
Notes on homotopy λ-calculus

Vladimir Voevodsky

Started Jan. 18, Feb. 11, 2006

Contents

1 An introduction . 1

1 Homotopy theory and foundations of mathematics 4

2 Homotopy λ-calculus 16

1 Type systems . 16

2 Homotopy λ-calculus . 23

3 Basic layer - syntax . 24

4 Basic layer - semantics in Top . 27

5 Levels . 32

6 Basic layer - generalized models . 37

7 Homotopy λ-calculus - logic layer . 38

8 Homotopy λ-calculus - universe constructors . 38

9 Comparison with the Martin-Lof’s type system . 40

10 The leftovers . 41

1 An introduction

In this paper we suggest a new approach to the foundations of mathematics. In fact the adjective
”new” in the previous sentence may be superfluous since one can argue that pure mathematics as
it is practiced today has no foundations. We have come a long way from where we used to be at the
beginning of the century when the thesis that mathematics is that which can be formalized in the
framework of the Zermelo-Fraenkel theory became generally accepted. Contemporary constructions

1

and proofs can not be translated in any sensible way into the Zermelo-Fraenkel theory. One can
(may be!) translate the categorical definition of group cohomology into the ZF-theory using the
Grothendieck’s idea of universes but it is hardly fair to call an approach which requires one to believe
in strongly unreachable cardinals in order to interpret a simple algebraic construction sensible.

Because of the amazing intuitiveness of the basic concepts of category theory this foundational
insufficiency is not (yet) a serious problem in our everyday work. In my experience it becomes
noticeable only at the level of 2-categories which may be the reason why 2-categorical arguments
are not very common in mathematics. The real need of formalized foundations arises when one
attempts to use a computer to verify a proof. It is a fact of life that proofs in contemporary
mathematics are getting too long, complicated and numerous to be rigorously checked by the
community. Moreover it is precisely the most technical parts of the proofs where the probability
of a mistake is the highest which are most likely to be skipped in the verification process. Since
the ability to build on layers and layers of earlier results is probably the most important feature
which underlies the success of mathematics as an enterprise this is a very serious problem and
without finding its solution mathematics can not move forward. The idea to use computers in
proof verification is an old and obvious one. However, despite the fact that the first generation
proof verification systems such as Automath or Mizar are more than thirty years old now none of
the existing proof verification systems are practically usable in the context of pure mathematics.

Since the computer science is getting very good at working with complex formal systems I would
conjecture that the real reason for this situation is not that it is very difficult to create a good
proof verification system but that we do not have formalized foundations which we could pass
to the computer scientists and say - ”please create the software to verify proofs in this system”.
Mizar does a pretty good job of implementing the ZF-theory but it is nearly impossible to prove
even the most basic algebraic theorems with Mizar because it requires one to specify every single
isomorphism on a crazily detailed level. Clearly it is not a problem of Mizar but a problem of the
ZF-theory.

Attempts to develop alternatives to the ZF-theory and to the first order theories in general have
been made since the beginning of the century (at least). From what I know about the history of
mathematics the two such attempts which are most relevant here are the type theory of Russel
and Whitehead and Church’s λ-calculus. Type theory and λ-calculus were later unified in typed
λ-calculus. A key development (totally unnoticed by the mathematical community) occurred in
the 70-ies when the typed λ-calculus was enriched by the concept of dependent types. Most types
in mathematics are dependent on members of other types e.g the class (or type) of algebras over
a ring R is a type dependent on R which is a member of the type of rings. However, until fairly
recently there were no formal languages supporting dependent types.

Today the dependent type theory is a well developed subject but it belongs almost entirely to the
realm of computer scientists and in my experience there are very few mathematicians who have a
slightest idea of what dependent type systems are. One of these mathematicians is Makkai - the
key insight that dependent type systems are exactly what we need in order to formalize categorical
thinking is probably due to him (see []). His papers played the key role in convincing me that it
is indeed possible to build much better foundations of mathematics than the ones provided by the
ZF-theory.

2

One of the reasons mathematicians have not been more involved in the development of the de-
pendent type systems is that these systems for most part lack clear semantics. It does not mean
there is no semantics at all. The abstract categorical semantics for type systems was developed
by Jacobs [?] and his book was of great help to me. What was missing was semantics with values
in an intuitively accessible category. The concepts of first order logic are easy to explain precisely
because there is a straightforward notion of a (set-theoretic) model of a first order theory. The
ideas of simple type theory both in the intuitionist and in the Boolean versions are reasonably
easy to explain because we may use models in toposes of sheaves on topological spaces. For the
homotopy λ-calculus such ”standard” models take values in the homotopy category. In the same
way as a sort in a first order theory is thought of as a set a type in the homotopy λ-calculus can
be thought of as a homotopy type.

Let me try to explain what homotopy category has to do with the foundations of mathematics.
First of all I want to suggest a modification of the usual thesis stating that categories are higher
level analogs of sets. We will take a slightly different position. We will consider groupoids to be
the next level analogs of sets. Consider the following hierarchy of (higher) groupoids (we ignore
the large versus small distinction for now):

L−1 = pt L0 = {0, 1} L1 = {sets and isomorphisms} L2 = {groupoids and equivalences} etc.

Categories may be considered as groupoids C with an additional structure - a pairing

C × C → L1

which sends X,Y to Mor(X,Y) (plus some higher level structures which I will ignore at the
moment). Note that this is indeed a functor between groupoids even though it would not be a
functor between categories unless we replaced the first C with Cop. Hence a previous level analog
of a category is a set X together with a map

X ×X → L0

i.e. a set with a relation. The existence of compositions and units for categories corresponds to the
reflexivity and transitivity of this relation. We conclude that a category is the next level analog of
a partially ordered set.

The key argument for this modification of the basic thesis is the following observation - not all
interesting constructions on sets are functorial with respect to maps but they are all functorial with
respect to isomorphisms. Similarly, not all interesting constructions on groupoids or categories are
natural with respect to functors but they all are (by definition!) natural with respect to equivalences.

Once the modification of the basic thesis is accepted the connection between foundations and the
homotopy theory becomes obvious since we know that n-groupoids are the same as homotopy n-
types. We will see below (in ??) that the n-types corresponding to the groupoids similar to Ln

have a natural homotopy theoretic description in the elementary terms of univalent fibrations. They
show up as models of special types (in special contexts) of the homotopy λ-calculus. Similarly, for
a type of mathematical structures (e.g. groups) one can define a type in the homotopy λ-calculus
whose models are (the homotopy types of) groupoids or higher groupoids of the corresponding
structures and their equivalences. Since all the constructions of homotopy λ-calculus correspond
by design to homotopy invariant constructions on models it is impossible to make statements

3

which are not invariant under equivalences. This provides a build-in support in our system for the
important principle which says that two isomorphic or otherwise appropriately equivalent objects
are interchangeable.

Need to mention: Goedel Theorem, Giraurd(sp?) Theorem.

Mention: Goedel theorem implies that there does not exist a recursive well-pointed topos with a
natural numbers object (other than the trivial one).

Mention: In our approach every type ”is” or at least can be though of as a ”subtype” of an
equivalence type eqR(r1, r2) for appropriate R and ri.

Mention(?):Firmer foundations allow for a higher level of abstraction.

Mention(?):Some parts of Section ?? give us hope that the formal language of the homotopy λ-
calculus can be integrated well with the usual mathematical discourse.

Mention in the next section: Intuitionist models in Fib/B and Boolean but multi-valued ones in
Fib/B where B is K(π, 0).

A type system is said to be simple (or pure) if terms and types are distinct and there is no way
to produce types from terms. If there is a way to produce types from terms i.e. there are type
constructors which take terms of previously defined types as arguments then one says that the
type system allows dependent types1. If types and terms are mixed i.e. terms of some types
are themselves types then the type system is called polymorphic. The homotopy λ-calculus is
a dependent type system with (strong) dependent sums and dependent products. There is no
polymorphism in the usual sense i.e. terms and types never get mixed up but there are universe
constructors which provide a replacement for the traditional polymorphism.

1 Homotopy theory and foundations of mathematics

In this section I will describe several constructions of homotopy theoretic nature which I hope
explain the connection between the homotopy theory and the foundations. The foundations used
in this section itself are the intuitive ones.

Let us start with the following observation. Fix a large universe U and let H = H(U) be the
homotopy category of spaces (or simplicial sets) in this universe. We will not mention this large
universe explicitly anymore. Let U be a universe which is small relative to U .

Let us show that to any type of mathematical structures Γ we can assign an object Γ(U) in H such
that π0(Γ(U)) is the set of equivalence classes of structures of type Γ in U . Since we do not have
a formal definition of a structure yet we will do it by examples:

1There are almost always term constructors which make terms dependent on types e.g. the identity term of the
function type T → T .

4

1. For types Γ such as sets, groups, topological spaces or Grothendieck schemes we define Γ(U)
as the nerve of the groupoid whose objects are structures of type Γ in U and morphisms are
isomorphisms of such structures. We will call types of structures of this kind i.e. such that
the notion of an isomorphism is defined, types of level 1.

2. For structures Γ such as groupoids, categories, monoidal categories, etc. we define Γ(U) as
the nerve of the 2-groupoid whose objects are structures of this type in U , morphisms are
equivalences and 2-morphisms are natural isomorphisms between equivalences. We call types
of this kind i.e. such that the notion of isomorphism between equivalences is defined, types
of level 2.

3. For higher level types of structures such as 2-groupoids, 2-categories etc. we proceed in the
same way.

Let now Γ1, Γ2 be two types of structures and F be a construction which assigns to a structure of
type Γ1 in U a structure of type Γ2 in U . For example we can take Γ1 = Pointed Sets, Γ2 = Sets
and F to be the construction which forgets the distinguished point. Or we can take Γ1 = Rings
and Γ2 = Categories and F to be the construction which assigns to a ring R the category of
schemes of finite type over R. Since any construction must respect equivalences it defines a map
F : Γ1(U) → Γ2(U) which is well defined up to a homotopy. Moreover, any such map will correspond
to an equivalence preserving construction producing a structure of type Γ2 in U from a structure
of type Γ1 in U .

