power when scaled
up to the size of problems we’d like them to be able to solve. Perhaps hybrid systems, such as
HARMONET, that combine conventional AI techniques with artificial neural networks will even-
tually succeed where the two approaches separately have faltered. Or perhaps we’ve simply not
found the right model for intelligence yet.
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9.23 Representing Musical Knowledge

The terms arrival and departure are often used in musical analysis because they capture something
true about our experience of music. These terms suggest a sense of time and place, and that the
music conducts us along a pathway structured by the composition.

Directed graphs embody this sense of place and transition, and we observed the usefulness of
directed graphs to characterize the unfolding of a musical theme (see section 9.18.3). Petri’s (1979)
general net theory extends the directed graph to characterize causal systems of arbitrary morphol-
ogy and abstraction. Antoni and Haus (1982) adapted them to represent musical structure and
knowledge. Haus and Sametti (1991) describe a software tool, ScoreSynth, for analyzing and
synthesizing musical scores using Petri nets.

9.23.1 Petri Nets

Petri nets look like directed graphs but with additional elements. As with directed graphs, states
are represented as circles, and transitions between states are represented by the movement of
tokens along arcs connecting states (see figure 9.37 for an example of a directed graph). But with
Petri nets, multiple tokens flow through the net simultaneously. Transitions in the network state
can trigger other actions, such as causing transitions to occur in subnets, nested hierarchically. The
flow of time can be made explicit in Petri nets. They can handle deterministic and nondeterministic
(stochastic) operations. Representation of music structure with Petri nets is compact and expres-
sive. The elements of a Petri net can refer to musical objects such as notes, phrases, motives, sec-
tions, and the like, or they can refer to nonmusical objects that manage and control the
compositional process.

The basic Petri net elements are places, transitions, and arcs (figure 9.49). Places and transitions
are connected by arcs. Two numbers may appear inside a place. The upper number (n) indicates
how many tokens it currently contains; the lower (N) indicates the maximum number of tokens
it may contain. Transitions control the movement of tokens in the network. Places and transitions
can also contain subnets.

Figure 9.49
Petri net icons.
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The Firing Rule The execution of a net is determined by the firing of its transitions. The basic
rule for firing is as follows (Haus and Sametti 1991):

A transition may fire if each one of the input places, i.e., places which are connected with oriented arcs to the
transition, has at least one token. The transition firing has two effects: to decrement the marking of each input
place by one token and to increment the marking of each output place, i.e., a place which is connected with
an oriented arc from the transition, by one token.

After the starting of a net, firings follow one another until there are no more transitions which may fire. At
the end of transition firings, the execution of the net stops (6).

For example, figure 9.50 shows an elementary sequence. Initially, the input place p1 contains
a single token, and the output place contains none. The firing rule indicates that t1 can fire. It dec-
rements the token count in p1 by 1 and increments the output place by 1. This basic firing rule is
extended by the following additional rules.

Capacity Each place in a network can be assigned a maximum capacity of tokens, represented
as the lower of the two numbers indicated inside places. (If no number is indicated, 1 is assumed.)
“Transitions cannot fire if the marking of one output place, at least, will exceed its capacity after
transition firing” (Haus and Sametti 1991, 6).

Figure 9.51 shows two examples. In the first case, p2 is full, so t1 cannot fire. The second case
represents a conflict, because only one transition can fire. The network determines whether t1 or
t2 will fire nondeterministically (stochastically).

Multiplicity If a numerical label is affixed to an arc, called the multiplicity value, then the fir-
ing rule must be modified: “A transition may fire if each one of the input places has at least as
many tokens as the numerical label on the arc [multiplicity value] connecting the place to the
transition.”19

Figure 9.50
Petri net sequence.

Figure 9.51
Effect of capacity on firing.
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Firing now decrements the number of tokens of each input place by the multiplicity value on the
arc connecting the place to the transition, and increments the number of tokens of each output place
by the multiplicity value on the arc connecting the transition to the place. Figure 9.52 shows a net-
work with multiplicity ready to fire, and the results after firing.

Firing happens in three stages:

1. The network determines that t1 can fire because each of the input places has at least as many
tokens as the corresponding multiplicity value on the arc connecting it to the transition.

2. Upon firing, the transition t1 subtracts the number of tokens from the input places specified by
the multiplicity values on the arcs connecting the places to the transition.

3. The transition then adds as many new tokens in the output places as indicated by the multiplicity
values on the arcs connecting the transition to the output places. (Multiplicity does not conserve
the total number of tokens.)

Musical Objects, Musical Actions We can associate places with any musical significance we
like. Places can represent individual notes, phrases, dynamics, motives, and so on. We associate
musical meaning to places by affixing labels to them that refer to defined musical objects. In fig-
ure 9.53 place M1 has been designated to be a musical object because its name starts with M.

When tokens flow into or out of a musical object, the associated musical action is triggered. If
the musical action is a note, it is played; if it is a phrase, the phrase is played; if it is a subnet, the

Figure 9.52
Example of firing with multiplicity.

Figure 9.53
Musical objects.
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subnet is entered. In  figure 9.53 musical object M1 is about to trigger its associated musical action.
When t1 fires, M1 will play pitch A440.

Timed Firing But how long will the note in figure 9.53 last? Petri nets have no inherent notion
of time or sequence. Many transitions can be qualified to fire at the same time, but the implemen-
tation of Petri nets gives no direct control over their order of firing. Also, the duration of firing is
assumed to be instantaneous. We must add time structure to the network. Haus and Sametti (1991)
took the approach of associating time with musical objects. “When a token is put into a place with
an associated MO [musical object] the token cannot be considered for the firing of transitions con-
nected to the place until the associated MO has ended” (8).

To illustrate, suppose that musical object MA is defined to last 1 second (figure 9.54). Every token
put into MA is not disposable for 1 second. We also define MB to last 6 seconds per token. Tokens
put into places that are not defined as musical objects are immediately disposable. For example, if
MA has one token, then t2 is prevented from firing because the capacity of MA is 1 token. Similarly,
t3 can’t fire because MA does not present its token to t3 until its duration of 1 second has elapsed.

The sequence of firings for figure 9.54 is as follows.

1. t1 fires, subtracting one token from p1 and adding one token to MB and five tokens to p2.

2. MB triggers an instance of its associated musical action, which will last 6 seconds.

3. t2 fires, subtracting one token from p2 and adding one token to MA, which is now at capacity.

4. MA triggers an instance of its associated musical action, which will last 1 second.

These steps transpire instantaneously because they are triggered by places p1 and p2, not musical
objects. MB has not reached its capacity, and up to five more instances of MB can be triggered. How-
ever, no tokens are available from t1 because p1 is exhausted. MA has reached its capacity, so t2 and
t3 are prevented from firing. MA’s token will fire t3 in 1 second, so the network must wait until MA’s
token is available. At this point, we can represent musical actions in progress at time 0 (figure 9.55).

5. When 1 second has elapsed, t3 fires, passing the token from MA to MB. Another instance of
MB is triggered. 

6. MA is now empty, so t2 fires, passing a token from p2 to MA. Another instance of MA is triggered. 

Figure 9.54
Timed net example.
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Musical actions in progress at time 1 are shown in figure 9.56.
From this point on, MA and MB will be triggered only by the remaining tokens in p2, consumed

in 1 second intervals by MA, then passed to MB. The complete result of network execution is
shown in figure 9.57.

Refinement Morphisms Petri nets can be developed through a process of refinement, where a
place or transformation can act as a placeholder to be given a more detailed description later.
“Refinements can define very complex PN [Petri net] models by means of simple PNs and hier-
archical structures, i.e., allowing models to be designed by either a top-down or a bottom-up
approach” (Haus and Sametti 1991, 10).

Figure 9.55
Musical actions in progress at time 0.

Figure 9.56
Musical actions in progress at time 1.

Figure 9.57
Complete result of network execution.
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The placeholder node is called the father and the subnet it refers to is the daughter. To asso-
ciate a daughter subnet with a father place, the subnet must have an input place and an output
place. Input arcs to the father place are input arcs to the input place of the daughter net; output
arcs from the father place are output arcs from the output place of the daughter net. Transitions
can be refined in the same way. An example is shown in figure 9.58.

Building Blocks Some of the basic Petri net building blocks for music are as follows:

Figure 9.58
Petri net with subnet.
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Canon Perpetuus All of these structures can be joined to create more complicated networks.
For example, Antoni and Haus (1982) provide a sample analysis of J. S. Bach’s “Canon Perpetuus”
from his Musical Offering for flute, violin, and continuo bass.20 A brief overview of the flute part
will be illustrative. The pitches of the flute part in the score can be grouped into musical motives
as follows:

Using these named sections, the flute part can be analyzed as follows:

{F1, F2, F3, F4, F5, i(F1, F2), rt(F3), F1, F2, F3, F4, Fend}, (9.30)

where i() indicates inversion and rt() indicates transposed retrograde. This sequence structure
is represented by the Petri net shown in figure 9.59. Place Start contains a token, as does place
Ping. In the beginning only the transition leading from Start can fire. When the token reaches
F4, T1, can fire but T3 cannot. So the token visits F5 and goes down the right-hand arm in the fig-
ure, eventually reaching T2. Both F1 and Pong receive a token, but only the transition from F1

can fire. So the token visits F1 through F4 again. Now T1 cannot fire but T3 can. So the token visits
Fend, then Stop.

■ Join. Two input places trigger M1, so two instances of M1
are created and run concurrently. 

■ Fusion. Only one of the two input places can trigger M1.
One instance of M1 is triggered.

■ Iteration. The Start place is provided with as many
tokens as the required iterations. There must be room for
them at the End. In this example, two instances of M1 exe-
cute sequentially.

Name Section

F1 bars 1–2
F2 bars 3–10 and the following three notes
F3 last note of bar 11 to first note of bar 13
F4 the rest of bar 13 to bar 14
F5 bars 15–17 and the following note
Fend last note of the flute part
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We observe that the violin part of “Canon Perpetuus” is the inversion of the flute part played
against the flute with a two-bar delay. Using F to represent the sequence shown in (9.30) except
for the final sequence {F4, Fend}, we can write the violin part as

, (9.31)

where R is the two bars of rest. The Petri net for this sequence is shown in figure 9.60.
Petri nets model the behavior of discrete dynamical systems such as musical scores in a direct

and intuitive way. They handle many concepts that are vital to the musical process, including
sequence, concurrency, conflict, and resolution. The resulting network descriptions naturally
facilitate deeper understanding of the underlying musical system. Petri net representations of
music can remove a great deal of redundancy in a musical score, revealing the essential structure
of the work. They have been used to analyze music structures of significant size (Haus and
Rodriguez 1993). They provide a pragmatic method for hierarchical representation of musical
knowledge (Roads 1984). Petri nets can also be constructed from scratch to synthesize musical
scores, or nets that are the result of analysis can be modified for subsequent synthesis of related

Figure 9.59
Petri net model of flute part from “Canon Perpetuus.”

Figure 9.60
Petri net model of violin part from “Canon Perpetuus.”
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musical works. However, Petri nets can become explosively large when they are used to describe
realistically complex systems.

9.23.2 Predicate Transition Nets

High-level Petri nets, also called Predicate/Transition (PrT) nets, have been developed to over-
come the problem where Petri nets become unmanageably large when used to model realistically
complex problems (Genrich and Lautenbach 1981). The general idea is to attach additional infor-
mation to the elements of the network to increase their descriptive power.

For example, in Petri nets, tokens are simple featureless counting devices. In PrT nets, tokens
have quantity and quality. In fact, they can have multiple quantities and qualities. Algebraic and
logical expressions (predicates) can be added to places, transitions, and edges to describe network
state and firing. The expressions are evaluated based on the available types and quantities of the
tokens flowing through the system.

Consider a single place, called PianoImprov, which models the musical resources of the piano
part of a musical improvisation. PianoImprov contains a collection of tokens representing
the pitches the pianist can play. The content of a place is called its marking. Suppose that
PianoImprov is marked by two C4 pitches, three E4 pitches, and two G4 pitches. Because it holds
pitches, we say place PianoImprov is of type Pitches. This means PianoImprov can only con-
tain elements of type Pitches (figure 9.61).

When an instance of a place is created, it is given an initial marking. The initial marking of
PianoImprov can be expressed as

.

The markings of a network will vary as the tokens are consumed and produced across the net during
operation.

An arc from a place to a transition carries tokens consumed by the transition, and an arc from
a transition to a place carries tokens consumed by the place. The label on an arc indicates the num-
ber and kind of tokens that can be consumed or produced. We can specify that any quantity of any
type of token can travel an arc, or we can restrict the arc to certain quantities and types of tokens.
The arc x in figure 9.62 is defined to be of type Pitches, and indicates that any number of tokens

Figure 9.61
PianoImprov 1.
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of type Pitches can be produced by PianoImprov and consumed by transition Play in a single
transaction. By this rule, one pitch, any combination of pitches, or all pitches can be played by the
piano at once.

In figure 9.63 PianoImprov is ready to play any of its pitches for Listen. Listen begins in
an empty state. However, by the rule stated beneath the Play transition, Play can only fire if the
received token is the pitch C4, so Listen can only hear that pitch.

The network shown in figure 9.63 can be defined as follows:

where P is the set of places, T is the set of transitions, and F defines the arcs that connect places
and transitions. Because arcs link places and transitions, F is a list of place/transition pairs.

The combination of typed elements with capacities and predicates makes PrT nets more
expressive and representationally compact than Petri nets. Pope (1986) gives an example of the
use of PrT nets in a musical context and shows how PrT nets can be abstracted to become the

Figure 9.62
PianoImprov 2.

Figure 9.63
PianoImprov 3.

x

Pitches: {C4, E4, G4}

x: Pitches

M0 (PianoImprov) � 2 . C4 � 3 . E4 � 2 . G4

PianoImprov Play
Pitches

x

PianoImprov Play Listen

x � C4

Pitches

Pitches: {C4, E4, G4}

x: Pitches

M0 (PianoImprov) � 2 . C4 � 3 . E4 � 2 . G4

M0 (Listen) � 

P = PianoImprov Listen,{ }

T = Play{ }

F = PianoImprov Play,( ) Play Listen,( ),{ } ,

loy79076_ch09.fm  Page 399  Wednesday, April 26, 2006  4:33 PM



400 Chapter 9

template for deriving other related networks. In this way, PrT networks begin to take on some
of the characteristics of object-oriented computer programming languages, such as type inher-
itance and abstraction, but with the advantage of built-in facilities for modeling the behavior of
discrete dynamical systems such as musical scores (Pope 1991). In fact, graphical simulation
techniques and high-level computer language design are beginning to converge to the point that
practical tools for modeling and emulation of discrete dynamical systems are now commonly
available.21

What this approach lacks is a built-in mechanism for learning, abstraction, pattern completion,
and spontaneous generalization provided by the connectionist approach. Since both PrT nets and
connectionist frameworks model dynamical systems, perhaps a hybrid approach combining ele-
ments of both would prove sufficiently expressive for problems of realistic scale.

9.24 Next-Generation Musikalische Würfelspiel

The tables used to generate Musikalische Würfelspiel compositions were each predetermined by
a master composer, so a composition in the style of that composer is guaranteed if the method is
followed. The composer David Cope (2001) has developed a set of programs he calls Experiments
in Musical Intelligence (EMI) that has a similar aim: EMI produces original works in the style of
a particular composer by recombining atomized musical quotations derived from that composer’s
works. But whereas the composers of Musikalische Würfelspiel had to compose their own atom-
ized musical tables, Cope’s EMI system generates the musical tables that are the basis of the new
works to be composed by analyzing the target composer’s musical corpus under the direction of
a trained operator.

EMI performs its analysis using techniques drawn from natural language processing, aug-
mented transition networks, and other techniques drawn from AI to synthesize new compositions.
Like Markov and connectionist approaches, EMI recomposes the music of the target composer.
The result is highly original (though not always very artful) music with the stylistic signature—in
both its surface and deep structure—of the identified composer.

Music expresses its own essential nature much the way that organisms are expressions of their
genes. If we can identify the genetic basis (so to speak) of a composer’s style in a sufficiently for-
mal way, we should be able to use it to create original compositions in that style. This issue speaks
to the desire Schillinger first expressed that theories of art should be generative, not merely ana-
lytical (see section 9.11.2).

Cope’s aesthetic premise is that new music in the target composer’s style can be created through
recombinant techniques. EMI is an analysis/synthesis system that creates a database of musical
elements by analyzing a composer’s works and then interpolates among them in various ways to
realize new works. In outline, the method is as follows:

1. The user must select and encode a corpus of musical works from the target composer into a for-
mat that EMI can digest. To facilitate pattern recognition, Cope suggests, the selected works
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should be relatively homogeneous, similar in overall structure, range, and orchestration. For exam-
ple, Cope (1999) used Mozart’s middle symphonies (numbers 6–31) as an analysis set for a new
symphony in Mozart’s style. He used a similar approach for a new piano concerto. Both works
have been recorded and are available commercially. This is the same initial step that must be
employed by any system that learns from a corpus of examples. Clearly, the operator’s selections
have dramatic impact on EMI’s subsequent steps.

2. EMI performs a lexical analysis based generally on Noam Chomsky’s theories of the structure
of natural languages, and a hierarchical temporal and harmonic analysis of the works based on the
ideas of Heinrich Schenker (1935).

3. EMI identifies what Cope calls signatures, which are unique characteristics of the com-
poser’s style, using pattern recognition techniques adapted from natural language processing.
The analysis ostensibly contains no a priori notion as to the signatures to be found, so the tech-
nique can presumably be applied to music of any style. But in fact there is great latitude in this
step for the EMI operator to refine the process of signature selection based on the operator’s prior
experience with the composer’s style. Cope has reported, for example, that in the case of the
Mozartian symphony and piano concerto, he took great pains to tune EMI’s analysis parameters
to greatest advantage.

4. Driven by this analysis, EMI then breaks the musical corpus into its fundamental components,
which are now ready to be recombined.

5. EMI uses augmented transition networks driven by a random process, and makes refinements
by pattern matching based on extracted stylistic features, to recombine the music into an original
that preserves the composer’s signature style. The creative aspect of EMI reflects many of the tech-
niques described in this chapter. It can provide variation by interposing similar but distinct ele-
ments from the analysis. The recombination can take place on several levels of musical scope
because the hierarchical analysis provides compositional rules for thematic, middle-ground, and
large-scale structures.

6. The original work is then formatted for representation in common music notation to be played
by traditional instruments or converted to a format such as MIDI so it can be synthesized.

In the hands of a skilled operator, EMI can produce a believable facsimile of a composer’s style
from a carefully selected corpus of the target composer’s works. Cope has also published examples
in the style of J. S. Bach, Frédéric Chopin, and Scott Joplin, among others.

Cope’s EMI system is perhaps the most advanced automated composition system extant today
and therefore can serve as a good target for analysis and criticism. In the following sections, I dis-
cuss some of the important questions raised by his work.

9.24.1 Is EMI Experimental?

Insofar as Cope defines his system as “Experiments in Musical Intelligence,” it is fair to ask if
Cope’s system is truely an experimental method.
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There is actually a seventh step in the EMI process, not an official part of Cope’s system but
obviously of crucial importance: editing. The operator selects among the generated compositions
for those good enough to be played in public. Editing is a necessary step because there would be
little audience for every one of the possible compositions such a system can create, just as there
would have been little audience for what Beethoven threw in his trash basket.

Although the quality of EMI’s compositions and their entertainment value is crucial, these are
not their most important credentials: the selected compositions, especially the ones created by the
author of the method, become official specimens, proof of the effectiveness of the method that cre-
ated them. But there is a contradiction between hand-selecting the most convincing examples and
the requirements of a true experimental method.

The experimental method in science is about testing suspected explanations regarding one’s
observations. To get at the truth, one conducts experiments that must be carefully constructed to
avoid hidden biases and confounding factors, undetectable things that might influence the results
and lead the research astray. The most common confounding factor is pure chance, where through
luck one happens upon a population of specimens that erroneously validates or invalidates the
hypothesis.

Because of the danger of confounding factors in experimental design, the scientific method
requires that conclusions must not be based merely on anecdotal evidence such as a single instance
or a very limited group of specimens or subjects. Regardless of the hypothesis Cope is expressing,
and though the published examples of his EMI work are superlative, his specimens constitute
a very limited group and therefore must be considered only as anecdotal evidence of EMI’s
effectiveness.