If P is a condition on structures of type Γ then we have a subspace (Γ, P)(U) in Γ(U) which consists
of connected components of Γ(U) corresponding to the equivalence classes of structures satisfying
this condition. Of course this subspace is itself of the form Γ′(U) where Γ′ = (Γ, P) is the type
of structures of type Γ satisfying in addition the condition P . Using this correspondence one can
express any mathematical theorem as the condition that Γ(U) for an appropriately chosen Γ is
non-empty. The proof is then a construction which produces a point in this Γ(U)2.

We claim that this picture can be used as a basis for the formalization of mathematics.

Let Ω = Ω(U) be the object of H which corresponds to ∞-groupoids in U . It contains subobjects
Ω≤1 ⊂ Ω≤2 ⊂ . . . where Ω≤1 = Sets(U), Ω≤2 = Groupoids(U) etc. One observes easily that each
Ω≤n is a union of connected components of Ω i.e. these are really subobjects in the homotopy-
theoretic sense. Let further Ω̃ = Ω̃(U) be the object corresponding to pointed ∞-groupoids i.e.
pairs of an ∞-groupoid and an object in it and p : Ω̃ → Ω be the forgetting map. Our claim is
based on the following two facts:

1. Maps of the form Ω̃ → Ω corresponding to universes can be characterized in elementary terms.

2. For a given universe U with the ”classifying” map p : Ω̃ → Ω and a given type of structures
Γ one can construct Γ(U) explicitly from p : Ω̃ → Ω.

We will show how to do the first of these two things in Definition 0.14 and will illustrate the second
in Examples ??-??.

2A construction does not have to be constructive in the sense of logic. It can be based on the argument that if a
complement to something in a non-empty something is empty then the original something has a point.

5

To turn this approach into a real formalization we will define a formal language where one can can
build universes i.e. triples U = (Ω̃,Ω, p) satisfying appropriate conditions and where one can further
build for any U the types Γ(U) corresponding to all the usual types of mathematical structures and
maps Γ1(U) → Γ2(U) corresponding to all usual constructions. Since any mathematical theorem
can be expressed as the condition that the space Γ(U) for an appropriately chosen Γ is non-empty
one can use this language to prove theorems by constructing terms of the appropriate types. The
key difficulty one has to overcome is to define the language in such a way that it describes sufficiently
many constructions and at the same time all the constructions it describes are homotopy-invariant.
Fortunately such languages can be found in the class of languages called dependent type systems.
While there is no ready-made dependent type system satisfying all the requirements imposed by
our goal we will be able to define such a system as an extension of a known one.

The key observation which allows one to construct Γ(U) in terms of p : Ω̃ → Ω is as follows. In
general, if F : Γ1(U) → Γ2(U) is a construction and X ∈ Γ2(U) then the homotopy fiber F−1(X)
of F over X is the space of pairs (Y ∈ Γ1(U), ϕ : F (Y) ∼= X). For example, if F is the forgetting
construction from groups to sets then F−1([X]) is the set of all group structures on X. Applying
this observation to the universe map p : Ω̃ → Ω one concludes that the homotopy fiber of p over
the point [G] corresponding to a groupoid G is the homotopy type associated with G itself. For
example if X is a set in U and [X] is the corresponding point of Ω≤1 then p−1([X]) is equivalent
to X.

Note that we could not do the same in the category of U-sets instead of H. We can assign to
Γ the set γ(U) of equivalence classes of structures of type Γ in U but then the fiber of the map
corresponding to, say, a forgetting construction is not anymore the set of structures which we are
forgetting. E.g. the fiber of the map corresponding to the pointed sets → sets construction over
[X] will be one point if X ̸= ∅ and ∅ otherwise.

The most important concept which we will introduce is the concept of a univalent map (or univalent
fibration). Let us start with the following standard definition.

Definition 0.1 Let f : Y → X and g : Z → X be two continuous maps and u : Y → Z be a map
over X. Then u is called a fiber-wise homotopy equivalence if for any x ∈ X the corresponding map
between the homotopy fibers of f and g is a homotopy equivalence.

For two maps f : Y → X and g : Z → X let EqX(f, g) be the space of fiber-wise homotopy
equivalences from Y to Z over X. It is fibered over X such that the fiber of EqX(f, g) → X over
x ∈ X is (homotopy equivalent to) the space of homotopy equivalences between the homotopy
fibers f−1(x) and g−1(x).

For a map f : Y → X consider the maps f × Id : Y ×X → X ×X and Id× f : X × Y → X ×X.
Let further

E(f) = EqX×X(f × Id, Id× f).

Then E(f) is fibered over X ×X and its fiber over (x, x′) is the space of homotopy equivalences
between the homotopy fibers of f over x and x′. In particular, E(f) → X × X has a canonical
section over the diagonal X → E(f) corresponding to the identity.

6

Definition 0.2 [univ] A map p : Y → X is called univalent if the map X → E(p) is a fiber-wise
homotopy equivalence over X ×X.

The homotopy fiber of the diagonal X → X ×X over (x, x′) is the space P (X;x, x′) of paths from
x to x′ in X. Hence a fibration p : Y → X is univalent if and only if for any x, x′ the space of
homotopy equivalences between the fibers p−1(x) and p−1(x′) is naturally equivalent to the space
of paths P (X;x, x′).

We say that a map f : X ′ → X is a level 0 map if it is fiber-wise equivalent to the embedding of a
set of connected components of X to X. Here are some examples of univalent maps:

1. There are only three univalent maps of level 0. They are ∅ → ∅, ∅ → pt and pt → pt
⨿
pt.

Of these three the last one is the universal one since the other two are obtained from it by
pull-back.

2. For n > 0 the map BSn−1 → BSn where Sn−1 → Sn is the standard embedding of symmetric
groups, is univalent. The homotopy fiber of this map is the set with n elements.

3. For n > 2 the map BSn → pt is univalent. In general, for a group G the map BG → pt is
univalent if its center is trivial and its group of outer automorphisms is trivial.

4. For n ≥ 0 the inclusion of the distinguished point pt→ K(Z/2, n) is univalent. For n = 0 one
gets the map pt→ pt

⨿
pt from the first example and for n = 1 one gets the map BS1 → BS2

of the second example. I do not know at the moment any other examples of univalent maps
starting at the point.

Let us state some elementary properties of univalent maps.

Lemma 0.3 [unpr1] Consider a (homotopy) cartesian square

Y ′ −−−→ Y

p′
y yp

X ′ f−−−→ X

such that p is univalent. Then p′ is univalent if and only if f is a map of level 0.

Proposition 0.4 [class] If for a given univalent p : Y → X and a given p′ : Y → Y there exists
a (homotopy) cartesian square of the form

Y ′ −−−→ Y

p′
y yp

X ′ f−−−→ X

then such a square is unique up to an equivalence.

7

Definition 0.5 [classdef] Let p : Y → X be a univalent map and p′ : Y ′ → X ′ a map. We say
that p′ is classifiable by p if a cartesian square as in Corollary 0.4 exists.

Proposition 0.6 [induced] For any map f : Y → X there exists a unique (up to an equivalence)
homotopy cartesian square

Y −−−→ Ũn(f)

f

y yp

X
g−−−→ Un(f)

such that p is univalent and g is surjective on π0.

Proof: Let us sketch the existence part when X ′ = pt. In this case let M = Eq(Y ′, Y ′) be the
topological monoid of homotopy auto-equivalences of Y ′. Then one takes X to be the classifying
space BM of M and p : Y → X to be the fibration defined by the action of M on Y ′.

For f : Y → pt we will write Ũn(Y) → Un(Y) instead of Ũn(f) → Un(f).

The role of univalent maps in foundations is based in the following theorem.

Theorem 0.7 [univ1] Given a set of isomorphism classes A in H there exists a unique univalent
map p : Ω̃(A) → Ω(A) such that X → pt is classifiable by p iff X ∈ A. This correspondence
establishes a bijection between isomorphism classes of univalent maps in H and sets of isomorphism
classes of objects in H.

Proof: To prove the existence part let us choose a representative Xa for each isomorphism class
a ∈ A. Then set Ω(A) =

⨿
a∈A Un(Xa) and Ω̃(A) =

⨿
a∈A(Ũn(Xa)). If there are two such maps

p : Ω̃(A) → Ω(A) and p′ : Ω̃′(A) → Ω′(A) consider Ũn(p
⨿
p′) → Un(p

⨿
p′). By Lemma 0.3 the

map Ω(A) → Un(p
⨿
p′) is of level 0. On the other hand one can easily see that it is surjective on

π0. Therefore, it is an equivalence. The same holds for Ω′(A) → Un(p
⨿
p′).

Note that if A ⊂ A′ where A,A′ are sets of homotopy types then one has a cartesian square

Ũ(A) −−−→ Ũ(A′)y y
U(A)

i−−−→ U(A′)

where i is a map of level 0.

Define the level of a homotopy type inductively as follows:

1. X is of level −1 iff X is contractible,

8

2. X is of level n ≥ 0 iff for any x, x′ ∈ X the paths space P (X;x, x′) is of level n− 1.

There are only two types of level 0 namely ∅ and pt. A type of level 1 is a set i.e. a space of type
K(π, 0). More generally one has the following obvious lemma.

Lemma 0.8 [levelsob] A space X is of level n ≥ 1 iff for all x ∈ X one has πi(X,x) = pt for
i ≥ n.

For a type X and n ≥ −1 let Πn(X) be the i-th stage of its Postnikoff tower which we define for
n = −1 as ∅ if X = ∅ and pt if X ̸= ∅. For any X the space Πn(X) is of level n+1 and the functor
X 7→ Πn(X) is the left adjoint to the inclusion of the types of level n+ 1 to all types. We will use
the following description of Π−1 and Π0:

Lemma 0.9 [pi01] For any X one has:

1. Π−1(X) = Hom(Hom(X, ∅), ∅)

2. Π0(X) is the image of the natural map X → Hom(Hom(X, {0, 1}), {0, 1}).

Lemma 0.10 [levlev] For a space X of level n the space Un(X) is of level n+ 1.

Let us now describe how the condition that a set A is closed under certain operations on types can
be described in terms of the properties of the corresponding univalent map Ω̃(A) → Ω(A). We will
consider the following closeness conditions:

Clsum - asserts that for a fibration f : Y → X such that X is in A and all fibers of f are in A one
has Y ∈ A,

Clprod - asserts that for f : Y → X as above the space of sections of f is in A,

Cleq - asserts that for X in A and x, x′ ∈ X the paths space P (X;x, x′) is in A,

Clun - asserts that for X in A one has Un(X) ∈ A.

Given a fibration p : Y → X define a space Fam(p) as the space whose points are families of fibers
of p parametrized by a fiber of p i.e. Fam(p) is the space of pairs {x ∈ X, f : p−1(x) → X}. More
formally, one may define Fam(p) as the space of maps from Y to X ×X over X. It is fibered over
X with the fiber over x ∈ X being the space of (continuous) maps from p−1(X) to X. Consider
the following two fibrations over Fam(p):

1. Sum(p) → Fam(p) whose fiber over (x, f) is p−1(x)×f Y ,

9

2. Prod(p) → Fam(p) whose fiber over (x, f) is the space of sections of the projection p−1(x)×f

Y → p−1(x).

Proposition 0.11 [close1] Let A be a set of homotopy types and p : Ω̃(A) → Ω(A) be the corre-
sponding univalent map. Then following conditions are equivalent:

1. A satisfies Clsum (resp. Clprod),

2. the fibration Sum(p) → Fam(p) (resp. Prod(p) → Fam(p)) is classifiable by p.

Proposition 0.12 [close2] Let A be a set of homotopy types and p : Ω̃(A) → Ω(A) be the corre-
sponding univalent map. Then following conditions are equivalent:

1. A satisfies Cleq,

2. the diagonal map Ω̃(A) → Ω̃(A)×Ω(A) Ω̃(A) is classifiable by p.

To formulate the Clun condition define first the following construction. For a map f : Y → X let
Im0(f) be the set of connected components of X which contain images of points of Y . We can also
define Im0(f) → X as the universal map of level 0 through which f factors. The space Im0(f)
can be described as HomX(HomX(Y, ∅), ∅) where HomX denotes the space of maps over X. Let
[X] = Im0(∆X) where ∆X : X → X ×X is the diagonal. One observes easily that if X =

⨿
Xa

where Xa are connected then [X] =
⨿
X2

a .

Proposition 0.13 [close3] Let A be a set of homotopy types and p : Ω̃(A) → Ω(A) be the corre-
sponding univalent map. Then following conditions are equivalent:

1. A satisfies Clun,

2. each connected component of Ω(A) is classifiable by p,

3. the projection [Ω(A)] → Ω(A) is classifiable by p.

We can now give an elementary definition of a universe map and therefore of a universe:

Definition 0.14 [univmap] A map of homotopy types p : Ω̃ → Ω is called a universe map if it
satisfies the following conditions:

1. p is univalent,

2. the fibration Sum(p) → Fam(p) is classifiable by p,

3. the fibration Prod(p) → Fam(p) is classifiable by p,

10

4. the diagonal map Ω̃ → Ω̃×Ω Ω̃ is classifiable by p,

5. the projection [Ω] → Ω is classifiable by p.

We say that a set U of homotopy types is a (closed) universe if it is closed under the conditions
Clsum, Clprod, Cleq and Clun or, equivalently, if p : Ω̃(U) → Ω(U) is a universe map in the sense of
Definition 0.14. The following list contains some elementary properties of such closed universes:

1. if X ∈ Ā and x ∈ X then the loop spaces Ωn(X,x) are in Ā,

2. if X,Y ∈ Ā then Hom(X,Y) ∈ Ā and X × Y ∈ Ā,

3. if there exists X ∈ Ā such that X is not contractible then ∅ ∈ Ā

4. if ∅ ∈ Ā, X ∈ Ā and f : Y → X is of level 0 then Y ∈ Ā, in particular if X is a set then all
subsets of X are in Ā,

5. if ∅ ∈ Ā and there exists X ∈ Ā such that X ̸= ∅, pt then {0, 1} ∈ Ā.

These properties imply in particular that there are exactly three closed universes which do not
contain {0, 1} namely ∅, {pt} and {∅, pt}. We assume in addition to conditions listed above that
{0, 1} ∈ U . We have:

1. if X ∈ Ā is a set then the set PX of all subsets of X is in Ā,

2. if X ∈ Ā then Π0(X) = π0(X) ∈ Ā.

We will formulate other less trivial properties as lemmas.

Lemma 0.15 [sur] Let f : Y → X is a surjection of sets such that Y ∈ Ā. Then X ∈ Ā.

Proof: Assuming the axiom of choice we could take a section of f and conclude that X is in Ā
as a subset of Y . Without assuming the axiom of choice proceed as follows. Consider PX → PY
where as before P denotes the set-of-subsets functor. This is a mono. On the other hand X is a
subset in PX. Hence, X is a subset in PY and therefore is in Ā.

Lemma 0.16 [fibers] Let f : Y → X be a fibration such that X,Y ∈ Ā. Then for any point
x ∈ X the homotopy fiber f−1(x) is in Ā.

Proof: Consider the map i : f−1(x) → Y . The homotopy fiber of this map over y ∈ Y is the space
P (X; f(y), x). Since Ā is closed under Clsum and Cleq we conclude that f−1(x) ∈ Ā.

The following lemma is a generalization of the previous one and its proof is similar.

11

Lemma 0.17 [homlim1] The set Ā is closed under finite homotopy limits. In particular for a
pair of maps f, g : Y → X with X,Y ∈ Ā the homotopy equalizer heq(f, g) is in Ā.

Lemma 0.18 [sumsandproducts] Let I ∈ Ā be a set and (Xi)i∈I be a family of types in Ā
parametrized by I. Then

⨿
i∈I Xi and

∏
i∈I Xi are in Ā.

Lemma 0.19 [all0] Let X ∈ Ā. Then π0(X) ∈ Ā and for any n > 0 and any x ∈ X, πn(X,x) ∈ Ā.

Proof: We have π0(X) ∈ Ā by Lemma 0.9. By Cleq we have Ωn(X,x) ∈ Ā where Ωn is the n-th
loop space. Then πn(X,x) ∈ Ā since πn(X,x) = π0(Ω

n(X,x)).

Proposition 0.20 [finitetower] Let X be a type such that one has:

1. π0(X) ∈ Ā,

2. for any x ∈ X and any n > 0, πn(X,x) ∈ Ā,

3. there exists N such that for any x ∈ X and any n > N one has πn(X,x) = 0.

Then X ∈ Ā.

Proof: Proceed by induction on N . For N = 0 we have X = π0(X) and there is nothing to prove.
Using the Clsum we reduce the problem to a connected X. Let X be connected and let x ∈ X. By
induction we know that M = Ω1(X,x) ∈ Ā. The space M is a group-like H-space and X = BM .
It acts on itself by equivalences i.e. there is a map M → Eq(M,M). Moreover, this map is a mono
split by the map which takes an equivalence to its value on the unit (the splitting is not a map of
H-spaces). Consider the fibration f : BM → BEq(M,M). We have BEq(M,M) = Un(M) ∈ Ā
by the inductive assumption and Clun. It remains to show that the homotopy fiber F = f−1(∗) of
f over the distinguished point is in Ā.

The long exact sequence of homotopy groups defined by f looks as follows (we omit the base points
since they are clear):

. . .→ πi(BM) → πi(BEq) → πi−1(F) → . . .→ π1(BM) → π1(BEq) → π0(F) → pt

The maps πi(BM) → πi(BEq) are isomorphic to the maps πi−1(M) → πi−1(Eq) and since M →
Eq(M,M) is a split mono they are monomorphisms. By Lemma 0.10 and the inductive assumption
we conclude that πi(F) = 0 for i > N − 1. It remains to check that the non-zero homotopy groups
of F are in Ā. This follows from our sequence and Lemma 0.15.

Lemma 0.21 [homlim2] Assume that N ∈ Ā and let . . . X2 → X1 → X0 be a sequence of maps
with Xn ∈ Ā. Then holimXn ∈ Ā.

12

Proof: It follows from Lemmas 0.18 and 0.21 since holimXn is the homotopy equalized of two
maps from

∏
nXn to itself.

Theorem 0.22 [all] Assume that N ∈ Ā. Then the following conditions on X are equivalent:

1. X ∈ Ā

2. π0(X) ∈ Ā and for any x ∈ X and any n > 0, πn(X,x) ∈ Ā.

Proof: It follows easily from Lemma 0.21, Lemma 0.19 and Proposition 0.20.

Proposition 0.23 [col] The the following conditions on Ā are equivalent:

1. Ā is closed under finite homotopy colimits

2. Ā contains N

For a set of homotopy types A let Ā be the universe generated A i.e. the closure of A with respect
to Clsum, Clprod, Cleq and Clun. Consider the following hierarchy of universes and spaces:

1. U−1 = ∅

2. Un+1 = {Ω̃(Un),Ω(Un)}

Note that since both Ω̃(Un) and Ω(Un) are in Un+1 all the fibers of the univalent map Ω̃(Un) →
Ω(Un) are in Un+1 by Lemma 0.16 i.e. Un ⊂ Un+1. We have the following picture:

1. By definition U−1 is empty. Therefore we have Ω−1 = Ω̃−1 = ∅.

2. We have U0 = {∅} = {∅, pt}. Therefore Ω0 = {0, 1} and Ω̃0 = pt which embeds to {0, 1} as 1.
The map Ω̃0 → Ω0 is the universal univalent map of level 0.

3. We have U1 = {pt, {0, 1}}. Form Proposition 0.20 it is easy to deduce that U1 is the set of
homotopy types X such that all πi of X are finite and there are only finitely many non-trivial
πi’s. Let us write:

Ω1 = Ω1,≤0 ⊂ Ω1,≤1 ⊂ Ω1,≤2 . . .

where Ω1,≤n is the subtype in Ω1 corresponding to the types of level n in U1. We have
Ω1,≤0 = Ω0,≤0 = {0, 1}. We further have

Ω1,≤1 =
⨿
n≥0

BSn

in particular π0(Ω1,≤1) = N.