But EMI should not be singled out here; this criticism can also be directed at every method dis-
cussed in this chapter. Hiller and Isaacson (1959), the other composers to use the word experiment
in the name of their composing system, were the first to face this problem. In creating their Illiac
Suite, they similarly had to generate official specimens that proved the effectiveness their meth-
odology. In their book Experimental Music, they claim that they used no preferential criterion to
select example outputs from their program for inclusion in the Illiac Suite so as not to color the
results. Although their approach helps, it does not prevent their single published composition
(the Illiac Suite) from being anecdotal evidence.

Use of the terms experiment and experimental in the arts is difficult because the terms are so
freighted with scientific meaning. However, there is a constellation of related words, such as
experience and experiential, that share the same root and that capture the importance of personal
observation to both the arts and the sciences. If we think of experiment as meaning qualified
experience, I think we get closer to how artists think about being experimental in their art. Artistic
experiment is about considering novel or unusual combinations of elements for the purpose of
increasing the horizons of surprisal. I spent a number of years working at the Center for Music
Experiment at the University of California, San Diego, and this pretty well characterizes what
went on there.
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9.24.2 Is EMI Intelligent?

When I heard EMI’s Mozartian symphony and piano concerto for the first time, I definitely had
the experience of listening to Mozart, or perhaps a good Mozart imitator. To have captured
Mozart’s style so aptly is such a stunning technical and aesthetic accomplishment that it warrants
asking, Is EMI intelligent?

Turing (1950) suggested that if we can’t distinguish between an intelligent person’s choices and
a computer’s choices, then it is reasonable to say that the machine is behaving intelligently. Insofar
as Cope defines his system as “Experiments in Musical Intelligence,” it is fair to ask if Cope’s sys-
tem passes a musical equivalent of Turing’s test.

9.24.3 Aural Sensibility

Hiller and Isaacson (1959) attempted to directly encode rules of composition into their system, but
they realized that there were limits to what they could accomplish just with the use of rules. Com-
posing is about more than following rules. They wrote, “The composer is traditionally thought of
as guided in his choices not only by certain technical rules but also by his ‘aural sensibility,’ while
the computer would be dependent entirely upon a rationalization and codification of this ‘aural
sensibility.’”

Other systems, such as DEC and neural networks, allow a composer’s “aural sensibility” to
emerge from experience by inference and generalization, emulating human learning. However,
EMI, arguably more successful to date than these other approaches, actually relies much less than
they do on reasoning and inference. Instead, it takes a brute force approach. By analyzing a large
corpus of works, EMI’s analysis phase attempts to provide its synthesis phase with a rich set of
options for every choice faced by the target composer. EMI’s analysis database is essentially a com-
pendium of answsers to the question, What would Mozart have done in this situation?

This is similar to the approach presumably taken by IBM Corporation’s chess-playing program
Deep Blue, which managed to defeat chess master Garry Kasparov in 1997. It seems that a large
catalog of chess moves was created by analyzing many games of chess masters. During a game,
the program would move pieces based on context, selecting from among the moves that were made
in similar situations by the masters the program was emulating.

This approach is mostly about modeling the choices already figured out by masters and actu-
ally requires little learning or reasoning about music or chess. What is needed is a really big and
really fast database and a sophisticated search capability. And although human composers and
chess players also learn by example, we are not wired to perform by exhaustive search.

Does this disparity in method disqualify EMI or Deep Blue from being called intelligent? Can
a system be intelligent only if its methods are fashioned after our own? Turing urged us not to focus
on the process but on the result. He was less concerned about implicit use of reasoning and learning
than explicit behavior: Does a computer seem intelligent? If so, then it is! Just as we can admire
a beautiful sunset without worrying about how it was created, we should certainly be able to enjoy
a composition that pleases us without caring who, how, or what created it. I suspect Turing would
urge us to quit worrying about intelligence and to relax and enjoy the music.
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9.24.4 A Musical Intelligence Test

Cope (1999) comments in the liner notes of his album Virtual Mozart that he avoided analyzing
Mozart’s symphonies beyond #31 “because they are so well known that derivations would have
been recognizable.” But he goes on to say, “The resultant work does show influences of these later
symphonies, however.”

It makes sense that Mozart’s later symphonies were informed by his earlier ones. But has Cope’s
EMI system managed to do the same thing? Has EMI identified and developed some elements of
Mozart’s earlier symphonies into a more mature style? If so, that would seem to be evidence that
Mozart’s aural sensibility lies within his music where EMI can access it, and that EMI is able to
find it, extract it, mature it, and use it as the basis of new compositions. Given what we know of
EMI’s process, this seems implausable. But according to Turing, we are to consider the system’s
behavior, not its inner workings, when deciding about intelligence. And so, like a good jury, let
us follow the judge’s orders, at least for now.

Cope’s observation that EMI evidently developed some elements of Mozart’s mature style is
only anecdotal and subject to interpretation. How could we prove or disprove that EMI (or any
other system) can act to develop a more mature style from a less mature one?

Turing’s test methodology allows the experimenter to ask any question or pose any problem that
would help prove or disprove the intelligence of the system under test. But it’s hard to ask questions of
a musical score. It is easier to claim that a chess program that beats a master is intelligent because there
is a clear criterion: winning. The arts are more ambiguous.

But music can be analyzed. For example, suppose we conduct a test of intelligence on EMI such
as the following. We begin with two contrasting premises:

■ If a composing automaton is driven by a random process, we should be able to identify the “wan-
dering” quality in its output that was noted by Pierce (1983).
■ If a composer’s works are informed by his or her prior works and the related works of others, then
the same should be true of an artificial composer’s works.

This suggests an experiment, as follows. Let E1 stand for the Mozartian symphony created by EMI
for the album Virtual Mozart. Let the way EMI composed E1 be the function f of the set of Mozart
symphonies #6 through #31 as follows: . Now suppose we com-
pose a set of N additional Mozartian symphonies using the same EMI technique:

In other words, each new EMI Mozartian symphony replaces the earliest Mozart symphony in the data-
base until all of Mozart’s symphonies are eventually replaced by new EMI Mozartian symphonies.

E1 = f M6 M7 M8, . . . , M31, ,( )

E2 = f M7 M8,. . . , M31 E1, ,( )

E3 = f M8, . . . , M31 E1 E2, ,( )

..
.

EN = f E1 E2, . . . , EN 1–,( ).
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As EMI symphonies progressively replace Mozart’s in the database used to derive subsequent
symphonies, how does EMI’s musical style evolve? Does the progression of symphonies:

■ Present a coherent, self-consistent set of works, as do Mozart’s?
■ Develop recognizable signatures of Mozart’s mature style? 
■ Suggest how Mozart might have developed with his symphonies had he lived longer?

If any answer is yes, that would be strong evidence that EMI has successfully encoded Mozart’s
aural sensibility. 

Does the progression of symphonies drift off in some other direction that is not Mozartian? Do
subsequent EMI compositions become less musically interesting as the database is progressively
left to its own devices? If either answer is yes, then perhaps EMI has not encoded Mozart’s aural
sensibility. 

Of course there is also the possibility that EMI remains stylistically stagnant, continuing to
churn out endless minor variations on Mozart’s symphonies 6–31.

Cope reportedly conducted an experiment like this based on three works by Igor Stravinsky
(Holmes 1997). From time to time, he mixed in the work of another contemporary of Stravinsky’s
to model the way human composers are influenced by their peers. Cope reported that over the course
of time EMI developed the style of a mid-twentieth-century Russian-American composer. This
effort of Cope’s seems a lot closer to the true meaning of experiment. There is a hypothesis, a method,
and most important, repeatability. Others could conduct this experiment and the results could be sub-
ject to peer review, all important aspects of the scientific method. It would be particularly interesting
to know if stylistic stagnation resulted if the targeted style were not mixed with others. This might
open up an understanding of the interaction of personal creativity and social forces.

9.24.5 Taste, Goodness, and Design

If we stick to Turing’s behaviorist approach to measuring intelligence, then I think this member
of the jury would have to find EMI guilty of intelligence. But I believe we also have an obligation
to reflect upon the model whereby EMI creates its music and compare that to the human process
as best we can. And when we do, I believe the jury is still out.

Consider the fact that EMI requires a database of preexisting works. When examined from a
functional perspective, its intelligence, like that of every other composing system discussed in
this chapter, is derivative of the music it emulates, derivative of the musical experience of its
operator in fine-tuning its analysis, and derivative of the knowledge of EMI’s creator. How
could it be otherwise?

In contrast, Mozart had no corpus of examples of his personal style to draw upon when, as a
young child, he began to compose in his highly recognizable signature style. Of course he was
profoundly influenced by his teachers and by the music around him, but the origination of his
personal style was seemingly guided primarily by his superlative taste, which had no external
referent because, manifestly, no one else ever did manage to compose like he did. The same

loy79076_ch09.fm  Page 405  Wednesday, April 26, 2006  4:33 PM



406 Chapter 9

could be said of Beethoven, Schoenberg, and Stravinsky, for example. After hearing the child
genius Mozart perform his own compositions, the great composer Joseph Haydn is known to
have remarked to Mozart’s father, Leopold Mozart, “Before God, and as an honest man, I tell
you that your son is the greatest composer known to me either in person or by name. He has taste
and, what is more, the most profound knowledge of composition.”22

And of course, Mozart’s ultimate signature is the music he went on to create throughout his
career. While the signature of his musical style remained relatively continuous throughout his life,
the compositional visions he brought to life seemed discontinuously to spring full-blown, like
Athena from the head of Zeus. The art of his mature works seemed to have no antecedent. This
characteristic of an artist’s work is one of the indicators that predicts enduring fame.

Haydn’s taste, Knuth’s goodness (see section 9.2.1), and Hiller and Isaacson’s aural sensibility
are all key aspects of design. For example, there are an infinite number of ways to find the greatest
common divisor of two integers (including guessing), but we choose Euclid’s method (see sec-
tion 9.2.2) because its design appeals to us—it shows goodness. Design is a key underpinning of
mathematics as well: “Mathematics are the result of mysterious powers which no one understands
and in which the unconscious recognition of beauty must play an important part. Out of an infinity
of designs a mathematician chooses one pattern for beauty’s sake and pulls it down to earth”
(Morse 1959).

At bottom, whether designing music or mathematics, we reach into ourselves and extract that
which most agrees with our natures and the problem that we pose to be solved. This is the funda-
mental process of art. All else is imitation.

9.25 Calculating Beauty

Hermann Helmholtz (1863) wrote,

To furnish a satisfactory foundation for the elementary rules of musical composition . . . we tread on new
ground, which is no longer subject to physical laws alone. . . . Hence it follows—that the system of Scales,
Modes, and Harmonic Tissues does not rest solely upon inalterable natural laws, but is also, at least partly,
the result of aesthetical principles, which have already changed, and will still further change, with the pro-
gressive development of humanity. (250–251; italics in original)

From ancient times, we have sought a rational explanation of nature through scientific enquiry.
Since art was considered an imitation of nature, science also studied art. The Pythagoreans were
perhaps the first to identify a connection between aesthetics and mathematics: beauty was found
to reside in certain mathematical divisions of a vibrating string, and not in others. The distinguish-
ing characteristic seemed to be the harmonious—beautiful—proportions of the division. Thus the
Pythagoreans discovered what they believed was a way to study beauty objectively, to quantify
beauty by simple integer ratios. Thus beauty could be found in the proportions of a string or in
the proportions of the whole universe. This discovery powered aesthetic research and debate for
centuries.
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The Pythagorean observation of beauty in ratios came to be studied under the name eurythmics,
the study of harmony and proportion. As a theoretical device, it could be used to create and analyze
all forms of art: dance, architecture, music, sculpture, painting, and so on. From antiquity and
through the Middle Ages, the sciences of subjective and objective nature thrived together, united
as the branches of the quadrivium. “Mathematical science . . . has these divisions: arithmetic,
music, geometry, astronomy. Arithmetic is the discipline of absolute numerable quantity. Music
is the discipline which treats of numbers in their relation to those things which are found in
sound.”23

However, the quadrivium fell apart in the Renaissance. Natural scientists and mathematicians
became increasingly uninterested in the arts because—despite the Pythagorean premise—no the-
ory had successfully provided a rational link between aesthetics and proportion. The science of
aesthetics fell by the wayside and was deemed unscientific (James 1993). The gulf between the
arts and sciences has continued to this day. Some artists rail against reductionistic explanations of
creativity. Some scientists question whether aesthetic experimentation can be scientific. But meth-
odological analysis reveals that the disciplines of art and science are cut from the same cloth. Com-
paring Euclid’s method with Guido’s method, we saw that they are distinguished only by the role
of subjective choice—of nondeterminism—in art. Art is not science, but their methods are more
alike than different.

When applied to music, methodological criticism goes quickly to the core of the artist’s inten-
tion, allowing us to apprehend the deeper significance of their art. Guido d’Arezzo’s method shows
his concern that music should be subordinate to the sacred Latin text. Schoenberg’s combinatoric
methods show a desire to deconstruct conventional harmonic expectation. Schillinger’s methods
followed from his desire to develop generative theories of art. Xenakis’ statistical methods reflect
his view of the quantum nature of sound. Cage’s chance methods serve his aim to deconstruct the
expectation of expectation.

Methodological criticism, information theory, psychoacoustics, complexity theory, and other
approaches discussed in this chapter are making important contributions to theoretical aesthetics that
finally allow the dialogue about the nature of art to move beyond its fixation with Pythagorean pro-
portionality. Perhaps the truest proportions in music are those that relate expectation, interest,
entropy, and redundancy; perhaps the truest study of music structure requires understanding the non-
linearities of our perceptual and nervous systems as well as the self-organizing principles of nature.
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The wondrous potency of music, which moves the world and compels the spirit, captured in the net of
numbers.
—Walter Burkert, Lore and Science in Ancient Pythagoreanism

A.1 Exponents

If p and q are any real numbers, a and b are positive real numbers, m and n are positive integers,

A.2 Logarithms

If ap = x where a is not 0 or 1, then p is called the logarithm of x to the base a. If x, y, and a are
real numbers, then by this definition and the rules for exponents, we can write

loga xy = loga x + loga y

loga(x/y) = loga x – loga y

loga xy = y loga x

The irrational number e is called the natural base of the logarithms, and loge x is also written as
ln x. When written without specifying a base, log implies base e, that is, ln x = log x =  loge x. The
value of e is irrational; its first few digits are 2.718281828. . . .

To change the base of a logarithm, use the formula loga x = logb x /logb a.

if

apaq = ap + q ap

aq----- = ap −q ap( )q = apq am( )1 n/ = am n/

a p– = 1
ap
----- a

b
--- 

  1 n/
= a1 n/

b1 n/
--------- a0 = 1 a 0≠ ab( )p = apbp
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A.3 Series and Summations

A series is any summation of a repeating pattern of terms. An example of an arithmetic series is
2 + 4 + 6 + 8 +  . . . . Each subsequent term is computed by adding or subtracting a constant amount
to the immediately preceding term.

A simple geometric series might be 2 + 4 + 8 + 16 + . . . . Each subsequent term is computed by
multiplying or dividing the immediately preceding term by a constant amount.

Mathematicians have developed a useful shorthand for representing series, sigma notation. For
example, the equation

is shorthand for the equivalent expression

s = (5 ⋅ 1) + (5 ⋅ 2) + (5 ⋅ 3) + (5 ⋅ 4).

We can use it to form the sum of arithmetic and geometric series. The symbol Σ, the Greek char-
acter sigma, is used by mathematicians to represent the sum of a sequence of terms. The expression
to the right of the sigma, (5 ⋅ n), is the summand. The numbers below and above the sigma are the
limits of summation, and the variable n is the index.

This example,

, (A.1)

can be written equivalently as

s(t) = (5 ⋅ 1t) + (5 ⋅ 2t) + (5 ⋅ 3t) + (5 ⋅ 4t). (A.2)

This is the expansion of (A.1). Every point t of the function s is described by the entire summation.
The examples above are finite series because the sequences of terms are finite. In the case of an
infinite sequence of terms,

x1, x2, . . . , xn, . . .

the corresponding infinite series is

x1 + x2 + . . . + xn + . . . = .

The nth term xn of a series is the general term. An infinite series is convergent if its value tends
toward a finite sum, otherwise it is divergent.

s = (5 . n)
n=1

4

∑

s t( ) = 5nt
n=1

4

∑

xn
n=1

∞

∑
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A.4 About Trigonometry

Trigonometry is the study of trigons, which are triangles, especially right triangles, that are
inscribed within a circle (figure A.1).

The ratio of the diameter to the circumference of a circle is the irrational number π = 3.14. . . .
Because the radius is half the length of the diameter, the circumference is 2π times the radius.

Angles are commonly measured in degrees, and the angle corresponding to a complete rotation
is 360°. There are 2π radians or 360° in a circle (see section 5.2.2). An angle can be measured either
clockwise or counterclockwise from a starting point. Conventionally, positive angles are measured
counterclockwise from the positive horizontal x-axis of the circle, and negative angles are measured
clockwise. Thus, for example, if we picture a circle on a blackboard, an angle of 0° conventionally
points to the right along the positive horizontal axis; 90° points straight up; –90° points straight down;
and 270° =  −90°.

A.4.1 Sine Relation

Suppose we constructed a triangle like the one in figure A.1 so that the length of c (which is both
the hypotenuse of the triangle and the radius of the circle) is fixed, but sides a and b are elastic:
they can grow and shrink. Also suppose that point p is able to move around the circle, and that
point q is constrained to follow it such that the angle 0qp is always a right angle. Last, the inner
apex of the triangle is always at the center of the circle. These rules basically mean that we are
limited to right triangles inscribed in a circle with the triangle’s base resting on the horizontal
axis. As the angle θ increases and point p moves counterclockwise around the circle, the triangle
changes shape in a characteristic way (figure A.2). If we study the way in which the ratio of b/c
changes as the angle θ changes, we observe that this relation corresponds to sinusoidal motion.

Figure A.1
Right triangle inscribed in a circle.

c
b

a

p

q0
�
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That is, the radius c, its angle to the horizontal axis θ, and the ratio b/c are connected to each
other by the sine relation:

. Sine Relation (A.3)

Consider, for example, when θ = 0. Then c lies along the positive horizontal axis, a = c in length,
and b = 0, since the “triangle” has no height. Hence sin 0 = 0/c = 0. When θ = 90°, c lies along
the positive vertical axis, b = c and a = 0. Hence sin 90° = 1/1 = 1. See section 5.4 for more details.

A.4.2 Cosine Relation

Consider the relation between sides a and c in figure A.1. The angle θ and the ratio a/c are con-
nected to each other by the cosine relation:

, Cosine Relation (A.4)

which is similar to the sine relation except that its values are shifted by 90°, that is, cos θ = sin (θ + 90°).
This makes sense because the cosine involves the ratio a/c instead of b/c, and side a is orthogonal
(that is, at a 90° angle) to side b; hence it precedes the sine wave by 90°.

A.4.3 Tangent Relation

Last, consider the ratio b/a, the ratio of the two elastic sides of the triangle in figure A.1. The angle θ
and the ratio b/a are connected to each other by the tangent relation:

. Tangent Relation (A.5)

When θ = 45°, the triangle is an isosceles right triangle and a = b, so tan 45° = 1. When θ = 0°,
tan θ = 0/a = 0. But when θ = 90°, . 

Figure A.2
Family of triangles inscribed in a circle.

p

�

θsin = b
c---

θcos = a
c---

θtan = b
a---

θtan = b/0 = ∞
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A.4.4 Relating Tangent, Sine, and Cosine

We can relate these definitions to each other as follows:

∴ . Relation of Tangent, Sine, and Cosine (A.6)

A.4.5 Reciprocal Trigonometric Functions

We form the reciprocals for sine, cosine, and tangent by reversing the order of their ratios. Each
of these reciprocals has its own name:

, Cotangent (A.7)

, Secant (A.8)

. Cosecant (A.9)

A.4.6 Inverse Trigonometric Relations

The trigonometric functions determine the angle of the hypotenuse θ from the sides a, b, and c.
But what if we know the angle θ and want to use it to find the proportions of the triangle?