13

4. The universe U2 contains N. Therefore by Corollary 0.22 it consists of all types X such that
all πn(X) are in U2. Therefore it is completely determined by its part U2,≤1 of 1-types i.e.
sets. This universe contains a lot of sets. It contains N, R etc. Moreover Lemma 0.18 implies
that it contains sets such as

⨿
n>0 P

n(N). May be this is the whole ZF-universe. In any event
it is large enough for all normal mathematics. The universe U2 can also be described as the
closure of the set of finite types with respect to Clsum, Clprod and Cleq or as the closure of
{pt} with respect to Clsum, Clprod, Cleq and finite homotopy colimits.

5. The higher universes U>2 all contain N and therefore are determined by their subsets of types
of level 1. They probably correspond to the universes of ZF with the iterated models of ZF
in itself.

Let Un,≤i be the set of types of level i in Un. We have inclusions Un,≤i ⊂ Un+1,≤i which are
bijections for i = 0 and n ≥ 0. For i > 0 it is clear that U0,≤i ̸= U1,≤i ̸= U2,≤i. It seems that one
can prove that the same holds for higher n i.e. for i > 0 and n ≥ 0 the set Un+1,≤i is strictly bigger
than the universe Un,≤i and any attempt to stabilize this sequence leads to an inconsistency.

Now that we have built the theory of universes of types let us discuss how to define the classifying
spaces of types with structures. We fix a universe U or equivalently a univalent map Ω̃ → Ω.
By definition, the isomorphism classes of types in U are in one to one correspondence with the
connected components of Ω. We want to construct spaces whose connected components will be in
one to one correspondence with structures in U e.g. groups in U , topological spaces in U , categories
in U etc. We define n − Sets(U) to be the class of n-types in U . Instead of 1 − Sets(U) we will
write Sets(U). The corresponding spaces are Ω≤n.

We start by describing for any first order theory Γ a space Γ(Ω) whose connected components are
in one to one correspondence with models of Γ in Sets(U). This will give us spaces such as Gr(U)
or Ring(U) for groups and rings in U but not Top(U) or Cat(U). We could skip this stage entirely
and consider more general structures right away but this gives some interesting connections with
the classical foundations.

Then Gr(Ω) etc. More generally Γ(Ω) where Γ is a first order theory.

analytic

To different such conditions there correspond different type expressions Cl and therefore different
universe contexts. One of the interesting possibilities is to include the condition that A is closed
under homotopy push-outs as well as under homotopy pull-backs. This would imply that A contains
all finite homotopy types including in particular S1. Since any admissible A must be closed under
loop functor and Ω1S1 = Z the corresponding universe will automatically have integers and it is
not hard to deduce from Z the natural numbers. We see that in the homotopy λ-calculus push-outs
i.e. finite colimits imply the existence of natural numbers.

1. Let Γ = (T : Type, f : T → T) such that the external models of Γ in TopA are pairs (X,ϕ)
where X is a homotopy type in A and ϕ : X → X is its endomorphism. By assumption
A is closed under formation of the internal Hom-objects (spaces of continuous maps). This

14

implies easily through the universal properties of univalent maps that there is a map Hom :
U × U → U which takes a point (u1, u2) to a point corresponding to the homotopy type
Hom(p−1(u1), p

−1(u2)). Then the model M of Γ(Ω) is given by the homotopy pull-back
square

M −−−→ Ũy p

y
U

Hom◦∆−−−−−→ U

where ∆ : U → U × U is the diagonal.

2. Let Γ = (T : Type; a : Lvn) where Lvn is the type expression explained above. Then the
model of Γ(Ω) is the subspace of U which consists of points corresponding to n-types in A.
Note the shift of the index compared to the models of the context (Ω, a : Lvn) discussed
above.

3. Let Gr be the context of the form (T : Type; e : T,m : T ×T → T, a : Group axioms) whose
models are groups in A (the group axioms in this case should include Lv1 since groups must
be supported in sets). The model of Gr(Ω) will be a space Gr(Ũ/U) over U whose homotopy
fibers over types which are not sets will be empty and whose fiber over a set X will be the
set of all group structures on X. The action of the π1 of U in the corresponding point in the
fiber will be the action of the automorphism group of X on the set of group structures. This
space will fit into a pull-back square of the form

Gr(Ũ/U) −−−→ Ũy p

y
U

gr−−−→ U

where gr : U → U is a map which takes a set to the set of group structures on it and a type
which is not a set to the empty set. The connected components of Gr(Ũ/U) are in one-to-one
correspondence with the isomorphisms classes of groups in A and for any such group G the
corresponding component is the classifying space of the group Aut(G).

4. Extending the previous example consider the construction which assigns to a group its center.
This construction will correspond on the one hand to an interpretation of Gr in itself and on
the other to an endomorphism of Gr(Ω) in Ω. The model of this endomorphism will be a map
Gr(Ũ/U) → Gr(Ũ/U) which becomes obvious with respect to the description of Gr(Ũ/U)
given at the end of the previous example.

5. Here is a more complicated example. Let Top be the context whose models are topological
spaces in A i.e. the sets in A together with a set of subsets satisfying the usual axioms of
topology. We will say how to construct such a context below. It is more sophisticated than a
context such as Gr since it has several generating types. The main one maps to the underlying
set of the corresponding space and the auxiliary one maps to the set {0, 1} which is required
for the definition of the set of subsets. The model of Top(Ω) will be the space over U whose
components correspond to isomorphism classes (not the homotopy equivalence classes!) of
topological spaces whose supporting sets are in A and the component corresponding to a
space S will be the classifying space of the group of homeomorphisms from S to itself.

15

2 Homotopy λ-calculus

1 Type systems

A type system is a formal language. Well formed sentences in this language are called sequents.
They are written in the form Γ ⊢ G where the part to the left of ⊢ is called a context and the part
to the right is called a judgement. The collection of all sequents with the given context part Γ is
somewhat similar to the collection of all theorems in a given first order theory. In this sense contexts
are analogs of theories in the language of a type system. Both the context and the judgement are
sequences of words from some initial ”vocabulary” V . A pair of such sequences is called a (valid)
sequent if it can be obtained from some primitive sequents by means of the constructors i.e. the
rules which describe how to construct new sequents from the old ones.

Remark 1.1 Mathematically speaking ”sequences of words from a vocabulary V ” are elements
of the free monoid F (V) generated by V . The underlying language of a type system is therefore
defined by a set V , a finite subset S0 of primitive or generating sequents in F (V) and a finite set
R of triples of the form

[rules]ρ = (nρ, Dρ ⊂ F (V)nρ , cρ : Dρ → F (V)) (1)

called rules. The set of sequents S of a type system (V, S0, R) is the smallest subset in F (V)
which contains S0 and is closed under the rules i.e. given a rule of the form (1) and s1, . . . , sn ∈ S
such that (s1, . . . , sn) ∈ Dρ one has cρ(s1, . . . , sn) ∈ S. One has to use F (V) as opposed to some
abstract set F because some of the rules may involve the substitution maps F (V) → F (V) given
by replacing an element v of V in a word by another word. As far as I understand a type system
has no additional structures. However, in order for (V, S0, R) to be a type system in the usual
sense of the word it has to satisfy a lot of conditions and some of these conditions are easier to
express as additional structures (they are still conditions in the sense that one can prove uniqueness
theorems). To really define a type system in the sense specified above one has to be very careful
about the syntax. Two type systems which differ in the number of spaces allowed in a rule are
different and not even isomorphic since the only isomorphisms of the combinatorial structures of
the kind described above are the ones induced by isomorphisms of the underlying sets V . To get
a general theory of type systems one needs to define further the notion of an interpretation of one
type system in another and declare two type systems to be equivalent if there are interpretations
of the first in the second and vise versa which are in some sense mutually inverse. I do not think
such a theory exists and we will not attempt to develop it here. The pedantically formal approach
to type systems outlined above is not really followed below.

Let us call a type system decidable if the subset S of sequents is decidable in the set of all sentences
over the vocabulary i.e. if there is an algorithm which can mechanically check whether or not a
given sentence is a sequent. Decidability of a type system is not directly related to its expressive
power. In a sense all sequents in a type system correspond to provable facts. When a decidable
type system is used to formalize mathematics each sequent corresponds to something like a theorem
together with its proof. The context part encodes all the assumptions, definitions etc. which are
necessary for the formulation of the theorem. The judgement part can have different forms. For
theorem-like sequents it is a pair r : R where R is the conclusion of the theorem and r is the proof.

16

A conjecture is an incomplete sequent having the context Γ and the second half of the judgement
R but not the first part. Proving a conjecture amounts to finding its completion to a full sequent
i.e. finding r. Whether or not a conjecture can be proved is not decidable in any sufficiently rich
type system. If a usual mathematical proof is known and the type system is well enough adapted
to the formalization of mathematics one can obtain r by translating the steps of the proof into
constructors of the system. In many cases a computer program called a proof assistant can be used
to translate small steps automatically. If the type system is decidable then a computer program
can be used to verify that the result is a valid sequent and therefore the proof is correct.

The meaning of a general sequent of the form Γ ⊢ r : R is that in the context Γ the expression
R describes a type and the expression r describes a member of this type. Statements of theorems
appear as types of a particular kind which are populated by the proofs. Types of this kind are
require fairly complex type systems.

To clarify these ideas let us consider first the most fundamental type system called (typed) λ-
calculus. In its pure form it can not be used to formalize mathematics since it does not have
theorem-like sequents at all. Nevertheless many features of more complex type systems are taken
from the λ-calculus and it is a necessary starting point of any type theoretic development.

The vocabulary of the lambda calculus is a disjoint union of three sets V t, V T and V sp where V t
and V T are countably infinite sets whose elements are the words reserved for the names of simple
terms (term variables and constants) and simple types respectively. The third set V sp is finite and
contains all kinds of special symbols and delimiters appearing in the language. I will not try to
explicitly list all its element - they are exactly the ones which appear in the rules given below. I
will use lower case letters for elements of V t and upper case letters for elements of V T . The bold
face will be used for expressions i.e. sequences of elements of V = V T ⨿ V t⨿ V sp. For expressions
R, r and v ∈ V t ⨿ V T one writes R(r/v) for the expression obtained from R by replacing all the
occurrences of v in R by r. The sequents of the lambda calculus are of four forms

Γ ⊢

Γ ⊢ R : Type Γ ⊢ r : R

and
Γ ⊢ r = r′ : R

The context part Γ of any sequent is of the form

[stcont]T1, . . . , Tn : Type; c1 : R1, . . . , cm : Rm (2)

where Ti ∈ V T , cj ∈ V t and m,n ≥ 0. The generating sequent is the empty one. Traditionally one
does not use sequents with the empty judgement part but it seems to make things a little nicer.
The rules for generating new sequents are as follows. I may miss some of the more obvious ones. As
is usual many different combinations of elementary rules lead to the same final language. I picked
the ones which I think are convenient from the explanatory viewpoint even if they are not very
convenient from the point of view of implementation.