The inverse trigonometric functions determine the ratio of the sides from the angle of the hypot-
enuse against the positive horizontal axis. For instance, the inverse of sin θ is arcsine x, also written
asin x or sin–1x, where x is a ratio of two sides. The cosine and tangent functions are similarly
named, for example, arctan x = atan x = tan–1x.

But how do we define these functions? At first we might think, just inscribe a triangle in a circle
with angle θ, measure its sides, then find their ratio. But there is a problem: because we are measuring
angles on a circle, there are actually many angles—infinitely many at multiples of 360°—that
correspond to any particular proportion of sides. For example, if x = b/a = 1/1, then the triangle is an
isosceles right triangle and atan x = 45°, but it is also true that atan x = 45° ± (k ⋅ 360°), where k is an
integer. So the inverse trigonometric functions are ambiguous.

But, in general, all we usually want is the angle when k = 0. So we define a range of principal values
that covers just these angles. The principal values of the arctangent, arccosine, and arcsine are

–90° < tan–1x < 90°

0 ≤ cos–1x ≤ 180°

–90° ≤ sin–1x ≤ 90°.

θtan = b
a---, θsin = b

c---, θcos = a
c---, b

a--- = b
c---

a
c---÷ .

θtan = θsin
θcos

------------

θcot = 1
tanθ
---------- = a

b
---

θsec = 1
cosθ
----------- = c

a
---

cscθ = 1
sinθ
---------- = c

b
---
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A.5 Xeno’s Paradox

Xeno of Elea reasoned that if one travels distance d from point A to point B, one must certainly
travel half the distance d/2 to point B before traveling the whole distance d. And from that point
one must again travel half the remaining distance d/4, and so on. Continuing in this way, he
reasoned, one would never reach point B because one must pass through an infinite number of
points and that is impossible in a finite time.

Essentially, his argument is that if space and time are composed of indivisible points and
moments, these must have some magnitude, and we are faced with the contradiction of a magnitude
that cannot be divided. If space and time are divisible ad infinitum, we are faced with the contra-
diction that an infinite number of points and moments can be added up to make a merely finite sum.
Xeno’s point is that since multiplicity and motion contain these contradictions, they cannot be real.
Therefore, as his teacher Parmenides said, there is only one Being, with no multiplicity, excluding
all motion and change.

This is a perfectly fine outcome if you are satisfied with it. If you are not, then a modern way
out of this problem is to consider space and time not as a densely packed infinity of points or
moments, but as sparsely packed such that no point is next to any other point. Thus, between any
two points or moments there is always a third regardless of scale. The advantages of this approach
are twofold. First, the nondenumerable infinity of real numbers (and likewise of points in space
and of events in time) is therefore much larger than the mere denumerable infinity of integers that
Xeno envisioned. Further, the sum of an infinite series of real numbers can have a finite sum. This
latter point is the clincher.

A.6 Modulo Arithmetic and Congruence

If it’s 1:30, and your friend says she’ll meet you in 45 minutes, what time will it be when she
joins you? If you answered 2:15, then you used modulo arithmetic to obtain the answer. Since
there are 60 minutes in the hour, time-based calculations must keep the number of minutes in
that range. 

We could formalize the example this way. Using “minute arithmetic,” we could write
75 ≡ ((15))60, or 75 ≡ 15 mod 60, expressed as “75 is congruent to 15, modulo 60.”

In general, if the difference between two integers r and b can be divided without remainder by
another number m, then r and b are congruent modulo m. This is written as

r ≡ ((b))m if (b – r)/m is an integer. (A.10)

In the example, the quotient of (75 – 15)/60 is an integer, so 75 and 15 are congruent modulo 60. 
A common use of modulo arithmetic is to obtain the remainder of integer division. The value

b is the base and r is the remainder. The FORTRAN programming language provides a way to obtain
the remainder of two numbers with the function mod(b, m); the C and C++ programming
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languages define it with a binary infix operator %. MUSIMAT, the programming language invented
for this book (see appendix B), defines the remaindering operation as follows:

Integer Mod(Integer b, Integer m){

While(b >= m){b = b – m;}

While(b <= –m){b = b + m;}

Return(b);

}

Note that Mod() can operate on and return negative values. For example, ((–1))10 = –1 and
((11))–10 = 1. In general, the return value will be

for .

There are times when it would be convenient to force the remainder r to be a positive modulus
number even if the base b is negative. For example, in MUSIMAT, the index of a List must be
a positive integer. So MUSIMAT has a version of Mod() that returns only the positive wing of
modulo values:

Integer PosMod(Integer b, Integer m){

While (b >= m) {b = b – m;}

While (b < 0) {b = b + m;}

Return(b);

}

For example, Print(Mod(–13, 10)); prints –3, whereas Print(PosMod(–13, 10)); prints 7
(see figure A.3).

Both Mod() and PosMod() preserve the position within the modulus interval, but PosMod()
also requires the value to be positive. If we have a List of ten elements numbered 0 to 9, we can
provide a base of any positive or negative value b to PosMod(b, 10) and it will coerce the remainder
to lie within the valid range of the List.

Figure A.3
Signed and unsigned modulus operation.

m– n m< < n( )( )m

0 10 20�20

7Mod

PosMod

PosMod 10

Mod 10

�10

�13 �3
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A.7 Whence 0.161 in Sabine’s Equation?

Wallace Sabine derived the constant 0.161 in his equation for reverberation time in a room and
verified it both experimentally and theoretically (see equation 7.31). His derivation provides a
fundamental view of statistical room acoustics.

In physics the mean free path is the average distance a particle can move in a gas without a col-
lision. Sabine (1921) adapted the term to mean the average distance a wave front can travel in a
room before being reflected by a wall. He demonstrated that an approximate value for the acoustic
mean free path is

, Acoustic Mean Free Path (A.11)

where V is volume and S is surface area of the room. This approximation assumes that the sound
field in the room is diffuse, that is, the energy density is uniformly distributed throughout the room
(homogeneous) and is traveling with equal intensity in every direction (isotropic). This ideal con-
dition can only be approximated in real rooms because different areas of a hall will have different
amounts of absorption, depending upon the hall’s geometry and absorptive properties.

The average number of reflections per second  is the speed of sound c divided by the MFP:

.

The average time between reflections is the inverse:

.

Although air absorbs some sound, much more sound is absorbed by walls during reflections. So
a room with smaller  will have a shorter reverberation time than a room with greater .

Intuitively, when the sound source is first turned on in a room, it pumps acoustic energy into
the room, and though the walls suck energy out, they don’t remove it all. The energy remaining
in the room increases its total energy, and we hear an exponential buildup of sound level over time.
When the rate of energy entering the room equals the rate of energy leaving the room, equilibrium
is achieved, and the energy density plateaus.

Energy density in a reverberant room can be likened to the mean water level in a leaky water
tank: the level in the tank is proportional to the input rate of flow and inversely proportional to the
output rate of flow. If the input rate of flow goes to zero, water will drain out and the rate of water
loss will be proportional to the remaining water level. Similarly, in a room, the rate of energy loss
is proportional to the remaining energy density.

Let the energy density in a room at time t be denoted by the function W(t). (Calculus alert!) By
definition, the energy rate of change is dW/dt. We can express the observation that the rate of energy
change is proportional to the remaining energy by writing

MFP 4V
S

-------≅ = d

fR

fR = c
d
--- = Sc

4V
-------

t∆ = d
c
--- = 4V

Sc
-------

t∆ t∆
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, (A.12)

where k is a constant of proportionality that can be determined for particular rooms. The constant k
specifies the steepness of the slope. For example, a highly absorptive room such as an anechoic
chamber would have a relatively large value of k, whereas a room with reflective stone walls would
have a small value because its reverberation decays much more slowly. Equation (A.12) is a
first-order differential equation. The requisite mathematical equipment to solve it is presented in
volume 2, chapter 6.

Let’s assume a trial solution of the form

. (A.13)

If we substitute this definition of the function W back into (A.12), we get (by the power rule) the
general solution

. (A.14)

When we switch off the input power to measure the reverberation time, let’s say the total energy
density in the room is initially W(0) = W0. Also set k = 1/τ, where τ is the time constant of the expo-
nential curve. Then we can write the particular solution as

, (A.15)

which says that the power W in the room is a decaying exponential function of time t with time
constant τ.

The reverberation time TR corresponds to the length of time it takes for the sound to become
inaudible, defined as the time required for the sound to decay by 60 dBSIL, that is, to a millionth
of its original intensity. We want to know the time TR required for energy to drop by a factor of 
in a particular room, that is, we want a solution to the equation

.

Solving for TR, we obtain

, or .

Recall the definition of the average time between reflections ∆t from (A.11). Setting τ = ∆t, we
obtain

.

Using a value of c = 342 m/s for the speed of sound, and combining constants, we have Sabine’s
equation:

td
dW = kW

W t( ) = e k– t

td
dW = kW =

td
d e k– t = ke k– t

W t( ) = W0e t/– τ

10 6–

10 6–
W0 = W0e TR/τ( )–

TR = 106( )log τ TR = 13.8τ

TR = 13.84V
Sc
-------
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. (A.16)

In the literature, the constant ranges from 0.160 to 0.164, depending upon the speed of sound used.
So is this the right constant? Is this the right equation for the job? Given the number of alternative

formulations in the literature over the last hundred years, it would seem that Sabine’s remarkable
achievement is not without flaws. Even if we correct for air absorption, his formula tends to esti-
mate reverberation times that vary widely from actual results. Also, its statistical nature provides
no way to adjust it for environments that are not ideally diffuse.

Another problem is that as average absorption  approaches 1, Sabine’s equation does not pre-
dict that reverberation time goes to 0, even though in an anechoic chamber it effectively does.
Eyring (1933) proposed a reverberation formula in which the absorption coefficient is calculated
according to , so that (A.16) becomes

, (A.17)

which gives a reverberation time of 0 when , and reduces to Sabine’s formula when � 1.
Many other refinements and alternatives are now available. After a century, reverberation time is
still the subject of active research.

A.8 Excerpts from Pope John XXII’s Bull Regarding Church Music

The competent authority of the Fathers has decreed that, in singing the offices of divine praise through which
we express the homage due to God, we must be careful to avoid doing violence to the words, but must sing
with modesty and gravity, melodies of a calm and peaceful character. . . . But certain exponents of a new
school, who think only of the laws of measured time, are composing new melodies of their own creation with
a new system of notes, and these they prefer to the ancient, traditional music. . . . By some, their melodies
are broken up by hocheti or robbed of their virility by discanti, tripla, motectus, with a dangerous element pro-
duced by certain parts sung on texts in the vernacular. . . . The mere number of the notes, in these compositions,
conceal from us the plainchant melody, with its simple, well-regulated rises and falls which indicate the
character of the Mode. These musicians . . . intoxicate the ear without satisfying it, they dramatize the text
with gestures and, instead of promoting devotion, they prevent it by creating a sensuous and innocent
atmosphere. . . . We are prepared to take effective action to prohibit, cast out, and banish such things from the
Church of God. Therefore, . . . We prohibit absolutely, for the future that anyone should do such things, or
others of like nature, during the Divine Office or during the Holy Sacrifice of the Mass. . . . However, We do
not intend to forbid the occasional use . . . of certain consonant intervals superposed upon the simple eccle-
siastical chant, provided these harmonies are in the spirit and character of the melodies themselves, as, for
instance, the consonance of the octave, the fifth, the fourth, and others of this nature; but always on condition
that the melodies themselves remain intact in the pure integrity of their form, and that no innovation take place
against true musical discipline. . . . Made and promulgated at Avignon in the Ninth Year of Our Pontificate
(1324–1325). Corpus juis canonici. (Hayburn 1979)

TR = 0.161V
S
---

α

αE = 1 α–( )ln–

TR = 0.161 V
S 1 α–( )ln–

------------------------------

α = 1 α
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A.9 Greek Alphabet

Besides being the alphabet of a major modern civilization, the Greek alphabet (table A.1) is useful
not only for the study of mathematics but also for students being rushed for fraternities. It may also
come in handy when eating alphabet soup in Greece.

Table A.1 
Greek Alphabet

Alpha

Beta

Gamma

Delta

Epsilon

Zeta

Eta

Theta

Α
Β
Γ
∆
Ε
Ζ
Η
Θ

α
β
γ
δ
ε
ζ
η
θ

Iota

Kappa

Lambda

Mu

Nu

Xi

Omicron

Pi

Ι
Κ
Λ
Μ
Ν
Ξ
Ο
Π

ι
κ
λ
µ
ν
ξ
ο
π

Rho

Sigma

Tau

Upsilon

Phi

Chi

Psi

Omega

Ρ
Σ
Τ
Υ
Φ
Χ
Ψ
Ω

ρ
σ
τ
υ
φ
χ
ψ
ω
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B Appendix

Mathematics is the music of reason.
—James J. Sylvester 

B.1 MUSIMAT

Why did I invent a new programming language when there are so many excellent ones already
available? The problem is that most programming languages are more general-purpose than is
required for the relatively specialized purposes of this material, and a proper introduction to such
a general-purpose language would lead the discussion too far afield. I decided it would be of more
service to readers to specialize the language so that its features would match the examples in this
book as closely as possible. That way, the focus would remain on the subject being coded rather
than on the language being used to code it.

Nevertheless, MUSIMAT is similar to other procedural languages such as C or C++ (see Stroustrup
1991), so if you already know one of these, it should be easy to pick up MUSIMAT. If you don’t
know any programming language, learning one should be easier after you learn MUSIMAT.1

I present everything you’ll need to know about MUSIMAT in the following sections.

B.1.1 Basic Elements

Virtually all programming languages, including MUSIMAT, share the following characteristics:

■ Flow control Specifying the order in which the steps are to be taken.

■ Data types Naming the kinds of objects to be operated on and describing their behaviors. Types
of numbers, such as integer and real are common basic data types.

■ Variables Names of places to hold data of various types.

■ Operators A set of actions that can be performed on data. Operations like “add”, “assign”, and
“select” perform well-defined operations on the data. 
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■ Conditional evaluation Making decisions based on circumstances and taking appropriate
action. 
■ Iteration If an algorithm is to be applied repeatedly to data, for instance, the way Euclid’s
method does, then we need a way to express this.
■ Recursion If a future output depends upon a current or previous output as well as possibly the
current inputs, we say that the relationship is recursive.
■ Data structures It is sometimes necessary to group data into collections, such as sets, lists,
arrays, and matrices. The types of these data structures can be homogeneous (all alike) or heter-
ogeneous (a mixed bag).
■ Named methods When we’ve developed a set of instructions that does something useful, we
want to be able to give it a name, like “Euclid’s method” or “Guido’s method.” Since programming
languages developed out of the mathematics of functions, we use functional notation to represent
the operation of methods.

B.1.2 Statements and Expressions

Most methods read, “Do this, then do that.” Each “do this” step is a statement. Sequences of state-
ments are read left to right, then down the page. The elements of each statement, called expressions,
determine what the statement is about. In many programming languages (including MUSIMAT),
semicolons (;) separate statements.

B.1.3 Data Types

To begin, we need only two types of numbers, Integer, which is a positive or negative whole
number, and Real, which is an approximate real number. To keep things simple, let’s assume for
our purposes that we have virtually unlimited precision for computations. As we go along, I intro-
duce additional data types as needed.

B.1.4 Constants

A constant is any number whose value does not change. The number 3 is a constant Integer. The
number 3.14159 . . . is a constant Real.

MUSIMAT also predefines two constants, True and False, and gives them integer numeric
values of 1 and 0, respectively.

B.1.5 Variables

Variables are named places to store data. Names are indicated by one or more upper- or lower-case
letters, like Q, n, or fred. Alphabetic case is significant, so fred denotes a different variable than
does Fred. Numbers can also be used in variable names (for example, Fred33), but the first letter
of a variable name may not be a number.

Since they physically embody data, variables occupy space and time. Variables flow into
existence when they are defined, and generally hold their value until the end of the program
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unless additional steps are taken to change their value or to restrict their existence to a certain
region of the program.

B.1.6 Reserved Words

For the language to be unambiguous, we must reserve the meaning of certain words and symbols.
Reserved words are distinguished by an initial capital letter and are shown using a special
font. Reserved words include If, While, Do, For, Repeat, Else, Halt, Real, Integer,
Return. Some other symbols are also reserved. These symbols can’t be used for anything but their
designated meaning.

B.1.7 Lists

We can group sets of variables to keep track of their relations. An IntegerList represents a col-
lection of Integer expressions, for example,

IntegerList iL = {1, 1+1, 3, 5–1};

defines a list iL containing the integers 1 through 4.
A RealList represents a collection of Real expressions:

RealList rL = {1.1, 2.2, 3.3, 4.4};

We can obtain the length of a list of any type. For example,

Integer n = Length(rL);

Print(n);

prints 4.

B.1.8 Operators and Operands

The symbols + and – are operators, and the data they act upon are operands. Most operators take
two operands, and the operator lies between the operands, for example, a + b, and c / d. Such
operators are called binary infix, meaning that the operator lies between two operands. In its binary
infix form, the symbol – means subtraction, for example, a – b. The unary prefix – operator
comes before the expression it negates, for example, –3.

Multiplication in mathematics is typically expressed by the concatenation of variables, so for
instance at means the product of variables a and t. But this can be ambiguous, because at could
also refer to the single word “at”. To avoid ambiguity, the infix operator * indicates multiplication,
so the product of m times n is written m * n.

B.1.9 Assignment

We can assign the value of an expression to a variable using the assignment operator =. For example,

lhs = rhs;
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assigns the expression rhs to lhs. The object on the right-hand side of the = sign (i.e., rhs) can
be any expression. The object on the left-hand side (i.e., lhs) must be a variable name, with one
exception. For example, the statement

s = 3 + 5;

sets the value of variable s to 8.
The left-hand side of an assignment can also indicate that a certain element of a list is to receive

the value on the right-hand side. For example,

IntegerList iL = {0, 1, 2, 3};

iL[2] = 10;

replaces the third element with 10, causing the list to become

{0, 1, 10, 3}

Note that lists are indexed starting at 0. So writing

iL[0] = 55;

causes the list to be

{55, 1, 10, 3}

B.1.10 Relations

Relational operators compare numeric values. For example, in the expression x < y, if y  is greater
than x, the value of the expression is True; otherwise the value of the expression is False. Other
relational operations include > for greater than, <= for less than or equal, and >= for greater than
or equal.

Because = has already been given the meaning of assignment, we must choose another way to
express equality, which we do by putting two equals signs together: ==. For example, the expres-
sion x == y is True if x and y have the same value.

Inequality is expressed by !=, so for example, x != y is True if x and y have different values.

B.1.11 Logical Operations

Logical operators compare truth values. For example, the expression x And y is true if and only
if x == True and y == True. The expression x Or y is true if either x == True or
y == True.

B.1.12 Operator Precedence and Associativity

In the expression a * x + b * y, what is the order in which the operations are carried out? By
the standard rules of mathematics, we should first form the products a*x and b*y, then
sum the result. So multiplication has higher precedence than addition. The natural precedence of
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operations can be overridden by the use of parentheses. For example, a * (x + b) * y forces the
summation to occur before the multiplications.

In the expression a + b + c, we first add a to b, then add the result to c, so the associativity
of addition is left to right. We could express left-to-right associativity explicitly like this:
(((a) + b) + c).

The rules of precedence and associativity in programming languages can be complicated, but
the programming examples in this section use the following simplified rules.

Expressions are evaluated from left to right, except

■ Multiplications and divisions are performed before additions and subtractions.
■ All arithmetic operations (+, –, *, /) are performed before logical operations (And, Or,
==, <, >).

■ Parentheses override the above precedence rules.

For details, see section B.3.

B.1.13 Type Promotion and Type Coercion

What if the values in an expression are not of the same type? For example, since both operands in
the expression 2/3 are integers, the quotient will be an integer. The quotient of 4.5/2.25 will
be a real number because both operands are reals. But what is the quotient of 2/2.25? Our options
are to coerce the numerator to be a Real and then perform real division, or coerce the denominator
to be an Integer and then perform integer division. Which shall it be?

Since the set of all reals includes the set of all integers, it makes sense to promote the integer 2
to the corresponding real value 2.0 and then perform real division. MUSIMAT automatically con-
verts 2/2.25 into 2.0/2.25 and then performs real division. In general, integer values are auto-
matically promoted to reals wherever they occur in an expression with reals.

If automatic type promotion is not desired, the type of an expression can be coerced by directly
indicating its type. Consider the expression: 

10/Integer(3.33)

First, the real value 3.33 is truncated to the integer value 3, then because both numerator and
denominator are now integers, integer division is performed. Beware of things being done for you
automatically by computers! You still must pay attention to head off unintended consequences.
Consider:

26/Integer(2.5)

equals 13, but

Integer(26/2.5)

equals 10.
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B.1.14 Accessing List Elements

We can access an element of a list using the index operator []. Suppose we have the following
declarations:

Integer w = 1, x = 2, y = 3, z = 4;

IntegerList iL = {w, x, y, z};

Then the statement

Integer c = iL[0];

assigns c the same value as w (which is 1). The statement

c = iL[3];

assigns c the same value as z (which is 4). 
The first element on a List is indexed by 0, and if a List has N elements, the last one is indexed

by .

B.1.15 Functions

Functional notation in mathematics allows us to encapsulate and name arithmetic expressions. For
example, if we have defined the function f(a, b) = a + b, then f  stands for a + b. The value or values
in parentheses after a function name, called arguments, supply the function with inputs. Functions
also typically return a result. For example, using this definition of f, 7 = f(3, 4). 

Programming languages typically come with a set of predefined functions for the most common
necessities, and they also allow new functions to be created. For example, in MUSIMAT all oper-
ators also have a functional representation, so writing

Real x = Divide(11.0, 4.0);

is the same as writing

Real x = 11.0/4.0;

In this case, x is set to the quotient, 2.75. Real division is performed because both numerator
and denominator are reals. If we want to perform integer division, both numerator and denominator
must be integers. We could write

Integer x = Divide(11, 4);

or equivalently,

Integer x = 11/4;

N 1–
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In either case, x is set to the quotient, 2, and the remainder is discarded. To get the remainder after
integer division we can write

Integer x = Mod( 11, 4 ); // remainder of integer division 

The variable x is set to 3, the remainder of 11/4. For positive integers m and n, Mod(m, n)

lies between 0 and n − 1. Why is this function called Mod instead of, say, Remainder? See appen-
dix A, A.6. The equivalent operator form for remaindering also looks a little strange: 

Integer x = 11 % 4;

The % sign does not have its usual meaning of “percent” in MUSIMAT. Instead, it means “remain-
der of integer division.” Mod and % can only be applied to integer operands.

Some useful built-in functions are not associated with operators. Exponentiation is performed
by the function Pow(). These three statements,

Real base = 10.0;

Real exp = 2.0;

Real x = Pow(base, exp);

are equivalent to writing x = 10.02.0, and the result stored in x is 100.0. Going the other way:
Log10(x) is equivalent to log10 x, and

Real y = Log10(100.0);

sets y to 2.
Another built-in function, Print(), allows us to observe the value of a variable or expression.

When executed, the statements

Real x = 11.0/4.0;

Print(x);

display the value of x, or 2.75. The way in which the value is displayed varies with the type of the
expression and the type of computer. If the computer is a person, for example, he or she might say “two
point seven five.” If it is an electromechanical computer, it might show the value on a display screen.2

When the predefined function Halt() is executed, the method in progress stops at that step in
the program. The argument to Halt(), if any, can be used to indicate the answer or result obtained
by the program up to that point.

One final built-in function is Random(), which returns a real number in the range of 0.0 to 1.0
chosen at random.

B.1.16 Conditional Statements

A mathematical notation for determining the sign of a number is

y
x 0,< a

x 0,≥ b



=
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which sets y to a if x is negative; otherwise it sets y to b. Such relational expressions are called 
predicates. MUSIMAT accomplishes the same thing like this:

If (x < 0) 

y = a;

Else 

y = b;

In this example, y receives the value of a if x is less than 0; otherwise y receives the value of b.
The Else part of this construction is optional. So for example,

If (a < b)

Print(a);

prints a only if it is less than b. If and Else can be combined to allow chains of predicates:

If (x < 0) // is x negative?

y = a;

Else If (x == 0) // it’s not negative, but is it zero?

y = b;

Else // neither negative nor zero, x must be positive

y = c;

B.1.17 Compound Statements

Suppose we need to do more than one thing depending on the value of a predicate. If we need to execute
multiple statements that depend upon a common predicate, we can group them together into a list of
statements. For example, {m = n; n = r;} is a list of statements, also called a compound state-
ment. Consider steps 2 and 3 of Euclid’s method (see section 9.2.2), which can be expressed

If (r==0)

Halt(n);

Else {

m = n;

n = r;

}

If r is not equal to 0, first m is assigned the value of n, and then n is assigned the value of r. We
express this in MUSIMAT by making these two steps into a compound statement.

Any legal statement can appear within a compound statement, including other compound state-
ments. This means we can nest compound statements inside each other.

B.1.18 Iteration

We must be able to repeat a statement or statements multiple times. For example, Euclid’s method
returns to step 1 from step 3, depending upon the value of variable r (see section 9.2.2). In
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MUSIMAT, the Repeat statement causes a statement or compound statement to repeat intermina-
bly. This allows us to implement Euclid’s method as follows:

Repeat{ 

r = Mod(m, n); //remainder of m divided by n

If (r == 0) {

Halt(n); // halt, and give answer n

} Else {

m = n;

n = r; 

} 

}

This code shows an example of nested compound statement lists. The bare syntax of this example is

Repeat {... If (...) {...} Else {...}}

and the compound statements following If and Else are nested inside the compound statement
following Repeat. We can nest compound statements as deeply as we desire.

Since it never stops by itself, the only way to terminate a Repeat statement is with a Halt state-
ment.3 It’s a crude but effective technique; however, there are more elegant ways to decide how
many times to repeat a block of statements. The Do-While statement allows us to specify a ter-
mination condition that is evaluated after the body has been executed. Here is an example that
prints the random value assigned to x and repeats for as long as x is less than 0.9.

Real x;

Do {

x = Random(); // choose a random value between 0.0 and 1.0

Print(x);

} While (x < 0.9);

Because Random() returns a uniform random value in the range 0.0 to 1.0, its value will be less
than 0.9 on average 90 percent of the time. It is possible, though unlikely, that this statement would
print its value only once, and it is also possible that it could print dozens, even hundreds, of times before
halting, depending upon the particular sequence of random numbers returned by Random().

The For statement also implements a way of repeating a statement or compound statement a
number of times, but it allows us to directly manage the value of one or more variables each time
the statements are executed and to use them to determine when to stop. This example prints the
integers between 0 and 9: 

Integer i;

For (i = 0; i < 10; i = i + 1)

Print(i);
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The variable i is called the control variable. The example first sets i to 0, then tests if i < 10.
Since 0 < 10, the Print() statement is executed. Next, the For statement executes the state-
ment i = i + 1, which adds 1 to the value of i. So now i equals 1. Again, the For loop tests
if i < 10, and since 1 < 10, it executes Print() again. It again adds 1 to the value of i. So now
i equals 2. This process continues until i == 10, whereupon the For loop terminates because
then i < 10 is False.

The For statement is a little twisty, so let’s take a more careful look at its operation. In general,
we can name the parts of the For statement as follows:

For (initialization; test; change)

statement

where statement can be a single statement (terminated by a semicolon) or a compound statement
(enclosed with curly braces). The For statement first executes the initialization code, then
evaluates the boolean expression test. If the value of test is False, the For statement terminates.
If the value of test is True, the statement is executed, then the change expression is executed,
and finally the test is evaluated again. If the value of test is False, the For statement terminates.
If the value of test is True, the cycle repeats again and again until the value of test is False.

As a convenience, it is possible to define and set the value of the initialization variable
in one step, so the preceding example could have been written

For (Integer i = 0; i < 10; i = i + 1)

Print(i);

B.1.19 User-Defined Functions

MUSIMAT, like most programming languages, allows users to define their own functions. Take
Euclid’s method, for example. To define it, we must state how the input variables m and n receive
their inputs, and determine what happens to the result when the method halts. We can define a func-
tion named euclid() in MUSIMAT as follows:

Integer euclid (Integer m, Integer n){

Repeat { 

Integer r = Mod(m, n); 

If (r == 0)  

Return(n);

Else  { 

m = n; 

n = r; 

}

}

}

The function is declared to be of type Integer because it will return an Integer result. 
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Note that Return(n) has been substituted for the Halt(n) function shown previously. Instead
of halting execution altogether, the Return(n) statement only exits the current function, carrying
with it the value of its argument back to the context that invoked it. The program can then continue
executing from there, if there are statements following its invocation. Here’s an example of invok-
ing the euclid() function:

Integer x = euclid(91, 416);

Print(x);

which will print 13. If we had used Halt() in euclid(), we’d never reach the Print statement
because the computer would stop.

Here’s another way to compute the same thing:

Print(euclid(91, 416));

This way we can eliminate the “middleman” variable x, which only existed to carry the value from
the euclid() function to the Print() function. In this example, the call to the euclid() func-
tion is nested within the Print() function. MUSIMAT invokes the nested function first, and the
value that euclid() returns is supplied automatically as an argument to the enclosing function,
Print(). Functions can be nested to an arbitrary extent. The most deeply nested function is
always called first.

B.1.20 Invoking Functions

We had two situations where the function euclid() was followed by a list of arguments, once
where it was defined, and another where it was invoked. The arguments associated with the def-
inition of euclid() are called its formal arguments. They are Integer m and Integer n.
The values associated with its invocation (integers 91 and 416) are called its actual arguments.
A function will have only one set of formal arguments that appear where the function is defined.
It will have as many sets of actual arguments as there are invocations of the function in a program.

When a function is invoked, three things happen:

1. The values of the actual arguments are copied to the corresponding formal arguments.

If an actual argument is a constant, its value is simply copied to the corresponding formal argument.
Example: Print(3) copies 3 to the formal argument for Print().

If an actual argument is a variable, its value is copied to the corresponding formal argument. Example:
Integer a = 3; Print(a) copies the value of a (which is 3) to the formal argument for
Print().

If an actual argument is another function, that function is evaluated first, and its return value
replaces the function. Example: For the statement Print(euclid(91, 416)), first
euclid(91, 416) is evaluated, and the result (which is 13) is substituted in its place. So the
statement becomes Print(13). Finally, the 13 is copied to the corresponding formal argument
of the Print() function.
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2. The body of the function is executed using the values copied to the formal arguments in the
first step.

3. The return value of the function is substituted for the function call in the enclosing program. 

B.1.21 Scope of Variables

A function’s formal arguments are said to have local scope because they flow into existence when
the function begins to execute and cease to exist when the function is finished. It is also possible
to declare other variables within the body of a function. For example, this function defines a local
variable named sum:

Integer add(Integer a, Integer b) {//return the sum of a plus b

Integer sum = a + b;

Return(sum);

}

Like the formal arguments a and b, the scope of sum is local to the function add(). They disappear
when the function exits. The only thing that persists is the expression in the Return statement,
which is passed back to the caller of the function.

Local variables can also be declared within compound statements. For example,

If (x > 10 And y < 10){

Integer sum = x + y;

Print(sum);

}

These variables disappear when the compound statement is exited.
Variables declared outside the scope of any function are called global variables. They are acces-

sible from the point they are declared until the end of the program. They are said to have global
scope.

B.1.22 Pass by Value vs. Pass by Reference

Global variables can be accessed directly within functions. For example, this function returns the
difference of global variables x and y.

Integer x = 2; // x is a global variable

Integer y = 3; // y is a global variable

Integer subxy() {Return (x – y);}

Referencing global variables directly inside a function is not a recommended practice because
it ties the function to particular individual variables, limiting its usefulness.

The reason people are tempted to reference global variables directly inside functions is that ordi-
narily all that returns from a function is the expression in its Return() statement. Sometimes, it’s
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nice to allow a function to have additional side effects. That way functions can affect more than
one thing at a time in the program. But there’s a better way to accomplish side effects: we can use
arguments to pass in a reference to a variable from outside.

As described in the preceding section, ordinarily only the value is copied from an actual argu-
ment to its corresponding formal argument. But declaring a formal argument to be of type
Reference causes MUSIMAT to let the function directly manipulate a variable supplied as an
actual argument. The function doesn’t get the value of the variable, it gets the variable itself. When
a function changes a Reference formal argument, it changes the variable supplied as the actual
argument.

We can use Reference arguments to allow functions to have multiple effects on the variables
in a program. For example, let’s declare a function that takes two Reference arguments and adds
10 to each of their values.

add10(Reference a; Reference b){

a = a + 10;

b = b + 10;

}

Now let’s declare two global variables with initial values: 

Integer x = 2;

Integer y = 3;

Now let’s use them as actual arguments to the function and then print their values:

add10(x, y);

Print(x);

Print(y);

This prints 12 and 13 because the function changed the values of both global variables. This is a
very handy trick.

Here are the rules to remember:

■ An ordinary (non-Reference) formal argument provides its function with a copy of its actual
argument. Changing the value of an ordinary (non-Reference) formal argument inside the func-
tion does not change anything outside the function, that is, such arguments have local scope. The
actual arguments are said to be passed by value to the formal arguments. 
■ A Reference formal argument provides its function with direct access to the variable named
as its actual argument. The actual argument must be a variable. Modifying the value of a
Reference argument inside a function changes the referenced variable outside the function.
Thus, the scope of a Reference formal argument is the same as the scope of its actual argument.
The actual arguments are said to be passed by reference to formal arguments when they are
declared to be of type Reference.

loy79076_appB.fm  Page 433  Wednesday, April 26, 2006  5:05 PM



434 Appendix B

B.1.23 Type Conversion

We can explicitly convert Integer expressions to Real, and vice versa. For example:

Real a = 10.0/3.0;

Print(a);

prints 3.333 . . . , and

Integer b = Integer(a); // convert a to Integer

Print(b);

prints 3.
When assigning a to b, the Real value a is converted to an Integer by truncating (discarding)

the fractional part of a (that is, by discarding 0.333…), and the integer residue (3) is assigned to
b. If we then write

Real c = Real(b); 

the integer value of b (which is 3) is converted to the equivalent Real value (3.0), which is stored
in Real variable c.

Converting from Real to Integer, we have some choices. For example, if

Real a = 10.0/3.0; // Real variable a is set to 3.333 . . .

then

Real d = Floor(a); // d is set to 3.0

sets d to 3.0. The built-in Floor() function returns the largest integer less than its Real argu-
ment. The statement

Real x = Ceiling(a);

sets x to 4 because the built-in Ceiling() function returns the smallest integer greater than its
argument.

We can round a Real to the nearest whole number as follows:

Real r = Floor(a + 0.5); // round c to the nearest whole number

If a = 2.4, then Floor(a + 0.5) returns 2.0. But if a = 2.5, Floor(a + 0.5) returns
3.0. Floor(a + 0.5) returns 2.0 for any value a in the range 2.0 to 2.499... and returns
3.0 for any value a in the range 2.5 to 2.999.... But we don’t have to do rounding ourselves,
MUSIMAT has a built-in function:

Print(Round(2.49999)); // prints 2.0
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B.1.24 Recursion

Recursion means referring back to a value we’ve calculated previously. Consider the factorial oper-
ation where 5! means 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1. We could use a For statement to calculate factorials. This
function calculates factorials using iteration:

Integer factorial(Integer x){

Integer n = 1;

For (Integer i = x; i > 1; i = i – 1)

n = n * i;

Return(n);

}

The statement

Print(factorial(5));

prints 120.
We start with n = 1 and i = 5. The For loop takes the previous value of n, multiplies it by the
current value of i and reassigns the value to n. It then decrements i and performs the operation
repeatedly so long as i > 1.

B.1.25 Recursive Factorial

Here is a more direct approach to computing factorials using recursion. Since , we
can write

Integer factorial(Integer x){

If (x == 1) 

Return(1);

Else 

Return(x * factorial(x – 1));

}

This method has two states. If x == 1, we return 1 since 1! is equal to 1. Otherwise, we return
x multiplied by the factorial of x – 1. Consider the statement

Print(factorial(5));

When the factorial function is called, x is assigned the value 5. Because 5 is not equal to 1, the fac-
torial function evaluates the Else statement and calls factorial(4). Because 4 is not equal
to 1, the factorial function evaluates the Else statement and calls factorial(3), and so on.
Eventually, we reach factorial(1), which returns 1, which is multiplied by 2, then by 3, then
by 4, and finally by 5. The top-level factorial() function returns the product, 120, to the
Print() routine.

x! = x . x 1–( )!

loy79076_appB.fm  Page 435  Wednesday, April 26, 2006  5:05 PM



436 Appendix B

B.1.26 Fibonacci Numbers

In the sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 377, 610, 987, 1597, 2584, . . .

each subsequent term is the sum of its two immediately preceding values. For example, 8 = 5 + 3.
This series, invented by Leonardo Pisano Fibonacci (1170–1250), is the solution to a problem he
posed in his book Liber Abaci: “A certain man put a pair of rabbits in a place surrounded on all sides
by a wall. How many pairs of rabbits can be produced from that pair in a year if it is supposed that
every month each pair begets a new pair which from the second month on becomes productive?”

Here is an iterative method of computing the Fibonacci sequence:

Integer iterFib(Integer n) {

Integer fn1 = 1;

Integer fn2 = 1;

Integer result = 1;

For (Integer i = 2; i < n; i = i + 1) {

result = fn1 + fn2;

fn2 = fn1;

fn1 = result;

}

Return (result);

}

Executing this For loop,

For (Integer i = 1; i < 10; i++)

Print(iterFib(i));

prints the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34. Here is a method that accomplishes the same
calculation using recursion:

Integer recurFib(Integer n) {

If (n == 1 Or n == 2)

Return(1);

Else

Return (recurFib(n – 1) + recurFib(n – 2));

}

The recursive technique has crisper expressive power than the iterative approach because we see
the inner structure of the sequence directly in the method of its construction. However, it is com-
putationally much more expensive, especially for large n, because we must call the recurFib()
method twice at each step, whereas iterFib() performs only one addition and minor data
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shuffling at each step. Here is an example where Knuth’s “goodness” criterion depends upon con-
text. If efficiency is paramount, the iterative approach is preferred; recursion is preferable if expres-
sive crispness is most important.

The Fibonacci sequence becomes relevant musically when we examine the ratios of subsequent
terms:

The corresponding sequence of quotients is

1, 200, 1.500, 1.670, 1.600, 1.625, 1.619, 1.617, 1.618, . . .

Thus we see that the ratio of adjacent Fibonacci numbers converges rapidly to the value of the
golden mean, . The Greek letter phi, , is commonly used to stand for the golden
mean. This number appears in a wide range of natural designs, including the arrangements of petals
in flowers, seed clusters, and pine cones. Studied at least since Euclid wrote his Elements, the
golden mean has appeared consciously and unconsciously as a central design element in countless
musical works (see section 9.16.1).

B.1.27 Other Built-in Functions

MUSIMAT includes standard mathematical functions such as Sqrt(x) = . There are trigono-
metric functions such as Sin(x), Cos(x), and Tan(x). Arguments to trigonometric functions
are in real radian values. Speaking of radian measure, here’s an interesting way to compute  to
the machine precision of your computer:

Constant Real Pi = Atan(1.0) * 4.0; // arctangent of 1 times 4 equals Pi

The function Abs(x) returns the absolute value of its argument. It works for either Real or
Integer expressions. For instance, both of the following statements will print True:

If (Abs(–5) == Abs(5)) Print(True); Else Print(False); // Integer Abs( )

If (Abs(–5.0) == Abs(5.0)) Print(True); Else Print(False); // Real Abs( )

With no arguments, the built-in function Random() returns a random value between 0.0 and 1.0,
but if Random() is given arguments specifying Real lower and upper bounds, it returns a Real
random value between those boundaries. For example,

Real x = Random(0.0, 11.0);

returns a random Real value in the range . Note the range is from 0.0 to almost 11.0.
If Random() is given arguments specifying Integer lower and upper bounds, it returns an

Integer random value between those boundaries. For example,

Integer x = Random(0, 11);

1
1
---, 2

1
---, 3

2
---, 5

3
---, 8

5
---, 13

8
------, . . .