1. If T1, . . . , Tn : Type; c1 : R1, . . . , cm : Rm ⊢ is a sequent and Tn+1 ∈ TV − {T1, . . . , Tn} then

T1, . . . , Tn, Tn+1 : Type; c1 : R1, . . . , cm : Rm ⊢

is a sequent.

17

2. If T1, . . . , Tn : Type; c1 : R1, . . . , cm : Rm ⊢ R : Type is a sequent and cm+1 ∈ Tv −
{c1, . . . , cm} then

T1, . . . , Tn : Type; c1 : R1, . . . , cm : Rm, cm+1 : R ⊢

is a sequent.

3. If T1, . . . , Tn : Type; c1 : R1, . . . , cm : Rm ⊢ is a sequent and i = 1, . . . , n then

T1, . . . , Tn : Type; c1 : R1, . . . , cm : Rm ⊢ Ti : Type

is a sequent.

4. If T1, . . . , Tn : Type; c1 : R1, . . . , cm : Rm ⊢ is a sequent and j = 1, . . . ,m then

T1, . . . , Tn : Type; c1 : R1, . . . , cm : Rm ⊢ cj : Rj

is a sequent.

5. If T1, . . . , Tn : Type; c1 : R1, . . . , cm : Rm ⊢ r : R is a sequent and y, y′ ∈ Tv − {c1, . . . , cm}
then

T1, . . . , Tn : Type; c1 : R1, . . . , cm : Rm ⊢ r = r(y/y′) : R

is a sequent.

To express the rest of the rules we will use the standard notation where one writes

s1 s2 . . . sn
s′

to say that if s1, . . . , sn are sequents then s′ is a sequent. We set:

Γ, y : R ⊢ q : Q Γ ⊢ r = r′ : R

Γ ⊢ q(r/y) = q(r′/y) : Q

[typeconstr]
Γ ⊢ R : Type Γ ⊢ Q : Type

Γ ⊢ R → Q : Type
(3)

[termconstruct]
Γ, y : R ⊢ q : Q

Γ ⊢ λy : R.q : R → Q

Γ ⊢ r : R Γ ⊢ f : R → Q

Γ ⊢ ev(f , r) : Q
(4)

[conversions]
Γ, y : R ⊢ q : Q Γ ⊢ r : R

Γ ⊢ ev(λy : R.q, r) = q(r/y) : Q

Γ ⊢ f : R → Q

Γ ⊢ λy : R.ev(f , y) = f : R → Q
(5)

[morestr]
Γ ⊢ r = r′ : R

Γ ⊢ r′ = r : R

Γ ⊢ r = r′ : R Γ ⊢ r′ = r′′ : R

Γ ⊢ r = r′′ : R
(6)

18

The rules of the first group are called type constructors, the rules of the second group are called term
constructors and the rules of the third group are called conversions. The rules of the fourth group
should be actually included with the ”structural” rules (1)-(5). The first of the term constructors
called the function introduction or the abstraction rule the second one is called function elimination
or application rule. The first of the two conversions is called the β-conversion and the second the η-
conversion. In the η-conversion one should add the additional condition that y ∈ Tv−{c1, . . . , cm}.
In the classical λ-calculus one writes f y instead of ev(f , y).

Let us use the word context both for the left hand sides of sequents and for sequents of the form
Γ ⊢. The rules imply that if Γ ⊢ G is a sequent then Γ ⊢ is a sequent so this ambiguity is not
problematic. For a context Γ let Rexp(Γ) be the set of all R such that Γ ⊢ R : Type is a sequent.
For Γ and R ∈ Rexp(Γ) let Lexpp(Γ,R) be the set of all r such that Γ ⊢ r : R. Finally let
Lexp(Γ,R) be the quotient of Lexpp(Γ,R) by the equivalence relation defined by the condition
that Γ ⊢ r = r′ : R. Elements of Rexp are called (valid) type expressions in Γ and elements of
the Lexp(Γ,R) are called (valid) term expressions of type R (in Γ). We do not distinguish term
expressions which are convertible to each other. The letters R and L are there because elements of
Lexp occur to the left of : and elements of Rexp mostly occur to the right of :.

Contexts are analogs of theories in the languages defined by type systems and the semantics of a
type system is based on the notion of a model of a context. In the case of λ-calculus models can
take values in any Cartesian closed category but for the illustrative purposes it makes sense to start
with set-theoretic models.

One defines models of
Γ = T1, . . . , Tn : Type; c1 : R1, . . . , cm : Rm

by induction on m. Such an induction makes sense because the rules of lambda calculus imply
that for any context Γ the sequences Γ≤j = T1, . . . , Tn : Type; c1 : R1, . . . , cj : Rj are also contexts.
Moreover, for a context Γ and an expression R the sequence Γ≤j , c : R is a context if and only if
c ∈ V t− {c1, . . . , cm} and T1, . . . , Tn : Type ⊢ R : Type.

A context with m = 0 is called a basic context and the basic context underlying a given Γ is
called the base of Γ. A model M0 of the basic context T1, . . . , Tn : Type is just a collection of sets
Xi = M0(Ti) corresponding to the generating types Ti. We assume the model M0 of the base of
Γ fixed. Let T1, . . . , Tn : Type ⊢ S : Type. Any sequent of this form can be obtained from the
sequents T1, . . . , Tn : Type ⊢ Ti : Type by the constructors (3). Define a set M(S) = M(S,M0)
inductively as follows:

1. M(Ti) = Xi

2. M(R → Q) = Hom(M(R),M(Q))

whereHom(X,Y) is the set of maps of sets fromX to Y . Then a modelM of Γ overM0 is a sequence
of points M(cj) ∈ M(Rj). For example, a model of the context (T1, T2 : Type; f : T1 → T2) is a
pair of sets X1, X2 together with a function ϕ : X1 → X2.

19

We already know that a model M of Γ defines for any S ∈ Rexp(Γ) a set M(S) (which actually
depends only on M0). Let us show now that M further defines for any s ∈ Lexp(S) an element
M(s) ∈M(S).

We first define M(s) for a sequent Γ ⊢ s : S and then show that if Γ ⊢ s = s′ : S then for any M
one has M(s) = M(s′). For a given base model M0 the collection of all models of Γ over M0 is
identified with the set

E(Γ) = E(Γ;M0) =

m∏
j=1

M(Rj)

All sequents of the form Γ ⊢ s : S are obtained from the sequents Γ ⊢ cj : Rj by the rules (4).
Define for each Γ ⊢ s : S a map e(s) : E(Γ) →M(S) inductively as follows:

1. for R = Rj and r = cj let e(s) be the projection E(Γ) →M(Rj)

2. for S = R → Q and s = λy : R.q let

s(λy : R.q) : E(Γ) → Hom(M(R),M(Q))

to be the map adjoint to the map

e(q) : E(Γ, y : R) = E(Γ)×M(R) →M(Q)

3. for S = Q and s = ev(f , r) let

e(ev(f , r)) : E(Γ) →M(R)

to be the composition

E(Γ)
e(f)×e(r)−→ Hom(M(R),M(Q))×M(R)

ev→M(R)

where ev is the usual evaluation map.

We can now define M(s) for M ∈ E(Γ) as e(s)(M). To verify that this construction indeed agrees
with the conversions it is clearly sufficient to check that e(s) = e(s′) when s and s′ are as in the
rules (5). The β-conversion involves a substitution q(y/r) and we need first to describe e(q(r/y)).
One has the following lemma.

Lemma 1.2 [subst] Given Γ, y : R ⊢ q : Q and Γ ⊢ r : R one has Γ ⊢ q(r/y) : Q. The map

e(q(r/y)) : E(Γ) →M(Q)

is the composition

E(Γ)
Id×e(r)−→ E(Γ)×M(R) = E(Γ, y : R)

e(q)→ E(Q).

We can now verify the conversions:

20

1. For the β-conversion we have Γ, y : R ⊢ q : Q and Γ ⊢ r : R and we need to check that the
composition

E(Γ)
Id×e(r)−→ E(Γ)×M(R)

e(q)→ E(Q)

coincides with
e(ev(λy : R.q, r)) = ev(e(λy : R.q), e(r)).

This follows immediately from the definition of e(λy : R.q) as the function adjoint to e(q).

2. For the η-conversion we have Γ ⊢ f : R → Q and we need to check that

e(λy : R.ev(f , r)) = e(f).

This is a simple exercise in opening up the definitions.

It is clear from the constructions of M(R) and M(r) given above that they can be repeated with
the category of sets replaced by any Cartesian closed category i.e. a category with finite products
(including the final object) and internal Hom-objects. Given a model M of Γ in such a category
C and a functor F : C → C′ which preserves products and internal Hom-objects one gets a model
F (M) of Γ in C′. One of the reasons why these generalized models are interesting is that for any
context there is a universal generalized model. More precisely to each context Γ one can associate
a Cartesian closed category C(Γ) and a model M of Γ in C(Γ) such that for any C′ models of Γ in
C′ are in one to one correspondence (up to an isomorphism) with Cartesian functors from C(Γ) to
C′. These observation provides a connection between lambda calculus and the theory of Cartesian
closed categories which extends in a non-trivial way to other more complex type systems.

The construction of C(Γ) is very simple and can be outlined as follows. The category C(Γ) is a small
category in a very strict sense i.e. its objects and morphisms form sets. The set of objects of C(Γ)
is

⨿
i≥0Rexp(Γ)

i. One denotes its element corresponding to i = 0 by pt. The set of morphisms
from (R1, . . . ,Ri) to Q is

Mor((R1, . . . ,Ri),Q) = Lexp((R1 → (R2 → (. . .→ (Ri → Q) . . .))))

in particular the setMor(pt,Q) is Lexp(Q). The set of morphisms from (R1, . . . ,Ri) to (Q1, . . . ,Qj)
is

Mor((R1, . . . ,Ri), (Q1, . . . ,Qj)) =
∏

k=1,...,j

Mor((R1, . . . ,Ri),Qj).

In particular the set Mor((R1, . . . ,Ri),pt) is the one element set i.e. pt is the final object and for
j > 0 the object (Q1, . . . ,Qj) is the product of objects Qk for k = 1, . . . , j.

For a basic context T1, . . . , Tn : Type one gets a free Cartesian closed category generated by objects
T1, . . . , Tn. For a more complex context one gets a free Cartesian closed category generated by
objects T1, . . . , Tn and morphisms c1, . . . , cm from the final object to the corresponding Rj . Since
morphisms between two objects are identified with the morphisms from the point to the correspond-
ing internal Hom-object one can obtain in this way a Cartesian closed category freely generated by
any finite set of objects and morphisms.

Note also that objects of C(T1, . . . , Tn : Type) are in one to one correspondence with contexts with
the base T1, . . . , Tn : Type up to the change of names of generating constants cj . This is a reflection

21

of the fact that for Γ of the usual form (2) the categoryC(Γ) can be identified with the slice category
C(T1, . . . , Tn : Type)/B where B is the object of C(T1, . . . , Tn : Type) given by (R1, . . . ,Rj) i.e. a
category given by generating objects and generating morphisms can be identified with the category
of objects over an appropriate base in the category generated by objects only.

What is clearly missing from the lambda calculus as we have described it is the ability to define
contexts whose models correspond collections of sets and maps satisfying some equations. Equiva-
lently we can not use this type system to get categories C(Γ) defined by generators and relations.
This deficiency is in a sense the source of all further developments.

An obvious way to introduce relations into the system is to allow conversion judgments to appear
in the context part of the sequents i.e. to add to the structural rules (1)-(5) and (6) the rules

Γ ⊢ r : R Γ ⊢ r′ : R

Γ, r = r′ : R ⊢

and
T1, . . . , Tn : Type; c1 : R1, . . . , r = r′ : Rj , . . . , cm : Rm ⊢

T1, . . . , Tn : Type; c1 : R1, . . . , r = r′ : Rj , . . . , cm : Rm ⊢ r = r′ : Rj

One can define models of such contexts in the obvious way. For example a set-theoretic model of

Γ = T : Type; t : T, f : T → T, ev(f, t) = t : T

will be a set X with a point x ∈ X and an endomorphism ϕ : X → X such that ϕ(x) = x. In this
extended system (which we call the equational λ-calculus) one can define contexts whose models
are all kinds of algebraic systems for example one can define a context Gr whose models are groups.
This change of the rules however has profound and not very pleasant consequences.

One of the key classical results about λ-calculus is that it is a decidable type system. I.e. given
a sentence consisting of the type names, term names and the special symbols used above one can
determine in a mechanical way whether or not this sequence represent a valid sequent in the λ-
calculus. This is easy to do for sequents of all forms except Γ ⊢ r = r′ : R. The fact that such
sequents are also decidable i.e. that for two term expressions one can determine mechanically
whether or not they are equivalent with respect to conversions is known as the Church-Rosser
Theorem.

It is easy to see that the analog of this theorem for the equational λ-calculus fails by constructing
for any group given by generators and relations and any two words in this group a context Γ
and a candidate sequent of the form Γ ⊢ r = r′ : R which really is a sequent if and only if the
corresponding words define the same element of the group.

Another approach to the equality problem is based on the idea of equality types which allows one
to impose equalities between terms without modifying the conversion rules. Equality types are
introduced by the additional type constructor:

Γ ⊢ r : R Γ ⊢ r′ : R

Γ ⊢ eqR(r, r′) : Type

with the semantics that a model M of Γ maps eqR(r, r
′) to the one point set if M(r) =M(r′) and

to the empty set otherwise. Now one can impose relations between terms by adding to contexts

22

judgments of the usual form s : S with S = eqR(r, r
′). The argument for un-decidability given

above does not work anymore since the candidate sequent expressing the equality of elements
corresponding to r and r′ will now take the form Γ ⊢ a : eqR(r, r

′) where a will be a term expression
which contains in it the proof that these elements are equal.

The introduction of the equality types however brings with it a whole new dimension to the type
system because the type expressions eqR(r, r

′) unlike the type expressions we have considered before
depend on terms. Another issue which arises is how to ensure that the equality types are mapped
by models to pt or ∅ and not to sets with many elements. One can impose the later condition
by a rule saying that any two terms of an equality type are equivalent under conversions but this
immediately resurrects the un-decidability argument. I do not know of any satisfactory solution of
these problems in the usual type theories.

2 Homotopy λ-calculus

There are three layers in the homotopy λ-calculus i.e. strictly speaking we will define three type
systems which can be called the basic layer, the logic layer and the universe layer of the homotopy
λ-calculus. The logic and the universe layers are obtained from the basic layer by the addition of
some new type and term constructors but all three layers share the same basic architecture and the
same conversion rules. Up to the moment when we introduce term constructors and conversions
for the equality types our system is the standard dependent type system with dependent products,
(strong) dependent sums and βη-conversions.

At each step we will describe the syntax and the semantics with respect to the topological models
i.e. models with values in the category of (nice enough) topological spaces. It is actually easier to
give a rigorous definition of a model with values in the category of Kan simplicial sets but since
we do not aim to provided detailed proofs we choose the category of topological spaces as a more
familiar one.

In all three layers sequents are of the forms

Γ ⊢

Γ ⊢ R : Type Γ ⊢ r : R

Γ ⊢ R = R′ : Type Γ ⊢ r = r′ : R

and contexts are of the form

Γ = (T1, . . . , Tn : Type, c1 : R1, . . . , cm : Rm)

The structural rules are the rules (1)-(5) and (6) of the previous section plus the rules:

1. If T1, . . . , Tn : Type; c1 : R1, . . . , cm : Rm ⊢ R : Type is a sequent and y, y′ ∈ Tv−{c1, . . . , cm}
then

T1, . . . , Tn : Type; c1 : R1, . . . , cm : Rm ⊢ R = R(y/y′) : Type

is a sequent

23

2.
Γ ⊢ R = R′ : Type

Γ ⊢ R′ = R : Type

Γ ⊢ R = R′ : Type Γ ⊢ R′ = R′′ : Type

Γ ⊢ R = R′′ : Type

3.
Γ, y : R ⊢ Q : Type Γ ⊢ r = r′ : R

Γ ⊢ Q(r/y) = Q(r′/y) : Type

4.
Γ ⊢ r : R Γ ⊢ R′ = R : Type

Γ ⊢ r : R′

3 Basic layer - syntax

There are the following type constructor rules:

[sumconstr]
Γ, y : R ⊢ Q : Type

Γ ⊢
∑
y : R.Q : Type

(7)

[prodconstr]
Γ, y : R ⊢ Q : Type

Γ ⊢
∏
y : R.Q : Type

(8)

[eqconstr]
Γ ⊢ y1 : Q,y2 : Q

Γ ⊢ eqQ(y1,y2) : Type
(9)

Following the usual convention we will write R → Q instead of
∏
y : R.Q and R ×Q instead of∑

y : R.Q when Γ ⊢ Q : Type i.e. when Q does not depend on y.

Note that eq(−,−) is the only type constructor which allows one to produce types dependent on
terms. If any type expression Q depends on a term variable v it means that somewhere in this
expression there appears eqS(s1(v), s2(v)) where S is a type expression which does not dependent
on v.

There are the following term constructor rules:

1. One has the following ”introduction” and ”elimination” rules for the sum

[sumintro]
Γ ⊢ R : Type Γ, y : R ⊢ Q : Type

Γ, y : R, z : Q ⊢ ⟨y, z⟩ :
∑
y : R.Q

(10)

[sumelim]
Γ ⊢ u :

∑
y : R.Q

Γ ⊢ πu : R

Γ ⊢ u :
∑
y : R.Q

Γ ⊢ π′u : Q[πu/y]
(11)

2. One has the following ”introduction” and ”elimination” rules for the product

[prodintro]
Γ, y : R ⊢ q : Q

Γ ⊢ λy : R.q :
∏
y : R.Q

(12)

[prodelim]
Γ ⊢ f :

∏
y : R.Q Γ ⊢ r : R

Γ ⊢ ev(f , r) : Q[r/y]
(13)

24

3. One has the following five rules for the equivalence types:

[idrule]
Γ ⊢ r : R

Γ ⊢ id(r) : eqR(r, r)
(14)

[smart0]
Γ ⊢ Q : Type Γ, y : R ⊢ q : Q Γ ⊢ h : eqR(r, r

′)

Γ ⊢ θy : R.(h,q) : eqQ(q(r/y),q(r′/y))
(15)

[smart2]
Γ, y : R ⊢ e : eqQ(q,q′)

Γ ⊢ ex(e) : eq∏ y:R.Q(λy : R.q, λy : R.q′)
(16)

Γ ⊢ R : Type

Γ, x, y, z : R, ϕ : eqR(x, y), ψ : eqR(x, z) ⊢ s(ϕ, ψ) : eq∑u:R.eqR(x,u)(⟨y, ϕ⟩, ⟨z, ψ⟩)
(17)

Γ ⊢ R : Type

Γ, x, y : R, ϕ : eqR(x, y),⊢ ϵ(ϕ) : eqeqR(x,y)(π(s(id(x), ϕ)), ϕ)
(18)

Our introduction and elimination rules for the dependent sum and the dependent product are the
same as in other dependent type systems with the elimination rule for the sums being the ”strong”
version (see e.g. [?,]).

Let me make a few comments about the rules for the equivalences. The first of these is the usual
introduction rule which provides the canonical identity term in the equivalences between a term
and itself. The second rule essentially says that equivalences can be pushed through functions i.e.
given a function y 7→ q, two terms r and r′ in the source and an equivalence between these two
terms one gets an equivalence between images of these terms. The notation θy : R.(h,q) is chosen
to emphasize that y becomes a bound variable in this expression.