Φ = 1.618. . . Φ

x

π

0.0 x < 11.0≤
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returns a random Integer value in the range . Note the range is inclusive from 0 to 11.

B.1.28 Comments

It is always helpful to readers if programmers insert comments into their programs. In MUSIMAT,
any text beginning with two slashes // out to the end of the line is commentary. For example:

x = a + b; // this text is commentary

Sometimes it’s useful to be able to put a comment anywhere, even in the middle of an expression.
All commentary between /* and */ is ignored.

x = y /* this commentary is ignored by MUSIMAT */ + z;

When the expression is evaluated, all commentary is ignored, so the resulting expression is x =

y + z;. Commentary between /* and */ can extend over multiple lines of text, as necessary.

B.1.29 Representing Text

In order to print text, we use a data type called Character, which consists of the letters of the Roman
alphabet, digits from 0 to 9, and some nonprinting characters like tab, white space, and punctuation.
Characters are written in single quotes: 'a', 'B', 'c', and so on. Punctuation marks include ' '
(blank), ',' (comma), ';' (semicolon), and '.' (period). We can spell words and sentences by
making lists of characters, for example {'G', 'u', 'i', 'd', 'o'}, but this would be exces-
sively tedious. A shortcut for lists of characters is another data type called String. For example,

String c = "Ut queant laxis resonare";

This string is equivalent to, and much simpler than, assembling a list of characters.
Computers operate with binary numbers, not alphabetic letters. So we must associate each char-

acter we want to display with a unique binary number. The computer operates only on the binary
numeric values; the display screen connected to the computer knows how to convert binary
numeric values to the corresponding characters for display.

We need a table listing the association between particular binary values and the corresponding
printed characters. This table is called a character set. When a key is pressed on a computer key-
board, the keyboard looks up the corresponding binary number in the character set and sends it
to the computer. The computer forwards the number to the display screen, which also uses
the character set to determine which character to display. Only the keyboard and the screen use the
character set; the computer just stores the corresponding binary numbers.

International standard ISO-10646 defines a Universal Character Set, commonly called Unicode.
To keep things simple, MUSIMAT uses a common subset of Unicode called ASCII (see section B.2).
The built-in Character() function takes an ASCII character code as its argument and returns the
corresponding printable Character.

Print(Character(65));

0 x ≤ 11≤
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prints the character 'A'. The Integer() function can take a printable Character as its argu-
ment and return the corresponding ASCII character code. For example:

Print(Integer('A'));

prints 65.

B.2 Music Datatypes in MUSIMAT

This section describes the design of music data types available in MUSIMAT for representing pitch,
rhythm, duration, frequency, and loudness.

B.2.1 Pitch

We would ideally like to have a uniform way to represent all pitch systems discussed in chapter 3.
It would be convenient if we could do arithmetic on pitches, for example, to find the size of an
interval by subtracting two pitches, to calculate the frequency of a pitch, or to get the pitch of
a frequency.

Solving the simplest problem first, I designed a data type for the equal-tempered scale using the
piano keyboard. This can be generalized to other scales. The gamut of a standard piano keyboard
is 88 keys, indexed from 0 to 87, lowest to highest. We start by associating each key number with
a name. The lowest pitch on standard pianos is A0, corresponding to key 0, and the highest pitch
is C8, corresponding to key 87. Interval size in degrees is the difference between key indexes. For
example, C4 is key 48 and F4 is key 53, so the interval C4 – F4 corresponds to five semitones, which
is the diatonic interval of a fourth.

MUSIMAT comes with a built-in data type called Pitch. By default, it assumes 12 degrees per
octave, but the degrees can correspond to any frequencies, so for example, it can be used directly
to create any dodecaphonic scale. It also can be adjusted to handle scales with other than 12 degrees
per octave.

By default, the Pitch data type emulates common musical notation conventions regarding scale
degrees, interval sizes, and transposition. For example, the pitch As4 (pitch class A# in the fourth
piano octave) is defined as

Pitch As4 = Pitch(9,1,4);

The first number, 9, represents the diatonic degree as the number of semitones above C.
Diatonic pitch A is the ninth semitone above C (see figure B.1). The second number, 1, indicates
the accidental. In this case, the A is sharped (raised by a semitone). The chromatic scale
degree is obtained by adding the diatonic scale degree, 9, and the accidental, 1, which for A#
yields 10 (see figure B.1). The third number, 4, indicates the octave on the standard piano
keyboard.
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The chromatic degrees from A0 to C8 are predefined in MUSIMAT in both flats and sharps. Since
As4 and Bb4 represent the same chromatic degree, the statement

Print(Bb4 == As4);

prints True. In general, Pitch is defined by the triple (pitch-class, accidental, octave), where
pitch-class is an integer from 0 to N, and N is the number of degrees in an octave.

In defining the pitch A#4, the triple (9, 1, 4) is assigned to the variable As4. Variable As4
contains these three values as one compound entity. This compound value can be passed from one
Pitch variable to the next. For example, the statements

Pitch x = As4; // assign As4 to x

Print(x==As4);

print True. Arithmetic can be performed on pitches to sharp or flat them. For example,
Print(A4 + 1) prints As4, and Print(A4 – 3) prints Gb4. Similarly, Print(A4 * 3)

prints C12, and Print(A4/3) prints E1.
Each element of a Pitch can be accessed using these built-in functions:

PitchClass(Pitch p) Returns the diatonic pitch class. For example, if p is As4, 9
is returned (see figure B.1).

Accidental(Pitch p) Returns the accidental as an integer, where 0 is natural,
negative values are increasingly flat, and positive values are
increasingly sharp. For example, if p is As4, 1 is returned.

Octave(Pitch p) Returns the octave on the piano keyboard. For example, if
p is As4, 4 is returned.

These elements can be used to determine the piano key index corresponding to a particular pitch:

Integer key(Pitch p) {

Integer pc = PitchClass(p); // from 0 .. 11

Integer acc = Accidental(p); // –1=flat, 0=natural, 1=sharp

Integer oct = Octave(p); // from 0 .. 8

Return((pc + acc) + 12 * (oct – 1) + 3);// combine

}

Figure B.1
Diatonic degrees expressed as chromatic pitch classes.
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A way to think about the expression in the Return() statement is as follows. Say we want to find
the piano key index for A0. We know it’s the bottom note on the piano, so it should return an index
value of 0. The triple of A0 is (9, 0, 0). The expression in the Return() statement equals 0 for
this triple. Similarly, the triple of A4 is (9, 0, 4), and its corresponding key index is 48.

Equal-Tempered Frequency Pitch provides a representation of scale degrees and does not
denote frequency. We can convert to frequency using any scale system we like, beginning with the
equal-tempered scale. We can compute the equal-tempered frequency of a Pitch, assuming a
reference such as A4 equals 440 Hz, by adapting equation (3.3), fk,v = fR ⋅ 2v + k /12, to compute
hertz values from chromatic scale degrees:

Real pitchToHz(Pitch p){

Real R = 440.0; // reference frequency

Real key = PitchClass(p) + Accidental(p); // get key index

Real oct = Octave(p); // get octave

Return(R * Pow(2.0, (oct – 4) + (key – 9) / 12.0));

// return frequency

}

A way to think about the expression in the Return() statement is as follows. The reference
pitch is 440 Hz, corresponding to A4. So we want the value returned from this function to equal
440.0 when p is A4. The triple for A4 is (9, 0, 4), so when pitchToHz() is called with A4,
we want to evaluate , which can be achieved by subtracting 9 from the pitch and 4 from the
octave. Then, executing

Print(pitchToHz(A4));

prints 440.0, and substituting any other pitch, regardless of how it is spelled, will produce its
proper hertz value. For example, A0 is 27.5 Hz, C4 is 261.63 Hz, and C8 is 4186.01 Hz.

What if we have a frequency x in hertz and want to find its corresponding pitch? The problem
is that x may lie in between the pitches of the scale because x can be any frequency. One approach
is to compare x to each semitone on the keyboard from lowest frequency to highest, and to stop
when the keyboard frequency exceeds x. Then the key one semitone below is the closest corre-
sponding pitch on the keyboard.

Pitch hzToPitch(Real x) { // find pitch closest to x Hz

For(Integer k = 9+1; k < 88+9; k = k + 1) {// test from As0 to C8

Pitch p = Pitch(k); // get pitch of k

Real f = pitchToHz(p); // get frequency of p

if (f > x) // have we passed our target?

Return(p – 1); // return previous pitch

}

fR
. 20
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// If we get here, the Hz value of x is beyond the end of the keyboard

Return(C8); // out of range, clip at C8

}

This code returns A0 if x is lower than or equal to A0, and it returns C8 if x is greater than or equal
to C8.

Lists of Pitches We can collect pitches into lists:

PitchList shave(C5, G4, G4, Ab4, G4, B4, C5); // shave and a haircut, 2 bits

We can do arithmetic on all the pitches in a list. To transpose this pitch list up a whole step,

Print( shave = shave + 2 );

adds two degrees to every pitch in shave, and prints {D5, A4, A4, As4, A4, Cs5, D5}.
To transpose by an octave,

Print( shave = shave * 2 );

multiplies every pitch in the list by 2 and prints {D6, A5, A5, As5, A5, Cs6, D6}.

Pythagorean Chromatic Scale We can compute the frequency of a Pitch in Pythagorean
chromatic tuning, assuming a reference such as A4 equals 440 Hz. We start by computing the fre-
quency of Pythagorean middle C from the reference frequency, using equation (3.11). We define
the reference frequencies in MUSIMAT as follows:

Real R = 440.0;

Real cPi4 = R * 16.0/27.0; // Pythagorean middle C, 260.74 Hz

Next, referring to figure 3.7, we tabulate the ratios of the Pythagorean chromatic scale in
MUSIMAT using a RealList:

RealList pythagoreanChromatic( 

1.0/1.0, 256.0/243.0, 9.0/8.0, 32.0/27.0,

81.0/64.0, 4.0/3.0, 1024.0/729.0, 3.0/2.0,

128.0/81.0, 27.0/16.0, 16.0/9.0, 243.0/128.0

);

Last, we define a variation of the pitchToHz() function. This version has the same name but
takes three arguments instead of one.4 When supplied with a certain Pitch p, it returns the fre-
quency corresponding to its Pythagorean intonation as a Real value in hertz.

Real pitchToHz( 

   Pitch p, // pitch

   Real refC, // reference frequency
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   RealList scale // ratios of scale degrees

) {

Integer key = PitchClass(p) + Accidental(p); // get key from pitch

Real oct = Octave(p); // get octave from pitch

Return(refC * scale[key] * Pow(2.0, (oct – 4)));// compute frequency

}

The Return() statement calculates the frequency of the key from the reference frequency
times the ratio for that degree, then adjusts it for the proper octave. Calling

Print("A4=",  PitchToHz(A4 , cPi4, pythagoreanChromatic));

prints A4=440.0, and

Print("C4=",  PitchToHz(C4 , cPi4, pyhagoreanChromatic));

prints C4=260.74, as expected.

Natural Chromatic Scale To create the natural chromatic scale, all we need now is to establish
the frequency reference for natural chromatic middle C and tabulate the ratios of the scale.

Real R = 440.0;

Real cNat4 = R * 3.0/5.0; //264.00 Hz

RealList naturalChromatic(

1.0/1.0, 16.0/15.0, 9.0/8.0, 6.0/5.0,

5.0/4.0, 4.0/3.0, 64.0/45.0, 3.0/2.0,

8.0/5.0, 5.0/3.0, 16.0/9.0, 15.0/8.0

);

Then

Print("A4=",  PitchToHz(A4 , cNat4, naturalChromatic));

prints A4=440.0, and

Print("C4=",  PitchToHz(C4 , cNat4, naturalChromatic));

prints C4=264.00.

Sruti Scale As a final example, we adapt Pitch to handle nondodecaphonic scales by demon-
strating the sruti scale (see figure 3.25). There are 22 degrees in this scale. We start by defining the
ratios of the sruti scale:

RealList srutiScale(

1.0/1.0, 256.0/243.0, 16.0/15.0, 10.0/9.0, 9.0/8.0, 32.0/27.0, 6.0/5.0, 

5.0/4.0, 81.0/64.0, 4.0/3.0, 27.0/20.0,45.0/32.0, 729.0/512.0, 

loy79076_appB.fm  Page 443  Wednesday, April 26, 2006  5:05 PM



444 Appendix B

3.0/2.0, 128.0/81.0, 8.0/5.0, 5.0/3.0, 27.0/16.0, 16.0/9.0, 9.0/5.0, 

15.0/8.0, 243.0/128.0

);

We want to preserve the reference A440 Hz and use it to find the frequency of the lowest degree
of the scale, as we’ve done for Pythagorean and natural scales. But which of the 22 degrees should
correspond to A440? The sruti scale contains both the Pythagorean major sixth (27/16) and the
natural major sixth (5/3). Let’s choose the simpler 5/3 ratio at degree 17 to correspond to A440.
Then the lowest degree of the sruti scale has the same frequency as the natural chromatic middle
C, 264.0 Hz.

Real R = 440.0;

Real srutiRef = R * 3.0/5.0; // 264.00 Hz

Next, we must inform Pitch of how many degrees there are per octave, which we can do by
finding the length of the list of ratios:

SetDegrees(Length(srutiScale)); // set number of degrees in scale

The built-in SetDegrees( ) function adjusts the internal calculations of Pitch to the spec-
ified number of degrees in the scale. To keep things simple, the degrees of the sruti scale are indi-
cated only by their degree numbers, rather than by trying to extend the Western pitch-naming
system. Then the frequencies of particular sruti degrees are computed as follows:

For (Integer i = 0; i < Length(srutiScale); i = i + 1) {

Pitch x( i, 0, 4 ); // pitch, accidental, octave

Real f = pitchToHz(x, srutiRef, sruti);

Print(f);

}

which prints the frequencies of the sruti scale from middle C as follows: 

Other scales, such as Partch’s scale and the quarter-tone scale, can be constructed in the same
manner. The Bohlen-Pierce scale can also be constructed this way because the SetDegrees()
function only specifies the number of degrees in the scale and makes no assumptions about octave
equivalence. 

1 2 3 4 5 6 7 8 9 10 11

264.00 278.12 281.60 293.33 297.00 312.89 316.80 330.00 334.13 352.00 356.40

12 13 14 15 16 17 18 19 20 21 22

371.25 375.89 396.00 417.19 422.40 440.00 445.50 469.33 475.20 495.00 501.19
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B.2.2 Rhythm

Duration in common music notation is expressed as a fraction of a whole note. For example a whole
note equals four quarter notes:

w = q + q + q +q
We could write this mathematically as follows:

,

which suggests using rational fractions to represent rhythmic durations. A rational fraction is a
ratio of integers. MUSIMAT comes with a built-in data type called Rhythm, which emulates com-
mon musical notation conventions regarding rhythm. For example, the quarter note is defined as

Rhythm Q = Rhythm( 1, 4 );

The first number is the numerator of the rational fraction, the second is the denominator. Note that
we can’t write Rhythm(1/4) because the integer quotient of 1/4 is 0 with a remainder of 1; integer
division is performed if both the numerator and denominator are integers, which won’t work here.
Specifying the numerator and denominator separately avoids this problem and has some other
numerical advantages as well. Executing Print(Q); prints (1, 4). Internally, Rhythm()
keeps the integer numerator and denominator values separately.

Rhythmic duration can also be given as a real expression. Print(Rhythm(0.5)); prints
(1, 2). How does Rhythm() convert this real expression into a ratio of integers? It does so by
calling the following function internally:

realToRational(Real f, Integer Reference num, Integer Reference den) {

Constant Integer iterations = 3000000;

Constant Real limit = 0.000000000001;

num = den = 1; // start off with ratio of 1/1

For (Integer i = 0; i < iterations; i = i + 1) {

If (RealAbs( Real(num) / Real(den) – f ) < limit)

Return; // we have reached the limit

Else {

Real x = RealAbs(Real(num+1) / Real(den) – f); 

Real y = RealAbs(Real(num) / Real(den+1) – f);

If (x < y)

num = num + 1;

Else

den = den + 1;

1
1
--- 1

4
--- 1

4
--- 1

4
--- 1

4
---+ + +=
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}

}

Return; // if we get here, we've not converged on the limit

} // RealAbs() is just a version of Abs() that uses Real arithmetic 

Function realToRational() takes a Real value f and attempts to find a rational fraction
num/den that is as close as possible to it. It starts by setting num = den = 1 and asking whether
num/den is already close enough to f. If so, it returns. Otherwise, it asks whether (num+1) / den
is closer than num / (den+1). If so, it increments num; otherwise it increments den and repeats the
process. Because num and den are Reference arguments, any changes to these variables within
realToRational() are reflected in the value of the actual arguments supplied to it.

This method can be used to find rational approximations to most any real value. For example,

Real Pi = 3.14159265;

Print(Rhythm(Pi));

prints (1953857, 621932). Note that 1953857/621932 = 3.14159265, which is
pretty close to the value of π. This method is limited by the precision of the computer hardware.
The precision of a rational approximation depends upon the value of the built-in variables
iterations and limit. For example, with the values shown in the preceding code, it took
realToRational() 2,575,787 trials to come up with its best approximation of π, requiring
about 1 second on my computer. The iteration and limit parameters can be set to whatever
values produce the optimal performance/accuracy cost/benefit ratio. Barring obscure rhythms
(nothing, say, beyond triplet eights), iterations = 240 and limit = 1.0/480 should be
satisfactory.

Although the details go beyond the scope of this book,5 here is a sketch of how Rhythm() uses
realToRational():

Rhythm(Real x) {

Integer num, den; // internal parameters for Rhythm

realToRational( x, num, den ); // convert x to num / den rational fraction

// . . .

}

When called with a Real argument, Rhythm() calls realToRational() to set its internal integer
rational fraction values.

MUSIMAT provides built-in definitions for standard binary divisions of a whole note:

Constant Rhythm W = Rhythm(1.0/1.0);

Constant Rhythm H = Rhythm(1.0/2.0);

Constant Rhythm Q = Rhythm(1.0/4.0);

Constant Rhythm E = Rhythm(1.0/8.0);

Constant Rhythm S = Rhythm(1.0/16.0);
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It is easy to define ternary divisions as well. For example, a triplet eighth is Rhythm(1.0/12.0)
because there are  triplet eighths per whole note. By the same reasoning, a quintuplet
eighth is Rhythm(1.0/20.0).

We can express compound rhythms by addition. For example, a dotted half note is

Real Hd = Rhythm(1.0/2.0 + 1.0/4.0); // dotted half

Equivalently,

Real Hd = Rhythm(3.0 / 4.0); // also a dotted half

We can also do arithmetic directly with rhythms. For example, Print(E+S) prints (3, 16).
Also, Print(W – S) prints (15,16), Print(Q * S) prints (1,64), and Print(Q / S)

prints (4,1). The last value corresponds to a duration of four whole notes.
We can extract the numerator and denominator from Rhythm():

Integer num, den;

Rhythm(E+S, num, den); // assigns rational fraction for E+S to num and den

Used this way, Rhythm() calculates the rational fraction of its first argument and sets num and den
by reference to the result. For the preceding example, num is set to 3 and den is set to 16. We
can leverage this capability to obtain the duration of a rhythm as a real number:

Real realRhythm(Rhythm x) {

Integer num, den;

Rhythm(x, num, den); // find rational fraction for x and set num and den

Return(Real(num)/Real(den)); // convert num and den to reals and divide

}

Then, for example, executing Print(realRhythm(E + S)); prints 0.1875.
As with pitches, we can make lists of rhythms.

RhythmList R = {Q, E, E, E, S, S, Q};

Print(R);

prints {(1,4), (1,8), (1,8), (1,8), (1,16), (1,16), (1,4)}.

B.2.3 Tempo

In common music notation, tempo is expressed using Mälzel’s metronome markings (see sec-
tion 2.6.2). For example, q = 60MM indicates that the beat or pulse of the music is associated
with quarter notes and that there are 60 beats per minute. Thus at q = 60MM each quarter note
lasts 1 second, and at q = 120MM each quarter note lasts 0.5 second. Thus tempo scales the
durations of rhythms.