Here is an example. Consider f, f ′ : R → Q and g : Q → S. The composition g ◦ f is written in
the λ-calculus as λr : R.ev(g, ev(f, r)) and similarly for g ◦ f ′. If now ϕ : eqR→Q(f, f

′) then

θf : R → Q.(ϕ, λr : R.g f r) : eqR→S(λr : R.ev(g, ev(f, r)), λr : R.ev(g, ev(f
′, r)))

i.e. we got what in the language of 2-categories one would denote by g ∗ ϕ : eqR→S(g ◦ f, g ◦ f ′).

The third equivalence rule is known as functional extensionality. In its original form it was meant
to encode the fact if two functions give the same result when applied to any input then they are
equal. In our semantics it corresponds to the fact that a homotopy between two maps is the same
as a path from the point corresponding to the first map to the point corresponding to the second
in the space of maps.

The forth rule asserts that for two equivalences starting at the same term x we are given an
equivalence between them in the space of equivalences starting in x. The projection π(s(ϕ, ψ)) is
a member of eqR(y, z) which corresponds on the intuitive level to the composition of the inverse
to the first equality with the second. The fifth rule asserts that the composition of an equivalence
with the identity is equivalent to the original equivalence. These two rules imply in particular that

25

the inhabitation of the types eqR(−,−) defines an equivalence relation on terms of R. They are
related on the model level to the extension of covering homotopy property for fibrations and play
important role in many basic constructions. I am not completely sure at the moment that the rules
(17) and (18) are sufficient to cover all the cases where some analog of the extension of covering
homotopy property is required but there is a chance that they are.

The last two rules are distinct from the first three since there are conversions relating the first three
rules but there are no conversions related to the last two.

In the usual dependent type systems there is also the equality elimination rule. It ensures that if
we have a type expression Q = Q(y) where y is a variable of type R and if we have an equivalence
ϕ : eqR(y, y

′) then there is a way to produce members of Q(y′) from members of Q(y) (one in fact
considers the ability to produce members of Q(y, y′) from members in Q(y, y) where Q depends
on two variables from R). As was mentioned above in our case the only way to create a type
expression dependent on a term variable is through the use of eq-constructor. Since equivalences
can be ”pushed through” all term expressions with the help of rule (15) this implies that we only
need an analog of the equality elimination rule for the expressions Q = eqR(x, y). This is achieved
by our rule (17) which therefore may be considered as an analog of the equality elimination rules in
other dependent type systems. From this point of view rule (18) corresponds to the β-conversion
for the equality. We could have introduced a conversion instead of the equivalence ϵ(−) but this
approach allows more flexibility in the models.

There are the following conversion rules:

1. The β and η conversions for the product:

Γ, y : R ⊢ q : Q Γ ⊢ r : R

Γ ⊢ ev(λy : R.q, r) = q(r/y) : Q(r/y)

Γ ⊢ f :
∏
y : R.Q

Γ ⊢ λy : R.ev(f , y) = f :
∏
y : R.Q

where in the second (i.e. η) conversion one needs to assume in addition that y is not among
the generating constants of Γ i.e. that y ”does not occur freely in f”.

2. The β conversions and the η conversion for the sum:

Γ ⊢ ⟨r,q⟩ :
∑
y : R.Q

Γ ⊢ π ⟨r,q⟩ = r : R

Γ ⊢ ⟨r,q⟩ :
∑
y : R.Q

Γ ⊢ π′⟨r,q⟩ = q : Q(r/y)

Γ ⊢ z :
∑
y : R.Q

Γ ⊢ ⟨π z, π′z⟩ = z :
∑
y : R.Q

3. The following conversions for the equality types:

Γ ⊢ h : eqR(r, r
′)

Γ ⊢ θy : R.(h, y) = h : eqR(r, r′)

Γ ⊢ θz : Q.(θy : R.(h,q), s) : eqS(s(q(r/y)/z), s(q(r
′/y)/z))

Γ ⊢ θz : Q.(θy : R.(h,q), s) = θy : R.(h, s(q/z)) : eqS(s(q(r/y)/z), s(q(r′/y)/z))

26

4 Basic layer - semantics in Top

A model M of Γ in Top is given by a sequence of topological spaces Xi =M(Ti) one for each of the
generating types T1 . . . Tn and points xi = M(ci) in the spaces M(Ri) corresponding to the type
expressions Ri.

The key feature of the homotopy λ-calculus is the ”invariance” of models with respect to homotopy
equivalences. Consider for example the context Γ = (T1, . . . , Tn : Type). A model M of Γ is a
collection of topological spaces Xi = M(Ti) for i = 1, . . . , n. Let X ′

i = M ′(Ti) be another model
of Γ and let fi : Xi → X ′

i be homotopy equivalences. The invariance property in this case means
that for any type expression R in Γ there exists a homotopy equivalence f(R) : M(R) → M ′(R).
Hence, while we speak of models in Top the real target category is the homotopy category H.
It is important to note that models are not functorial with respect to maps Xi → X ′

i (or even
with respect to homotopy equivalences). For example, it is not difficult to define in the context
(T : Type) a type expression End such that for a model X = M(T) the space M(End) will
be homotopy equivalent to the space End(X) of endomorphisms of X. Clearly, End(X) is not
functorial with respect to X. However, if f : X → X ′ is a homotopy equivalence then there exists
a homotopy equivalence End(X) → End(X ′).

We let Γ≤i denote the context

Γ≤i = (T1, . . . , Tn : Type; c1 : R1, . . . , ci : Ri).

Then Γ≤i+1 = (Γ≤i, ci+1 : Ri+1) where Ri+1 is a valid type expression in Γ≤i.

A model of a basic context is just a collection of spaces X1, . . . , Xn corresponding to the generating
types. We will further speak of models of a context over a given model of its base i.e. we will assume
the spaces X1, . . . , Xn fixed. For a context of the form (??) and a given base model (X1, . . . , Xn)
we will define a sequence of fibrations of the form

E(Γ) → E(Γ≤m−1) → . . .→ E(Γ≤1) → pt

such that the models of Γ over (X1, . . . , Xn) will be identified with the points of E(Γ). The
space E(Γ≤1) will be the space obtained from X1, . . . , Xn by the construction corresponding to the
expression R1 = R1(T1, . . . , Tn). Points of this space will then be in one to one correspondence
with the models of (T1, . . . , Tn; c1 : R1) over (X1, . . . , Xn) according to the rule that a point
x1 corresponds to the model M with M(c1) = x1. The fiber of the space space E(Γ≤2) over
x1 ∈ E(Γ≤1) is obtained from X1, . . . , Xn and x1 by the construction corresponding to R2 =
R2(T1, . . . , Tn; c1) etc.

In order to make it work we will be doing inductively the following:

1. Assuming that E(Γ) is constructed and R is a valid type expression in Γ we will construct a
fibration E(Γ,R) → E(Γ).

2. Assuming the same as above and in addition that r is a valid term expression of type R in Γ
we will construct a section s(r) : E(Γ) → E(Γ,R).

27

3. Assuming the same as above and in addition that r′ : R is another type expression which is
convertible into r we will show that the sections s(r) and s(r′) coincide.

To define E(Γi+1) from E(Γi) we set E(Γi+1) = E(Γ,Ri+1).

In a context Γ of the form (??) the class of valid type expressions is defined in the following recursive
way.

1. T1, . . . , Tn are valid type expressions

2. If R is a valid type expression in Γ and Q is a valid type expression in (Γ, y : R) then∑
y : R.Q is a valid type expression in Γ.

3. If R is a valid type expression in Γ and Q is a valid type expression in (Γ, y : R) then∏
y : R.Q is a valid type expression in Γ.

4. If Q is a valid type expression in Γ and y1,y2 are valid term expressions of type Q in context
Γ (see below) then eqQ(y1,y2) is a valid type expression in Γ

In order to simplify the notation one writes Γ ⊢ R : Type to signify that R is a valid type expression
in the context Γ. One also writes Γ ⊢ r : R to signify that in the context Γ, R is a valid type
expression and r is a valid term expression of type R. The last three type forming rules described
above take in this notation the following form

Let us describe the semantics of type constructors (1)-(4) i.e. given E(Γ) and a type expression S
formed according to one of these four rules we will describe the fibration E(Γ,S) → E(Γ).

1. In the case S = Ti we set E(Γ, S) = E(Γ)×Xi.

2. In the case S =
∑
y : R.Q we proceed as follows. Since R is a valid type expression in Γ we

have by the inductive assumption a fibration pR : E(Γ,R) → E(Γ). Since Q is a valid type
expression in (Γ, y : R) we further have a fibration pQ : E(Γ,R,Q) → E(Γ,R). We set

E(Γ,S) = E(Γ,R,Q)

with the projection to E(Γ) being the composition of the projections pQ and pR.

3. In the case S =
∏
y : R.Q we proceed as follows. As in the previous case we have two

fibrations:
E(Γ,R,Q)

pQ→ E(Γ,R)
pR→ E(Γ)

We define E(Γ,S) to be the fibration over E(Γ) whose fiber over x ∈ E(Γ) is the space of
(continuous) sections of the fibration

p−1
Q p−1

R (x) → p−1
R (x).

More formally, this space is defined by the universal property saying that for any Z over E(Γ)
the set of maps from Z to E(Γ,S) over E(Γ) is naturally isomorphic to the set of maps from
Z ×E(Γ) E(Γ,R) to E(Γ,R,Q) over E(Γ,R).

28

4. In the case S = eqQ(y1,y2) we proceed as follows. Since Q is a valid type expression in Γ we
have a fibration pQ : E(Γ,Q) → E(Γ). Since yi, i = 1, 2 are valid term expressions of type
Q in Γ we have two sections

si = s(yi) : E(Γ) → E(Γ,Q).

We define E(Γ,S) to be the fibration over E(Γ) whose fiber over x ∈ E(Γ) is the space of
(continuous) paths from s1(x) to s2(x) in the fiber p−1

Q (x).

Let us describe now the semantics of our term constructors. Given a context Γ, a type expression
S in Γ and a term expression s of type R which is produced by one of our term constructors we
need to describe the corresponding section s(s) of the fibration E(Γ,R) → E(Γ).

1. In the case R = Ri and s = ci we proceed as follows. Since Ri is independent on cj for
j > i− 1 we have a pull-back square

E(Γ,Ri) −−−→ E(Γ≤i,Ri) −−−→ E(Γ<i,Ri)y y y
E(Γ) −−−→ E(Γ≤i) −−−→ E(Γ<i)

where Γ≤i = (T1, . . . , Tn; c1 : R1, . . . , ci : Ri). Since E(Γ≤i) = E(Γ<i,Ri) there is the
diagonal section of the middle vertical arrows which pulls back to a section of the left hand
side vertical arrow. We define s(s) as this pull-back.