3 . 4 12=
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We can emulate this by calculating a tempo factor based on Mälzel’s metronome markings.
Rhythms are then multiplied by this coefficient to determine their actual duration. First, we need
a function that calculates the tempo factor:

Real mm(Real beats, Real perMinute) {

Return(1.0 / (4.0 * beats) * 60.0 / perMinute);

}

The beats argument is the rhythmic value that gets the beat, and the perMinute argument is the
number of beats per minute. For example, 

Real tempoScale = mm( Q, 60.0 ); // 60 quarternotes per minute

sets tempoScale to 1.0, and 

Real tempoScale = mm(Q, 120.0); // 120 quarternotes per minute

sets tempoScale to 0.5. Scaling a list of rhythms with tempoScale adjusts them to the pre-
vailing tempo. Start with a rhythm list.

RhythmList T = {Q, E, E, E, S, S, Q};

Print(T);

prints {(1,4), (1,8), (1,8), (1,8), (1,16), (1,16), (1,4)}. Now scale it.

RhythmList S = T * tempoScale; // tempoScale == 0.5

Print(S);

prints {(1,8), (1,16), (1,16), (1,16), (1,32), (1,32), (1,8)}.
Though this explicit approach to managing tempo works fine, in fact Rhythm() has this cal-

culation conveniently built in. It works in conjunction with a built-in function named SetTempo()
that implicitly scales all rhythmic durations by the specified tempo factor. So, for example, given
the preceding definition of RhythmList T,

SetTempo(mm(Q, 90)); // set tempo to 90 quarternotes per minute

Print(T);

prints {(1,6), (1,12), (1,12), (1,12), (1,24), (1,24), (1,6)}. All rhythmic values
are scaled implicitly by Rhythm().

B.2.4 Loudness

Loudness is expressed in common music notation using performance indications such as fortis-
simo or piano (see section 2.7). But the performed intensity depends upon the acoustical power of
the instrument and the interpretation of the performer. A better approach for the purpose here
would be to define loudness in objective terms using decibels (see section 5.5.1).
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Since microphones and loudspeakers measure and reproduce pressure waves, it is common to
use dBSPL in audio work (see equation 5.32). It is also conventional in audio to take the loudest
value that can be reproduced without distortion as a reference intensity of 0 dB (see section 4.24.2).
Since measured intensities will be less intense than the reference, then by the definition of the deci-
bel they will be expressed as negative decibel levels. We can write, for example, –6 dB to indicate
an amplitude that is (very close to) one half of the amplitude of the 0 dB reference.

Restating (5.32), the equation for dBSPL, as

 

and simplifying by letting , we have y dB = 20 log10(x). Solving for x, we have 

. (B.1)

For example, setting dB, we have . The value of x is the coefficient by
which a signal must be multiplied to lower its amplitude by 6 dB. For another example, setting

dB, we have . So multplying by 0 dB does not affect amplitude. Setting
dB, we have , so multiplying a signal by –120 dB renders it vir-

tually inaudible. Finally, if we wish to amplify a soft sound, scaling it by +6 dB makes it twice as
loud. Thus, scaling sounds with decibel coefficients allows us to achieve arbitrary loudness levels
for waveforms. So we define

Real dB(Real y){ 

Return(Pow(10.0, y/20.0)); 

}

For example, Print(dB(–6)) prints 0.501187, Print(dB(0)) prints 1.0, and
Print(dB(–120)) prints 0.000001.

Suppose we have the following audio samples for a sound:

RealList mySound = {0, 0.16, 0.192, –0.37, –0.45, –0.245, –0.43, 0.09, . . .};

We wish to halve the sound’s amplitude. Then

RealList scaledSound = mySound * dB(–6);

Print(scaledSound);

prints {0.02, 0.08, 0.10, -0.19, -0.23, -0.12, -0.22, 0.05, . . .}.

See volume 2, chapter 1, for more about sampled signals.
MUSIMAT provides built-in definitions for standard music dynamics levels based on figure 4.7.

Real ffff = dB(0), fff = dB(–10), ff = dB(–18), f = dB(–24),

mf = dB(–32), mp = dB(–40), p = dB(–48), pp = dB(–56),

ppp = dB(–64);

y dB = 20 log10
A′
A
-----

x = A′/A

x = 10y/20

y = 6– x = 10 6– /20 = 0.501

y = 0 x = 100/20 = 1
y = 120– x = 10 120– /20 = 0.000001
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Thus ffff does not change the amplitude of the signal, but all others attenuate it to varying
degrees.

B.3 Unicode (ASCII) Character Codes

The Universal Character Set, or Unicode, encodes virtually all of the world’s characters and even
leaves room for characters not yet invented. A common subset of Unicode is ASCII (American Stan-
dard Code for Information Interchange), which was proposed by ANSI in 1963 and adopted in 1968.
Recent standards that refer to ASCII include ISO-14962-1997 and ANSI-X3.4-1986 (R1997). The
ASCII code includes many punctuation marks and white space such as blank, tab, and newline (which
forces subsequent text onto a new line).

To obtain the integer ASCII number corresponding to a character, first find the row r and column
c containing the character in table B.1. The ASCII number of this character is . For example,
the character ‘A’ corresponds to .

The characters between 0 and 31 and DEL are reserved for functions that mostly don’t concern
computer users, except for CR (carriage return) and LF (line feed). SP stands for the space
character '  '. This is another one of those tables that you must learn if you expect your geek friends
to take you seriously, so place a copy of table B.1 at your bedside or above the mantelpiece, where
you can refer to it frequently.

B.4 Operator Associativity and Precedence in MUSIMAT

To keep it simple, the MUSIMAT expressions in this book are formatted to obey simple left-to-right
evaluation. In fact, the rules are a little more complex because MUSIMAT is basically C++ in
sheep’s clothing.

Table B.1 
ASCII Character Codes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! " # $ % & ' ( ) * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [ \ ] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

2r c+
24 1+ = 33
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Associativity of operators is generally left to right, except for assignment and negation. For
example the expression a = c = d assigns the value d to c, then assigns c to a, thereby making
all three have equal value.

Table B.2 shows MUSIMAT’S simplified operator precedence and associativity in order from
highest to lowest. This precedence list is a shortened version derived from C and C++. Since you
can’t effectively read or write computer programs unless you have memorized these rules of oper-
ator precedence and associativity, experts recommend that you study these tables while you brush
your teeth every night (Press et al. 1988, 23).

Warning: some expressions that might seem to have self-evident meaning can’t be expressed as
such in C/C++ and so don’t work in MUSIMAT either. Take the expression c > b > a, for example.
You’d hope it would test whether b lies between a and c. Alas. Consider this example:

If (3 > 2 > 1) Print("true") Else Print("false")

It first evaluates (3 > 2), which it discovers is True, and replaces this expression with the integer
1 (which stands for True in C++). It then evaluates the expression ( 1 > 1 ) which is False. Prob-
ably not what we wanted. This example can be rewritten as follows:

If (3 > 2 And 2 > 1) Print("true") Else Print("false")

which will print True.

Table B.2 
Operator Precedence and Associativity 

Operator Associativity Description Examples

( )

– 

* /

%

+ –

< <= > >=

== !=

And

Or

=

left to right

right to left

left to right

left to right

left to right

left to right

left to right

left to right

left to right

right to left

grouping

negation

multiplication and division

remainder after integer division

addition and subtraction

less-than, less-than-or-equal, 
greater-than, greater-than-or-equal

equal, not equal

logical AND

logical OR

assignment

a * (x+y) == ax + ay

–3 == –1 * 3

a * b, a / b

10 % 3 == 1, 12 % 3 == 0

a + b, a – b

a < b, a <= b
a > b, a >= b

a == b, a != b

False And False == False
False And True == False
True And False == False
True And True == True

False Or False == False
False Or True == True
True Or False == True
True Or True == True

a = b, a = b + c
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A440 The standard of pitch for Western orchestras, corresponding to 440 Hz.

Acoustics The study of signals and signaling systems where the medium is air.

ADSR Segments of the amplitude envelope named for the initial letters of each segment: attack, decay, sustain, and
release.

Amplitude Distance of a wave from its peak height to its point of zero displacement or equilibrium. Also called peak
amplitude. Peak-to-peak amplitude is the distance from crest to trough. RMS amplitude is the average energy of a sinu-
soid, based on its amplitude.

Anechoic chamber A room that is so padded that it produces no echoes, thereby eliminating reverberation; usually
also isolated from external noise sources.

Antinode Point where displacement due to vibration is greatest.

Atmosphere Average atmospheric pressure at sea level, with a standardized value of 101,325 Pa.

Band A range of frequencies within a spectrum.

Band center Geometric mean frequency of a band. For a band extending from 707 Hz to 1.414 kHz, the band center
frequency is 1000 Hz.

Bandwidth Distance between upper and lower frequency limits of a sound.

Beat Fundamental unit of time measurement, corresponding to the pulse of the music.

Causal System that references only current and past input and past output. Causal systems may not reference future in-
put or current or future output.

Chaotic system A deterministic system that appears to be random such that it is impossible to make long-range pre-
dictions about its behavior.

Complex system System that contains elements that are both differentiated (specialized or compartmentalized) and
integrated (connected or unified) on all levels of scale.

Compliance The reciprocal of stiffness.

Continuous distribution A distribution where the events in the sample space cannot be individually distinguished.
Temperature and frequency are examples of continuous distributions.

Critical bands Channels of frequency-selective psychoacoustic processing that affect our perception of pitch, loud-
ness and masking of components lying within a critical frequency distance (roughly 1/3 of an octave) of one another.

Damping The effect of energy dissipation on a vibrating system.

Decibel Scale used to measure sound level in sound recording and communications, based on the same logarithmic
principle as the Richter scale.

Degree Individual element of a scale; also, 1/360 of a circular arc.

Degrees An ordered set of names and positions of the elements of a scale.

Deterministic Characteristic of systems where every cause has a unique effect.

Diatonic scale Seven pitches per octave composed of degrees in the order 2 2 1 2 2 2 1.

Discrete distribution A distribution where the events in the sample space can be individually distinguished. Tossing
coins or dice and picking a note on a keyboard are examples of discrete distributions.
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Driven harmonic oscillator A vibrating driving force coupled to a driven simple harmonic oscillator, such as a
spring/mass combination.

Duration In music, the number of beats a note lasts. Generally, the elapsed time of an event.

Dynamic range Range from the softest to the loudest sound.

Dynamics A field of classical mechanics that studies how force affects motion of material bodies through time.

Efficiency The ratio of useful power output to the total power input.

Elasticity That property of a material that allows it to restore itself to its original shape after being distorted (stretched,
compressed, twisted, etc.).

Enharmonic equivalents Chromatic degrees that sound the same pitch despite having different symbols.

Enumeration An itemized list of all possible outcomes; the sum total of such outcomes.

Envelope Characteristic way in which the intensity of a note changes through time.

Equal-tempered interval The semitone, one twelfth of the pitch distance of an octave, the twelfth root of 2.

Equilibrium The state of a system when it has no acceleration; the resultant when the sum of all external forces acting
on a body is zero and the sum of the momentum of all parts of the system is zero.

Event The outcome of a random process, such as a roll of the dice.

Expectation A prediction based on current and past experiences. See also Surprisal.

Formant Group of frequencies of some particular bandwidth that is emphasized by a resonant system.

Frequency Physical measure of vibrations per second.

Fundamental Lowest pitched partial in a tone.

Gamut Entire range of pitches reachable by an instrument or voice.

Harmonics Frequency components of a complex tone that are positive integer multiples (greater than 0) of a funda-
mental frequency.

Harmony In general, any simultaneous combination of tones. More narrowly, an agreeable (consonant) combination
of tones.

Harmony theory The art of organizing multiple concurrent musical lines to reinforce a feeling of harmonic move-
ment and arrival, suspension and resolution.

Heat capacity ratio The ratio of the specific heat of a gas at constant pressure to the specific heat at a constant volume.

Hertz The unit of one cycle per second, abbreviated Hz.

Histogram A table of event occurrences.

Ideal string String that is perfectly flexible, has constant mass per unit length, and is connected to massive nonyield-
ing supports.

In phase The state of multiple objects that vibrate with the same speed and direction.

Inertial reactance The tendency of a mass to resist change in velocity.

Inharmonic partials Components that are not integer multiples of a fundamental.

Interval Difference in pitch between two tones.

Inversion, of an interval Subtracting an interval from an octave produces its inversion. Intervals of a fifth and fourth
are each other’s inversions.

JND of loudness Amount by which the intensity of a sound must change for the ear to register a difference in loudness.

JND of pitch Amount by which the frequency of a sound must change for the ear to register a difference in pitch.

Just intervals Intervals made from the ratio of small whole numbers.

Key The degree to which a diatonic scale is transposed.

Key signature Association between the key (the chromatic degree that the scale starts on) and the accidentals required
for the corresponding diatonic scale.

Limit of hearing The intensity above which sound is registered as (possibly damaging) pain.

Loudness The subjective experience corresponding most closely to sound intensity.
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Mass The quantity of matter contained in an object.

Matter Anything that occupies space and exhibits inertia.

Mean free path The average distance a particle can move in a gas without a collision; in acoustics, the average dis-
tance a wave front can travel before being reflected at a wall.

Melody Notes played in sequence.

Metronome mark Indication of which duration symbol gets the beat and how many beats there are per minute.

Microtone Scale degree that is less than a semitone in pitch.

Modes Variations of the diatonic scale that preserve interval order but begin from other than degree 1 of the diatonic scale.

Modulation Changing the effective key signature of a musical work through the introduction of accidentals not in the
original key signature.

Monte Carlo method Any technique that uses probability to study complex systems.

n-limit The highest prime factor of any interval in a musical scale; used as a measure of scale complexity.

Node A point where displacement due to vibration is zero.

Normal force A force that is perpendicular to surfaces that are in contact. 

Note A tone placed in temporal context by an onset time and duration. See Tone.

Octave Ratio of 2/1 between frequencies; the musical quality of equivalence.

Octave equivalence The principle that scale degrees perform the same musical function regardless of the octave in
which they are played.

Onset The time when a sound begins; the moment stipulated by the score for a note to begin.

Oscillate To move or swing regularly and continuously from side to side.

Overtones Harmonic components in a tone that are pitched higher than the fundamental.

Partials Individual sinusoids that collectively make up an instrumental tone; also called components.

Period One complete movement through all the phases of a periodic vibration; for a sinusoid, one period corresponds
to one complete revolution of a circle.

Permutation The number of possible unique orderings.

Phase The fraction of a complete rotation through which an object has advanced; characteristic points, such as peaks,
troughs, and zero-crossings reached periodically each time a wave repeats.

Phon A measure of equal loudness. See Sone.

Phon scale A loudness scale that identifies equal loudnesses across all perceivable frequencies and intensities.

Pitch Subjective experience corresponding to the frequency of sounds.

Polyphony The art of sounding more than one musical line concurrently.

Precession time The period required for a higher-frequency vibration to depart from and then return into alignment
with a lower-frequency vibration.

Prime number An integer that is not divisible by any other number besides itself and 1.

Probability The relative likelihood of an event, usually expressed as a real number in the range of 0 to 1.

Probability distribution A function, graph, or listing of the probabilities of the sample space that shows how proba-
bility is distributed among the possible events.

Programming language A specialized means of describing rule systems and methods.

Psychophysics Psychology of perception, focusing on the boundary between physical and psychological phenomena.
Psychoacoustics includes the psychophysics of audition.

Quality factor The ratio of the resonant frequency to the bandwidth 3 dB down from peak amplitude.

Random variable Index of a probability distribution function.

Resonance The tendency of a system to vibrate sympathetically at a particular frequency in response to energy in-
duced at that frequency.

Resonant frequency The frequency that is most effective at enabling a vibrating system to return to its original energy
level by dissipation.
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Restoring force Internal force that seeks to return an elastic object to its original shape.

Rhythm That which pertains to the temporal quality of musical notes and phrases. Onset and duration largely deter-
mine rhythm.

Rubato Gradual perturbations in the tempo.

Sample space The set of possible outcomes.

Scale A named, ordered set of pitches, together with a formula for specifying their frequencies.

Score Combination of notes ordered vertically by pitch and horizontally by time.

Self-similarity Structures that show similarities at all levels of magnification are self-similar.

Series Summation of a repeating pattern of terms. A particular ordering of a set.

Set An unordered collection of any size.

Set class A named group of sets that are equivalent under specific conditions.

Signal A physically detectable quantity such as an acoustical wave that traverses a signaling system.

Signaling system A system that combines time, space, source, medium, and receiver.

Silence Sensory percept of the absence of detectable sound intensity at any frequency.

Simple harmonic motion Vibratory motion in one dimension caused by the interaction of inertia and elastic forces.

Sone A measure of comparative loudness. See Phon.

Sonority The sonic character of a musical interval.

Sound pressure level Average pressure variation per unit area.

Spectrum The range of all possible frequencies at all possible intensities.

Staff Five horizontal lines that serve as a grid indicating pitch range (vertically) and relative note onset (horizontally)
in common music notation. Attributed to Guido d’Arezzo.

Standard temperature and pressure (STP) One atmosphere of pressure at 0° Celsius (or 273.15 K).

Standing waves Waves constrained by wavelength to match the dimensions of physical boundaries. Waves whose
shape remains constant and only their amplitude changes; waves whose height is scaled through time in the direction
perpendicular to their length.

Static equilibrium A system in which the sum of applied forces is zero and does not change through time.

Stiffness The ratio of applied force to the resulting displacement.

Surprisal As the probability of an event decreases from 1.0 towards 0, the surprisal goes from zero to infinity. See 
Expectation.

System A combination of interdependent components that can be viewed as a unified whole. Any function that pro-
duces one or more outputs based on zero or more inputs.

Tempering The practice of adjusting some of the degrees of the scale to irrational values so as to fit within an over-
arching order that is still based on simple integer ratios.

Tempo Number of beats per minute.

Threshold of hearing Minimum amount of sound intensity required for a sinusoid to be detected by a listener in a
noiseless environment.

Timbre That which allows us to distinguish notes of equal pitch, loudness, and duration; the name of a sound source
(such as trumpet, violin) or a quality of a sound source (such as sharp, dull).

Time signature Stipulation of how many beats there are per measure and which note gets the beat. In 3/4 time, there are
three beats per measure (indicated by the numerator) and the quarternote gets the beat (indicated by the denominator).

Tonal palette Coloration based on the placement of various-sized intervals in a scale.

Tone Combination of pitch, loudness, and timbre. An ideal tone has constant pitch, loudness, and timbre; convention-
ally, the term describes any reasonably uniform combination of the three properties. A sound without discernible pitch
(such as a drum beat) is not a tone. When placed in a temporal context, a tone becomes a note. See Note.

Tone row A series based on a set of pitch classes.

Transpose To start a scale on any chromatic degree but C.
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Uniform distribution If all events in a sample space are equally likely, the resulting distribution is said to be uniform.

Unison 1/1 ratio between frequencies. Tones sounding at the same pitch. The musical quality of identity.

Wave An organized traveling disturbance in a medium, such as air.

Wave shape Characteristic internal organization of a sound wave, responsible for determining the timbre, or sound
quality of a sound.

Well-tempered Characteristic of tuning systems that temper at least some intervals or have reasonably equal-sized
semitones.

Wolf fifth Nonharmonic intervals that cause beating between the interval and the overtone series, making it sound un-
pleasantly like wolves howling.

Work The force applied to move an object times the distance it is moved.

loy79076_glossary.fm  Page 457  Wednesday, April 26, 2006  5:06 PM



loy79076_glossary.fm  Page 458  Wednesday, April 26, 2006  5:06 PM



Notes

Preface

1. From a Chinese fortune cookie opened the night the first page was written.

Chapter 2

1. This is a bit of an oversimplification. Our experience of pitch also depends on loudness, among other factors. For the
full story, see section 6.5.1.

2. Curiously, the diatonic major scale begins with the letter C, not A. I’ve never seen a sensible explanation for this fact.

3. The practice of singing aided by solmization syllables was developed by Guido D’Arrezzo, a Franciscan monk of the
tenth century. The practice is called solfeggio.

4. For some transpositions, it may be necessary to raise a note that is already sharp, hence the double sharp; similarly, it
is sometimes necessary to lower an already flat tone, hence the double flat.

5. Generally, one must study the harmonic semantics of the score to determine whether the major or minor key is
indicated by the key signature.

6. 1862–1918. See for example, Debussy’s piano prelude Voiles.

7. 1917–1982. Monk used whole-tone scales almost as a signature in many of his jazz compositions.

8. The term overtone generates confusion in numbering. Note that the first partial is the fundamental, while the second
partial is the first overtone. Thus, for example, overtone number 10 is partial number 11. To avoid confusion, I’ll
generally avoid the term overtone, preferring partial or component. Since the term partial is primarily an adjective, I’ll
use it only when I think the context is clear.

Chapter 3

1. Helmholtz (1863); second English edition (1885), 250.

2. In 1995 the paleontologist Ivan Turk of the Slovenian Academy of Sciences discovered what appears to be a fragment
of a flute made from a cave bear thigh bone in a Neanderthal archaeological site. It was subsequently radio-carbon-dated
to be about 43,000 years old. There is an ongoing controversy over whether it is a flute or not, and if so, what scale it
would have played. Whether it is proved or not, it suggests we should consider radically revising backward in time what
musicologists refer to as early music.

3. The cent scale was developed by Alexander Ellis, who translated into English Helmholtz’s treatise On the Sensations
of Tone (1863), one of the first scientific studies of consonance.

4. The term diatonic originally referred to a scale constructed from two (dia) tetrachords. The tetrachord was a scale
building block in ancient Greek music theory.
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5. Robert Fludd, History of the Macrocosm and Microcosm (1617). See Debus (1979) and Godwin (1979).

6. Ptolemy, “Harmonics,” in Barker, Stevens, and le Huray (1984), 270–360.

7. It is a descending Syntonic comma because the pure major third is smaller than the Pythagorean major third.

8. A function f(x) is said to be monotonic in x if f always changes in the same direction as x.

9. The equation for the fitted curve is y = 1.9 + 0.12x + 0.18x2.

10. Francesco Antonio Vallotti, Trattato della Scienza Teorica e Pratica della Moderna Musica. Conceived in 1728, his
ideas weren’t published until 1779.

11. J. S. Bach, The Well-Tempered Clavier, comprising two books (1722 and 1744), each having 24 sets of preludes and
fugues in every major and minor key.

12. Simon Stevin’s Van de Spiegheling der Singconst (On the Theory of the Art of Singing), written ca. 1605, was first
published in 1884, 264 years after he died. See also Cohen (1987).

13. Partch, from the liner notes of his RCA phonograph record Castor and Pollux.

14. I studied sitar in India with S. Dagar and in the United States with Pandit Nikil Banerjee.

15. Kees van Prooijen apparently also discovered the tempered version of this scale in the 1970s.

Chapter 4

1. But there are some interesting cases where this assumption leads into the weeds (see section 9.17.2).

2. For example, consider this ratio of small but nonzero values: a tenth divided by a billionth. Such a ratio is not a small
number.

3. It’s important to note that the backward velocity is just the velocity between points A and B; it is not about having a
negative slope.

4. This is why “speed kills.” Reaction time is constant, but the time required to stop is the square of the speed.

5. Actually, log (2) = 0.30103 . . . , but the fractional part beyond the tenths position is often ignored for practical
measurements.

Chapter 5

1. If you are uncomfortable with the radian’s being a dimensionless number, you probably will seize upon this
definition of the radian as proof that its dimension is in units of degrees. However, the degree is also dimensionless. In
fact, all angle measures, including trigonometric functions, are dimensionless. Also note that a radian is only
approximately 57.3°.

2. The radian was developed by James Thomson in 1873, a professor of mathematics at Queens College, Belfast,
Northern Ireland. His brother was the famous physicist William Thomson, Lord Kelvin.

3. It is customary to use t for linear time and T for periodic time.

4. This is the proof that there is no such thing as centrifugal force. If there were, and it applied a force to the object
directly away from the axis of rotation, then the object should fly radially away when released, but it does not. Instead,
circular motion is the vector sum of centripetal force and linear velocity.

5. For example, simple electrical multimeters use this approach when displaying RMS voltage.

Chapter 6

1. Bregman (1990) gives a monumental description of the factors involved in constructing auditory scenes. Handel
(1989) and Yost (2000) provide an easier introduction.

2. The majority of cues we use for source identification lie within this frequency band, suggesting that our hearing may
have adaptively evolved to be more sensitive to it.

Notes to Pages 47–151
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3. The purpose of the ossicle chain in the middle ear as an impedance matching system was first pointed out by
Helmholtz (1863).

4. Also called noise-induced temporary threshold shift (NITTS).

5. These symbols are used because when pronounced, Φ (phi) and Ψ (psi) sound like the initial syllables of the words
physical and psychological, respectively.

6. Blind men, touching various parts of an elephant, report conflicting accounts of their experience depending upon the
part they touch, then fall into an argument as to whose account is the correct interpretation. The poem by John Godfrey
Saxe (1816–1887) describing this event concludes, “So oft in theologic wars, / The disputants, I ween, Rail on in utter
ignorance / Of what each other mean, / And prate about an Elephant / Not one of them has seen!”

7. Ernst Weber (1795–1878).

8. A third important attribute is accuracy, not to be confused with precision. Precision has only to do with the fineness of
measure. A ruler with very fine gradations may measure precisely, but if it is warped, it will not measure accurately.

9. Imagine a point light source positioned on the y-axis above the spiral in figure 6.5, shining down through the coils
onto the floor.

10. The impossible staircase was invented by the Swedish artist Oscar Reutersvard and later independently reinvented
by Lionel Penrose and Roger Penrose. It was made famous in M. C. Escher’s print Ascending and Descending.

11. In fact, the German organist Georg Andreas Sorge published a description of the same phenomenon in 1744, but
Tartini’s observation is most frequently cited.

12. This is by no means the only possible or the best definition for these terms, but it will serve for this simplified
example.

13. I had the privilege of being one of Grey’s subjects.

Chapter 7

1. Since the balls represent packets of air rather than individual molecules, we can ignore the random microscopic
motion of the individual molecules.

2. Ludwig Boltzmann, Austrian physicist (1844–1906).

3. At a great distance from a sound’s origin, a listener experiences the waves to be plane rather than spherical because
the circumference of the wave front is by that time very large in comparison to the local experience of it. However, the
total wave is still actually spherical. See section 4.24.4.

4. A good modern treatment of the subject is given in Sharp (1996).

5. Since the bars are shorter, they have less mass, but the elasticity of the wire is the same, so the rate of wave
propagation increases.

6. Christiaan Huygens, mathematician, physicist, astronomer, lutanist, and music theorist (1629–1695).

7. Named for the British Astronomer Royal Sir George Bidwell Airy (1801–1892).

8. Kids at home: don’t try this!

9. For a dramatic telling of the story, see Bliven (1976).

Chapter 8

1. Robert Hooke, physicist, biologist, astronomer, and architect (1635–1703).

2. This expression means “as long as x is much less than l.” This restriction prevents us from having to consider the
nonlinear vibratory behavior of pendulums that can swing more widely.

3. Hermann von Helmholtz, a scientist whose contributions spanned physics, biology, and acoustics (1821–1894). His
book On the Sensations of Tone is still widely referenced.

4. An explosive and racy Châteauneuf, it fairly burst with game, berry, black chocolate, and espresso characteristics.
Ripe and sweet-tasting, it had enough opulent fruit to balance the firm tannin structure, like a rose growing up the
impenetrable wall of its spectacular finish. (Kids at home: don’t try this.)

Notes to Pages 152–246
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5. Even in outer space, the internal friction of the spring would eventually dissipate all of the system’s energy, but we
ignore this effect as well.

6. Pitch is “head over heels” rotation, yaw is spinning side-to-side rotation, and roll is “over your shoulder” rotation.
Define three axes through your center of gravity as follows: x is across your body, y is head-to-toe, and z is front to back.
Pitch is rotation in x, yaw is rotation in y, and roll is rotation in z.

7. The classical guitarist Andrés Segovia used no amplification during concerts, even though excellent sound
reenforcement was available by the end of his career. But there was no need: his sound adequately reached his thousands
of listeners, who listened in a hush. True acoustic performance seems like a lost ideal in today’s public concerts.

8. This equation has been attributed to Mersenne (from his “laws of stretched strings” in Harmonie Universelle) and to
Brook Taylor (1685–1731) in 1714.

9. Named after Thomas Young (1773–1829).

10. Published figures vary from about 69 to 79 for aluminum, so 74 is about in the middle.

11. Though a flute may look like it’s closed at one end, the fipple of the flute is effectively an opening, so it is open at
both ends.

12. The point 3 dB down from the peak energy point is sometimes called the half-power point, a figure used commonly
for this purpose by engineers, because 3 dB is equal to the square root of 2.

Chapter 9

1. Augusta Ada Byron King, Countess of Lovelace, note A, 694, in her notes added to the end of her English translation
of Luigi F. Menabrea, Notions sur la Machine Analytique de M. Charles Babbage, Bibliothèque Universelle de Genève,
41, 352–376. Her translation was published under the pseudonym AAL in Richard Taylor’s Scientific Memoirs, 3, art.
29,  666–731, under the title “Sketch of the Analytical Engine invented by Charles Babbage, Esq., by L. F. Menabrea of
Turin, officer of the Military Engineers,” August 1843.

2. The term algorithm derives from the name of ninth-century Persian mathematician, geographer, and astronomer, Abu
Jafar Mohammed ibn Musah al-Khorezmi, inventor of modern decimal positional arithmetic and algebra. Al-Khowarizm
means citizen of Khowarizm, known today as Khorezm in Uzbekistan. Algorizm, the precursor to the modern term
algorithm, is a transliteration of the last part of his name. His treatise on arithmetic was titled Kitab al jabr
w’al-muqabala, commonly translated as “Rules of restoration and reduction.” The word al-muqabala is the origin of the
term algebra.

3. Barbara Cook Loy, private communication.

4. The precise relation between rate of change and frequency is developed in volume 2.

5. Bailey and Crandall (2001). Though the expansion of π appears to be random, this has not been proven. Expansion of
other irrational numbers, such as e and log 2 might also be random but, again, this has not been proven.

6. Notice that Lorenz conjectures that a butterfly might “set off ” rather than “cause” a tornado. This is an important
distinction, suggesting that the initial conditions serve to select an outcome from many possibilities.

7. An interesting paradox in mathematics concerns the cardinality of the set of points on a line. Georg Cantor
established that C, the cardinality of all real numbers (corresponding to the number of points on a line), is greater than �0,
the cardinality of all integers. But how much greater is C than �0? In particular, is there a transfinite number between �0
and C? Cantor’s continuum hypothesis states that there is no such transfinite number. However, it has been demonstrated
that the validity of the continuum hypothesis is undecidable. Using the standard axioms of set theory, Kurt Gödel showed
that the continuum hypothesis is impossible to disprove. Later, Paul Cohen showed that it is impossible to prove under
the same conditions. Hence, the continuum hypothesis is independent. The independence of the continuum hypothesis
has been taken as an exhibit of Gödel’s incompleteness theorem, because it is an important question that has been proven
to be undecidable, even though the proofs are based on the standard and universally accepted axioms of mathematics.

8. The midpoint of an 88-key keyboard is between E and F above middle C.

9. The analogy between entropy and information has been criticized by some physicists. There are implications in the
equation for entropy that are not matched for information. However, this dispute need not concern us here: the analogy
between information and entropy has become a fixture in the literature.

10. After R. V. Hartley, who in 1927 proposed using logarithms to measure information.

11. Aristoxenus, “The Harmonics,” in Macran (1902), 27–30.

Notes to Pages 248–348
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12. A mathematical construction is called pathological if it is created simply to invalidate an otherwise universally valid
assertion.

13. Plato, Laws, bk 49, in Pangle (1980).

14. J. S. Bach, 389 Choralgesange für Vierstimmigen Gemischten Chor. Nr. 3765. Breitkopf Edition.

15. Herbert Bielawa, private communication.

16. For example, “up a third” is from a C chord to an E chord; “down a fifth” is from a G chord to a C chord, and so on.

17. Dolson (1989). I am indebted to this article for its intuitive explanation of back propagation.

18. J. S. Bach, 389 Choralgesange für Vierstimmigen Gemischten Chor. Nr. 3765. Breitkopf Edition.

19. Haus and Sametti (1991, 7). The multiplicity extension is a partial implementation of self-modifying nets, which
were introduced by Valk (1978).

20. J. S. Bach, “Canon Perpetuus” from A Musical Offering. BWV 1073. London: Boosey and Hawkes, 1952.

21. See, for example, Harel (1987), an important early theoretical paper. For more recent practical developments, see,
for example, Samek (2002).

22. Landon (1976, 508–509). Leopold Mozart quoted Haydn’s comment in a letter to his daughter. The encounter
transpired after Haydn heard Mozart’s Bb Maj. Quartet K456, “The Hunt” in 1785. The phrase “knowledge of
composition,” kompositionswissenschaft, means literally “composition science.”

23. Flavius Magnus Aurelius Cassiodorus, Senator (ca. 485–ca. 575), Institutiones, II, iii, paragraph 21, in Strunk
(1950).

Appendix B

1. A simple MUSIMAT emulator written in C++ is available at http://www.musimathics.com/.

2. Prior to the 1940s, when someone said “computer,” they typically referred to a person who performed computations
manually or with the aid of a calculating machine. It was not until the 1950s that “robot brains” began to supplant human
computers.

3. We can also exit a Repeat statement with a Return statement.

4. Functions of the same name that vary in the number or type of arguments or type of return value are said to be
polymorphic. MUSIMAT manages to keep the various versions separate from each other and to use the correct one in
every instance.

5. MUSIMAT Source code is available at http://www.musimathics .com/.

Notes to Pages 353–446
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Tangential Speed (5.14), 136
Thermodynamic Probability 

(Entropy) (9.20), 346
Total Mechanical Energy (4.31), 112
Transmission (7.20), 216
Transposition (9.7), 314

Uncertainty (9.18), 346
Unit Interpolation (9.9), 323
Universal Wave Equation

(7.16), 207

Vibrating Frequency (8.4), 242

Weber-Fechner Law (6.2), 160
Weierstrass Function (9.23), 355
Work (4.26), 110
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1/f spectral tendency, 354, 359
12-tone composition. See 

methodology
12-tone row. See tone rows
2AFC. See two-alternative 

forced-choice

A440, 12, 14, 40–42, 49, 99, 444
absolute refractory period, 158
absorption,  199, 221–222, 236, 416
of air, 237
total, 222

absorption coefficient, 222, 418
acceleration, 5, 99, 104–109, 241, 

248–249, 274–275
angular, 132
as bending, 104
centripetal, 134
instantaneous, 104, 106

accidentals, 21
acoustical shadow, 208
acoustic pulse reflectometry, 212
acoustic reflex, 152
acoustics, 150
architectural, 233, 235, 416
Ohm’s law of, 157

adiabatic, 200
ADSR. See attack, sustain, decay, 

release
Aeolian mode, 20
aerophones, 251
AI. See artificial intelligence
air
elastic properties, 201–202
inertial properties, 201–202, 204

air column, 263
Airy disc, 225–226
algorism, 288
algorithm, 288, 290
amanuensis, 293
American National Standards 

Institute, 157

amplitude, 34, 117, 139–147
maximum, 274

anatomical transfer function, 190
anechoic chamber, 194, 221
angle
critical, 219
of incidence, 210, 218–219

angle of incidence, 218
ANSI. See American National 

Standards Institute
antinodes, 254, 263
antiresonance, 36
apotome, 53
area, 98, 122, 205, 209, 222, 236
density, 100
surface, 222, 235

arguments, 42, 426
actual, 431
formal, 431

arithmetic mean, 48
art, 289
Artificial Intelligence, 372
artificial neural networks, 376–378, 

388–389
ASCII character code, 438, 450
associativity, 425
asymptote, 280
ATF. See anatomical transfer 

function
atm. See atmosphere
atmosphere, 205
attack, 35
attack transients, 183, 198
attack, sustain, decay, release, 36
auditory canal, 151
auditory nerve, 153
auditory scene analysis, 150
aural sensibility, 403–406
average molecular mass, 204
Avogadro’s number, 204
axis of rotation, 129
azimuth, 188

Babbitt, Milton, 331
Bach, C. P. E., 296
Bach, J. S., 70, 184, 326, 363, 388
back propagation of error, 378, 380
backtracking, 362
band, 36
band center, 36
bandwidth, 36, 277
of human hearing, 36

bark scale, 181
bar lines, 26
barometer, 124
bars
with free ends, 260
longitudinal, 256
transverse, 258, 261–262

Bartók, Béla, 349
basilar membrane, 6, 153–154, 158, 

178, 184, 239
beat frequency, 173, 185
beats (acoustical), 51, 53, 173–178
first-order, 174
second-order, 174

beats (musical), 26–27, 447–448
bel, 120
Bell, Alexander Graham, 120
bells, 261
Benedetti, Giovanni Battista, 57
Berg, Alban, 311
Bessel functions, 267
Bielawa, Herbert, 372
binary infix, 423
bit, 345, 347
Bohlen, Heinz, 87
Bolero, 175
Boltzmann’s constant, 206, 346
bore conical, 265
bore cylindrical, 265
Boulanger, Richard, 93
Boulez, Pierre, 293, 331
broadband, 36
Brown, Earle, 293

loy79076_index.fm  Page 475  Wednesday, April 26, 2006  5:16 PM



476 Subject Index

Brown, Robert, 356
Brownian
motion, 356
noise, 355–357
number generator, 356

Brün, Herbert, 295

cacophony, 306
Cage, John, 293, 298–299, 350
Calder, Alexander, 293
cantilever beams, 259
cardinal points, 139
cardinality, 317, 462
cartesian coordinates, 97, 352
causal, 299, 372, 390
causality, 371–372
cent scale. See scales
central processing theories, 158
chaotic, 304
character set, 438
chimes, 261
Chomsky, Noam, 401
Chopin, Frédéric, 401
chordophones, 251
chroma, 15, 163–165, 313
chromatic scale. See scales
Chu Tsai-yu, 70
cilia, 153
circle of fifths, 23
circular harmonic motion, 243
circular motion, 129
clang tone, 261
clarinet, 264
clef, 12
CMN. See common music notation
cochlea, 153
cognition, 376
combination tones, 175
combinatorics, 306, 311
comma
of Didymus, 51
Pythagorean, 54, 67–70, 80
Syntonic, 51, 55

common music notation, 12
common time, 27
compass interval, 87
complex tones, 157–158, 161
complexity theory, 305–306
compliance, 240, 244
components, 29
Componium, 297
composable function, 317
composition, 317
compound statement, 428
compressibility, 244
conditional probability, 367
cone of confusion, 190

confounding factors, 402
congruence, 301, 414
connectionism, 377
conservative forces, 275
consonance, 56–60, 87, 92–93, 178, 

184–186, 380–383, 385, 418
perfect, 185
of perfect intervals, 60

constant Q, 182
continued fractions, 85
continuous distribution. See 

distribution
contralateral, 187
convolution, 335
coordinate system, 97, 352
Cope, David, 400
creep wave, 219
crescendo, 32
critical angle, 219
critical bands, 176, 178–182
crumhorn, 263
cybernetics, 360
cycle, 319

damping, 8, 276
d’Arezzo, Guido, 285, 407
dB. See decibel
dB SIL, 146
dB SPL, 147
DEC. See dynamically expanding 

context
decay, 36, 279
decibel, 120
deconstructionism, 350
decrescendo, 32
Deep Blue, 403
degenerate, 371
degrees
angular, 130–131, 411
of the diatonic scale, 17
of freedom, 187, 249–250, 254, 

278, 282
interval size, 439
per octave, 439
of a scale, 16

density, 201
area, 100
cubic, 100
linear, 100

de Rore, Cipriano, 57
design, 406
deterministic, 290, 304
diabolus en musica, 53
diatonic scale. See scales
dichotic, 158
difference frequency, 173
difference tones, 175

diffraction, 222, 227–228
Fraunhofer, 225
Fresnel, 225
pattern, 223

diffuse, 416
dimension, 352
directed graph, 367
acyclic, 368
cyclic, 368

directrix, 217
direct signal, 233
dispersion, 211
dispersive effect, 218
displacement, 100, 106, 239
angular, 129, 131
antinodes, 263–264
nodes, 263–264

dissipation-limited, 275
dissonance, 56, 93, 184–186, 380
distortion, 121–122, 179, 239
distribution
continuous, 334
discrete, 334
probability, 333
uniform, 299, 333

distribution function
cumulative, 339
probability, 336

Dodge, Charles, 299
dominant, 17
Doppler shift, 228–232
driven harmonic oscillators. See 

oscillators
drums, 266, 270
duplex theory, 190
duration, 26
dynamical, 280
dynamical system. See systems
dynamically expanding context, 

373–375, 379, 403
dynamic range, 27
dynamic spectrum, 33
dynamics, 304

eardrum, 151
early reflections, 233
Ebcioglu, Kemal, 363
echoes, 211
flutter, 235
late, 234
slap-back, 235

efficiency, 115
Einstein, Albert, 356
elasticity, 239–241
EMI. See Experiments in Musical 

Intelligence
end correction, 245, 264
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endolymph, 153
energy
elastic potential, 112
gravitational potential, 112
internal, 200, 202
kinetic, 111
macroscopic, 200
microscopic, 200
potential, 111
tensile potential, 112
total mechanical, 112

energy distribution, 30, 32
spectral, 195–196
temporal, 196

enharmonic equivalents, 21
entropy, 345–349, 354
maximum, 347

enumeration, 296, 307, 310
envelope, 2
amplitude, 34–35
spectral, 34, 195

equal loudness contours, 167–168
equal temperament, 39
equal-tempered scale. See scales
equilibrium, 239, 248
dynamic, 248
static, 239, 241, 248–249

esraj, 266
Euclid’s method, 288, 430
Eurythmics, 407
expectation, 347–348, 350
experimental method, 402
Experiments in Musical 

Intelligence, 400
expressions, 422

far field, 125, 209
fBm. See fractional Brownian motion
feedback, 378
Fibonacci sequence, 436
fife, 263
final, 20
first backward difference, 101
five-limit, 60
flat, 21–22
floor function, 303
flute, 263–264
focusing effect, 218
Fogliano, Lodovico, 60
force, 108, 248
conservative, 113
elastic, 247
inertial, 247
kinetic frictional, 110
nonconservative, 113
sliding frictional, 110
static frictional, 109

forced motion, 270
forces
contact, 109
external, 112
internal, 112
noncontact, 109

formants, 36
Foster, Stephen, 364
Fourier transform, 226
fractals, 350, 352–360
deterministic, 353
random, 353

fractional Brownian motion, 357
fractional dimensions, 353
Fraunhofer diffraction, 227
Fraunhofer region, 209
free motion, 270
frequency, 13, 99, 136, 141–142
radian, 243

frequency resolution, 162
Fresnel zone, 209
frets, 253
fundamental, 29
fundamental frequency, 29, 37

Gabor, Dennis, 333
Galilei, Vincenzo, 68, 82
gamut, 16
GCD. See greatest common 

divisor
genetic programming, 389
geometric mean, 64
glissando, 32, 253
glockenspiel, 261
golden mean, 349–350, 437
goodness, 406
goodness-of-fit metric, 71–92
gravity, 100–113, 242, 248
greatest common divisor, 288
Guido’s method, 291, 407
Guidonian hand, 286

hair cells, 153
halving time, 280
HARMONET, 388
harmonic mean, 48
harmonic oscillators. See oscillators
harmonic proportion, 48
harmonic series. See series
harmonics, 29–37, 47–48, 158, 

263–265, 282, 355
harmony, 12, 14, 29, 60, 361, 407
functional, 86, 331
of the spheres, 47

harmony theory, 54, 164
hartley, 347
Haydn, Joseph, 296, 406

head-related transfer function, 190
head room, 121
heat, 202
heat capacity, 202
heat capacity ratio, 201
Heisenberg’s uncertainty principle, 32
helicotrema, 153
Helmholtz resonator, 244–247
hertz, 99
histogram, 316, 364
homogeneous, 416
Hooke’s law, 241, 272–273
HRTF. See head-related transfer 

function
hum note, 157
Hurst exponent, 355
Huygen’s principle, 223
Hz. See hertz

I Ching, 298
ideal gas, 200
ideal gas law, 205
idiophones, 251
ILD. See interaural level difference
Illiac Suite, 360, 364, 402
impulse response, 233
incus, 152
index operator, 426
inertia, 99–100, 248, 273–274, 356
inertia-limited, 275
inertial reactance, 249
information, 343, 346
information theory, 343–350
inharmonic, 29–30
integer, 14
intensity, 118
interaural level difference,

188, 190
interaural time difference, 188, 190
interference
constructive, 210, 224
destructive, 210, 225
pulse, 326

interpolation
linear, 324
unit, 323

interval
affinity, 164
class vector, 317
equivalence, 14
identity, 14
individuality, 15
order, 17

intervals, 14
augmented, 18–19
augmented fourth, 19
cent, 45–46
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intervals (cont.)
diminished, 18–19
diminished fifth, 19
feeling, 18
fifth, 22
fourth, 19
half step, 17
imperfect, 43
inversion, 44
just, 43, 57
major/minor, 19
perfect, 18–19, 43
Pythagorean chromatic 

semitone, 53
Pythagorean diatonic semitone, 53
second, 99
semitone, 17, 42
sonority, 19
sruti, 77
tempered semitone, 40
tritone, 19, 383
unison, 19

intonation sensitivity, 92
inversion, 315
Ionian mode, 20
ipsilateral, 187
ISO-10646, 438
isotropic, 416
ITD. See interaural time difference
Ives, Charles, 73

jaw harp, 263
JND. See just noticeable difference
Joplin, Scott, 401
joule, 111, 202
just noticeable difference, 159
just noticeable loudness 

threshold, 177

key, 22
key signature, 22
Kirnberger, Johann Philip, 69, 295
Koch snowflake, 353
Koenig, Gottfried M., 332

lacunarity, 355
laminar flow, 221
land speed of sound, 220
lateral onset cue, 189
law of inertia, 108
leading tone, 24
learning, 372–389
left-hand side, 424
legato, 36
Ligeti, György, 332
limit, 103
limit of hearing, 119

limma, 53
linear congruential method, 301
local minimum, 382
logistic function, 378
lossy, 179
loudness, 119, 167
loudness JND, 167
lowest common denominator, 15
Lydian mode, 20

magnitude, 135
major scale. See scales
malleus, 152
Mälzel’s metronome, 27, 447
Mandelbrot, Benoit, 353
marimba, 263
marking, 398
Markov chains, 363–371
masker, 171
masking, 171
backward, 172
forward, 171
frequency, 171
simultaneous, 172
temporal, 171

mass, 99, 249
mass density, 204
matter, 99
maxima, 144, 254
mean free path, 356
mean value, 145–146
measures, 26
meatus, 151
mediant, 17
melody, 12, 14, 29
membranes, 266
membranophones, 251
Mersenne, Marin, 58
Messiaen, Olivier, 331
meter, kilogram, second, 97
methodology, 285, 288, 290
12-tone, 86, 312, 332
compositional, 311, 350, 402
deterministic, 290
experimental, 155
nondeterministic, 289

metronome, 27
metronome mark, 26
Micrologus, 286
microphones, 124
microtonality, 72–82
microtonal scales. See scales
microtones, 72
middle C, 41
Pythagorean, 49

MIDI. See Musical Instrument 
Digital Interface

millisecond, 99
minima, 144
minor scale. See scales
missing fundamental, 157–158
Mixolydian mode, 20
MKS. See meter, kilogram, second
MM. See Mälzel’s metronome
modes (scales), 20
modulation, 54
modulo arithmetic, 301, 414
mol. See mole
mole, 204
monotony, 306
Monte Carlo methods, 360–362
motion generator, 271
Mozart, W. A., 296, 375, 401, 

403–406
MP3, 170, 179–180, 344
MPEG, 170, 179
Musamaton, 326
music, 407
atonal, 86, 312
automated composition, 297
experimental, 402
programming, 292
representation, 292, 327

Musical Instrument Digital 
Interface, 292

musical score, 12
musical style, 350, 363, 400–406
music dictation, 343
music engineering, 13, 47, 63, 295
music notation. See common music 

notation
music technology, 39
Musikalische Würfelspiel, 

295–298, 400
MUSIMAT, 285, 290–292, 309, 317, 

324, 415, 421–451
Abs(), 437
Accidental(), 440
accumulate(), 340
Atan(), 437
brownian(), 356
Ceiling(), 434
Character, 438
cycle(), 320–321
dB(), 449
Do-While, 429
Else, 428
factorial(), 435
Fi(), 436
Floor(), 434
For, 429–430
Fr(), 436
getIndex(), 340
Halt(), 427
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If, 428
Integer, 422, 434
IntegerList, 423
invert(), 318
key(), 440
linearInterpolate(), 324
log10(), 427
mm(), 448
Mod, 427
Mod(), 415
normalize(), 339
Octave(), 440
palindrome(), 321
permute(), 322
Pitch, 440
PitchClass(), 440
PitchList, 442
pitchToHz(), 441
PosMod(), 415
Pow(), 427
Print(), 427
Random(), 304, 337, 429, 437
randomRow(), 328–329
randTendency(), 330
Real, 422, 434
RealList, 338, 423
realRhythm(), 447
realToRational(), 446
Reference, 446
Repeat, 429
retrograde(), 318
Return(), 431
RhythmList, 447
setComplex(), 319
SetTempo(), 448
shuffle(), 329
Sqrt(), 437
stretch(), 325
String, 438
transpose(), 318, 322
VossFracRand(), 358

mutation stops, 175
Myhill, John, 327

nanosecond, 99
narrowband, 36
nat, 347
natural, 21
natural modes, 250
nazard, 175
near field, 125, 209
nested functions, 431
neural networks, 376, 378, 403
Newton’s first law of motion, 108, 

272–273, 356
Newton’s second law of motion,

108, 248

Newton’s third law of motion, 108
nodes, 254
noise, 157
nonsustaining instruments, 115
normal, 109
force, 109
form, 313

normal modes, 250
note, 12
symbols, 12

numero senario, 60
nut, 82

objective composition, 286
octave, 14, 16
octave equivalence, 14, 16, 87
Ohm’s law of acoustics. See 

acoustics
onset, 26
onset time, 26
operands, 423
oracle, 290
orchestrion, 297
organ of Corti, 153
organum, 286
origin, 100
orthogonal, 97–98, 316, 352, 412
oscillation, 8
oscillators
driven harmonic, 270–271
harmonic, 247, 273, 277–278

ossicles, 152
oval window, 153, 217
overtones, 29
overtone series. See series

palindrome, 321
parallel, 244
parallel distributed processing, 377
Parmenides, 414
Partch, Harry, 47, 60, 74–75
partials, 29–37, 47, 157–158, 240
partitioning, 310
pascal, 118
pattern completion, 375
PCM. See pulse-code modulation
PDP. See parallel distributed 

processing
peak pressure, 144
peak pressure level, 144
peak-to-peak pressure level, 144
pendulum, 243
pennywhistle, 263
pentatonic scale. See scales
perilymph, 153
period, 98, 136
periodicity, 99, 141

periodicity theory, 158
peripheral theories, 158
permanent threshold shift, 152
permutation, 307, 322
circular, 308, 313

Petri nets, 390–400
phase, 140
of matter, 202

phase angle, 141
phase offset, 141
phase reversal, 213
phase shift, 141
phon, 167
phon scale, 167
Phrygian mode, 20
piano, 262
Pierce, John, 87, 371
pinna, 151
pipe organ, 263, 355
pipes
closed one end, 264
open both ends, 263

piston, 244
pitch, 13, 439
pitch classes, 16, 164, 312–336
pitch difference limen, 160
pitch JND, 159–163
pitch space, 164
pizzicato, 254
place theory, 154
point of equilibrium, 4, 248
points of inflection, 254
political economy, 86
polynomial, 300
cyclic, 300
expansion, 300

polyphony, 54
portamento, 253
power, 114
precedence, 424
precedence effect, 193
precession, 57
precomposition, 312
predicate, 428
predicate/transition nets, 398
pressure, 118, 205
pressure waves. See waves
prime form, 316
prime numbers, 58
principal value, 413
probability, 333–343
probability distribution. See 

distribution
proportion, 407
proportional analysis, 349
proximity effect, 125
PrT. See predicate/transition nets
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pseudorandom, 300
psychoacoustics, 150, 154
psychophysics, 155
Ptolemy, Claudius, 54
pulse interference. See interference
pulse-code modulation, 179
P-waves, 207
Pythagoras, 47–48
Pythagorean comma. See comma
Pythagoreans, 47–48, 406–407

quadrivium, 407
quality factor, 181, 277

rad. See radians
radians, 130–131
radiation pattern, 208
radius of gyration, 260
Ramos, Bartolomé, 56
random numbers, 300–301, 303, 

337, 361–362, 429
random variable. See variable
random walk, 355
rational approximation, 81, 446
Ravel, Maurice, 175
Rayleigh distance, 209
reactance, 249
real, 14
real numbers, 14
recorder (the instrument), 263
recurrence relation, 301
recursion, 84, 435
recursive, 280, 355
redundancy, 343, 347–354, 397
reflection, 210–218
diffuse, 211
specular, 210

refraction, 218–221
relative major, 23
relative minor, 23
release, 36, 279
remaindering, 415
resonance, 36, 245, 270
resonant frequency, 274
response amplitude, 273
response pattern, 156
resting length, 273
restoring force, 239
rests, 26
retrograde, 315, 318, 321
reverberation, 211
tail, 234
time, 281, 417

revolution
aesthetic, 87
of a circle, 130–131
scientific, 98

Rhythmicon, 326
right-hand side, 424
ringing, 279
RMS. See root mean squared
RMS amplitude, 146
root mean squared, 146
rotation, 308
roughness, 195
round window, 153
rubato, 26
rule of 18, 82

sabine, 236
Sabine, Wallace, 236
sample space, 333
sarod, 266
scala media, 153
scala tympani, 153
scala vestibuli, 153
scales
19-tone, 73
53-tone, 73
Bohlen-Pierce, 444
Bohlen-Pierce chromatic, 91–92
Bohlen-Pierce equal-tempered, 92
Bohlen-Pierce just diatonic, 89
cent, 45, 74–75, 459
chromatic, 20–21, 23, 25, 45–46, 

166, 312, 337, 341, 359, 380, 
439, 441

diatonic, 17, 20, 22
dodecaphonic, 46, 307–308
equal-tempered, 39–42, 45–46, 

70, 77
harmonic minor, 23
heptatonic, 46
Hungarian minor, 25
just, 43
just pentatonic, 44
major, 18
mean-tone tempered, 63
melodic minor, 24
minor, 18
natural chromatic, 54–56, 71–72, 

74, 79, 443
natural minor, 24
Partch 43-tone, 76, 444
pentatonic, 23, 46
Pythagorean chromatic, 442
Pythagorean diatonic, 49
Pythagorean dodecaphonic, 52, 

54–55, 79
quarter-tone, 73, 444
sruti, 77
Syntonic diatonic, 55
whole-tone, 25, 317

scattering, 199, 211

Schenker, Heinrich, 401
Schillinger, Joseph, 325
schisma, 81
Schoenberg, Arnold, 86, 306, 

311–319, 331, 350
scope
global, 432
local, 432

search
comparative, 363
constrained, 363

Second Viennese School, 86, 311
self-similarity, 351, 353
semitone. See intervals
sensitivity to initial conditions, 305
serialism, 331–333
series, 244, 312, 332, 410
arithmetic, 410
finite, 410
Fourier, 333
geometric, 410
harmonic, 37, 43, 50, 54–55, 62
infinite, 410
octave, 37
overtone, 47–48, 51, 55, 60, 67

set, 306, 312–332
aggregate, 317

set class, 314–317
complement, 317

set complex, 318–319
shadow, acoustical, 208
sharp, 21–22
sharpness, 195
Shepard tone illusion, 165
SI. See Système International 

d’Unités
sigma notation, 410
signal, 199
signal to noise ratio, 200
signum function, 378
simple harmonic 

motion, 4–7, 240
sine relation, 137, 412
sinusoid, 7
sinusoidal, 7
solmization syllables, 17
sone, 167
sone scale, 170
sonogram, 33
sonorities, 18
sound intensity level, 120
sound localization, 187–194
sound pressure level, 117, 123
sound quality, 28
specific heat 

capacity, 203
spectral tendency, 352
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spectrum, 30
harmonic, 31
inharmonic, 31

speed, 101
instantaneous, 103
rotational, 132
tangential, 135

speed of sound, 202, 207
SPL. See sound pressure level
spreading, 199
spring constant, 240, 244, 249
sruti, 77
staff, 12
standard atmospheric pressure, 117
standard temperature and pressure, 205
standing waves, 255
stapedius, 152
stapes, 152
statement, 422
static spectrum, 32, 34
steady state, 279
stiffness, 240, 248, 257
stiffness-limited, 274
Stockhausen, Karlheinz, 293
STP. See standard temperature and 

pressure
Stravinsky, Igor, 405
strike note, 157
strings
ideal, 254
stiffness, 262
tension, 262

style. See musical style
subdominant, 17
submediant, 17
subtonic, 17
sum tones, 175
summation, 410
superdominant, 17
superparticular ratios, 48
superposition, 210, 251
supertonic, 17
supervised learning, 379
surface area, 117–118, 235
surprisal, 345
surprise, 350
sustain, 36
sustaining instruments, 115
synchronicity, 298
Syntonic comma. See comma
Système International d’Unités, 97
systems, 149
adiabatic, 200
analysis/synthesis, 400
auditory, 150
automated composition, 401
belief, 350

causal, 372
chaotic, 304
complex, 306, 361, 398
composing, 402
deterministic, 304
discrete dynamical, 397, 400
dynamical, 248, 304–305
expert, 388
nonlinear, 176
open, 77
random, 304, 337
resonant, 36
rule, 373
scale, 17, 72–73
signaling, 149, 343, 345
spring/mass, 5, 136, 243, 248, 

271–272
statistical composing, 333
tuning, 69, 75
vibrating, 8, 29–30, 270

T60 time, 281
tangent relation, 412
taste, 350, 406
tectorial membrane, 153
tempered tuning, 20, 54, 68–72
tempering, 63–64, 68–70, 73, 75
equal, 70
irregular, 69
well, 69

tempo, 26, 447
temporary threshold shift, 152
tension, 110
tensor tympani, 152
thematicism, 331
Theremin, Leon, 326
thermodynamic probability, 345
threshold of hearing, 119
tierce, 175
timbre, 28, 195–198
time, 106
time constant, 281, 417
time signature, 27
tonal fusion, 174
tonal harmony, 86–87, 312, 350
See also harmony

tonal palette, 69
tone, 11–12
tone height, 163
tone rows, 308–313, 319–332
tonic, 17, 24
tonotopic dissonance, 185
tonotopic mapping, 154
tonverschmelzung, 174
total absorption, 222
totally organized music, 331
transformer, 217

transients, 278, 280
transition table, 365
transpose, 22, 44
transposition, 314
tremolo, 32, 173, 254
tritave, 87
tritone. See intervals
TTS. See temporary threshold shift
Turing test, 403–405
two-alternative forced-choice, 161
two-component theory 

of tone, 163
tympani, 267
tympanum, 151, 217

unary prefix, 423
uncertainty, 31, 343, 346
acoustical, 183–184
measurement, 305

Unicode, 438
uniform circular motion, 129
uniform distribution. See 

distribution
unison, 14, 16, 185
unit circle, 139
unit distance, 323
universal gas constant, 205

variable, 421–422
actual, 309
continuous, 335
control, 430
global, 432
independent, 15
initialization, 430
input, 430
local, 432
physical, 155
psychoacoustic, 155
random, 334, 336, 358
reference, 321

velocity, 5, 102, 106
angular, 131, 136, 243
instantaneous, 102
radian, 136
rotational, 203
of simple harmonic 

motion, 142
tangential, 135, 142
translational, 200, 203
vibrational, 203

vibraphone, 261, 263
vibration, 4–8
vibration modes, 30
vibrato, 28, 32
Virtual Mozart, 404
volume, 98, 235–236
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wavelength, 141–142
wave motion
longitudinal, 116
torsional, 116
transverse, 116

waves, 3
compression, 

201, 207
crests, 140
cycle, 140
expansion, 201
incident, 215
longitudinal, 207

period, 140
plane, 209
pressure, 207
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