2. The sum constructors:

(a) In the case s = ⟨y, z⟩ we proceed as follows. We have the fiber square:

E(Γ,R,Q,
∑
y : R.Q) −−−→ E(Γ,

∑
y : R.Q)y y

E(Γ,R,Q) −−−→ E(Γ)

By definition E(Γ,
∑
y : R.Q) = E(Γ,R,Q). Therefore we again have the diagonal

section ∆ of the left hand side arrow. We set s(s) = ∆.

(b) In the case s = (πu) and s′ = (π′u) we proceed as follows. We have fibrations

E(Γ,
∑

y : R.Q) = E(Γ,R,Q)
pQ→ E(Γ,R)

pR→ E(Γ)

and a section s(u) : E(Γ) → E(Γ,R,Q). We set s(πu) to be the composition s(πu) =
pQs(u). Then we get a pull-back square

E(Γ,Q[πu/y]) −−−→ E(Γ,R,Q)y y
E(Γ)

s(πu)−−−→ E(Γ,R)

and we set s(π′u) to be the map E(Γ) → E(Γ,Q[πu/y]) which is the product of Id and
s(u).

29

3. The product constructors:

(a) In the case s = λy : Rq we proceed as follows. We have a section s(q) of the fibration

pQ : E(Γ,R,Q) → E(Γ,R)

We need a section of the fibration

[prodsem1]E(Γ,
∏

y : R.Q) → E(Γ) (19)

By definition the fiber of the later projection over x ∈ E(Γ) is the space of sections of
the fibration p−1

Q p−1
R (x) → p−1

R (x). Using this description or the universal property of
E(Γ,

∏
y : R.Q) one concludes that sections of (19) are in natural one to one correspon-

dence with sections of pQ. We define s(s) as the image of s(q) under this correspondence.

(b) In the case s = f r we proceed as follows. We have sections s(f) and s(r) of the fibrations

E(Γ,
∏

y : RQ) → E(Γ)

and
E(Γ,R) → E(Γ)

respectively. Observe that there is a pull-back square

[anothersq]

E(Γ,Q[r/y]) −−−→ E(Γ,R,Q)y y
E(Γ)

s(r)−−−→ E(Γ,R)

(20)

and we need to get a section of the left hand side vertical arrow.

By definition of E(Γ,
∏
y : RQ) the section s(f) takes a point x ∈ E(Γ) to a section of

p−1
Q p−1

R (x) → p−1
R (x). Evaluating this section on s(r)(x) we get an element of p−1

Q p−1
R (x).

This means we got a map g : x 7→ s(f)(s(r)(x)) from E(Γ) to E(Γ,R,Q). By construc-
tion this map has the property pQ ◦ g = s(r) and therefore defines a section of the left
hand side arrow in (20). We define s(s) as this section.

4. The equality constructors.

(a) In the case s = r[ϕ/v] we proceed as follows. We have fibrations pR : E(Γ,R) → E(Γ)
and pQ : E(Γ,Q) → E(Γ). The term expression r defines a map E(Γ,Q) → E(Γ,R)
over E(Γ). By abuse of notation we will denote this map by s(r). We further have two
sections s(qi), i = 1, 2 of pQ. We need to get a section of

[needsec]E(Γ, eqQ(q1,q2), eqR(r[q1/v], r[q2/v])) → E(Γ, eqQ(q1,q2)) (21)

The map s(r) defines a map on the spaces of paths

E(Γ, eqQ(q1,q2) → E(Γ, eqR(r[q1/v], r[q2/v]))

over E(Γ). Such maps are in one to one correspondence with sections of (21).

30

(b) In the case s = c(ϕ, ψ) we proceed as follows. We have a fibration pR : E(Γ,R) → E(Γ).
Since everything will be happening fiber by fiber over E(Γ) let us fix a point p ∈ E(Γ)
and look at fibers over this point. Let L = p−1

R (p). The fiber of E(Γ, x, y, z : R, ϕ :
eqR(x, y), ψ : eqR(x, z)) over p is the fibration F over L × L × L whose fiber over
(l1, l2, l3) is the space of pairs γ12, γ13 where γ12 is a path from l1 to l2 and γ13 is a path
from l1 to l3. The fiber over p of the fibration

E(Γ, x, y, z : R, ϕ : eqR(x, y), ψ : eqR(x, z), eq
∑

u:R.eqR(x,u)(⟨y, ϕ⟩, ⟨z, ψ⟩))
↓

E(Γ, x, y, z : R, ϕ : eqR(x, y), ψ : eqR(x, z))

is a fibration w : E → F such that the fiber of w over a point (l1, l2, l3, γ12, γ13) of F is
the space of paths from γ12 to γ13 in the space of paths in X starting in l1. To construct
s(s) we need to get a section of w. In other words for any pair of paths starting in l1
we need to assign in a continuous way a path from the first path to the second in the
space of paths starting in l1. There are clearly many way of doing this and we pick any
one. Intuitively we can say that we first contract the first path to the source point l1
and then take the inverse to the contraction of the second path to l1.

(c) In the case s = ϵ(ϕ) we use any homotopy which relates the previous construction to
identity when the first of two passes is degenerate.

(d) In the case s = ex(e) we proceed as follows. Everything again happens fiber by fiber
over E(Γ). We fix a point p ∈ E(Γ) and look at fibers over this point. Let w : F → L
be the fiber over p of the fibration

E(Γ,R,Q) → E(Γ,R).

We have two sections s1, s2 of this fibration (which are fibers of s(ri), i = 1, 2) and the
section γ (which is the fiber of s(bfe)) of the fibration of paths from s1 to s2 i.e. a map
which assigns to any l ∈ L a path γ(l) from s1(l) to s2(l) in the fiber w−1(l). We need
to construct a point in the fiber M of

E(Γ, eq∏ y:R.Q(λy : R.r1, λy : R.r2)) → E(Γ)

over p. By construction this fiber is the space of paths from the section s1 to the section
s2 in the space of sections of w. This space is the same as the space of sections of the
space of paths where we already have a point γ.

I am not ready to describe all the conversions in the system yet. It is clear that β-conversions
both for the sum and for the product should be included. There may also be a need for a conver-
sion related to the functional extensionality rule. There does not appear to a need in any other
conversions.

Example 4.1 [function] For the context Γ = (T1, T2 : Type; f : T1 → T2) the space E(Γ)
corresponding to the given model X1, X2 of (T1, T2) is the space Hom(X1, X2) of continuous
maps from X1 to X2. An individual model of Γ is therefore, as one would expect, a triple
(X1, X2; f : X1 → X2).

31

5 Levels

We will not be entirely formal both because the complete formality is only possible to achieve in a
computer implementation and because it is important to develop some sort of semi-formal language
which then can be used as a higher level language of the implementation. We will usually write

{y : R, z : Q}

instead of
∑
y : R.Q and similarly use notations such as

{y : R, z : Q, u : S}

for iterated sums (in this case
∑
y : R.

∑
z : Q.S). When we do use sums we may write

∑
y, y′ : R

instead of
∑
y : R.

∑
y′ : R and similarly for products. To make notation shorter we will sometimes

write contexts in the form (T1, . . . , Tn; . . .) instead of (T1, . . . , Tn : Type; . . .)

We start with the most important type expression Contr(T). It is defined in the context T : Type
by the formula:

Contr(T) = {t0 : T, ϕ : eqT→T (λt : T.t0, λt : T.t)}

Models of (T ; a : Contr(T)) are contractible spaces. Indeed, a model Contr(X) of Cont(T)
over a model X of T is the space of pairs (x0, h) where x0 is a point of X and h is a homotopy
from the map X → X which is identically equal to x0 to the identity map. Clearly a model of
(T ; a : Contr(T)) is a space with a point and a contraction to this point. This is the same as a
contractible space since for any X such that Cont(X) is not empty it is contractible. We will prove
the last fact on the level of the type system in Theorem 5.3 i.e. we will show that in the context
(T ; a : Contr(T)) (I am using an abbreviated expression for the context) there is a term expression
c of type Contr(Contr(T)). This theorem provides a good demonstration of how one uses the
constructors and conversions of the previous section to translate homotopy-theoretic arguments
into the formal language of our type system.

Define now by induction type expressions Lvn for all n ≥ −1. We set:

Lv−1(T) = Contr(T)

Lvn(T) =
∏

t, t′ : T.Lvn−1(eqT (t, t
′))

We already know that a model of (T ; a : Lv−1(T)) is a contractible space.

Lemma 5.1 [lvmodels] For n ≥ 0 a model of (T : Type; a : Lvn(T)) is a space X such that for
all x ∈ X one has πi(X,x) = 0 for i ≥ n. In particular, for n = 0 there are only two models the
empty space and the contractible space.

Proof: For n = 0 a model is a space X together with a point in

Lv0(X) =
∏

x,x′∈X
Contr(P (X;x, x′))

32

where P (X;x, x′) is the space of paths from x to x′ in X. There are only two spaces for which such
a point exist - the empty space and the contractible space. Note also that if the space Lv0(X) is
non-empty it is contractible. Proceed now by induction on n assuming that for any X the space

Lvn(X) =
∏

x,x′∈X
Lvn−1(P (X;x, x′))

is non-empty if and only if for all x ∈ X one has πi(X,x) = 0 for i ≥ n and in this case it is
contractible. Consider Lvn+1(X). One can easily see that it is non-empty if and only if for any
x ∈ X the loop space ΩX,x of X in x has the property Lvn and that in this case it is contractible.
This clearly implies the inductive step.

Before proving the basic properties of the level expressions on the system level we need to establish
a few basic facts about equivalences. Let us start with the following notations. In the context
(T ;x, y : T, a : eqT (x, y)) set

inv(a) = πs(a, x) : eqT (y, x)

Recall that our rule (15) allows us to write x for the identity equivalence from x to x. Recall further
that π is the projection from a dependent sum to its index type. One verifies easily that for a model
(X;x, y ∈ X, γ ∈ P (X;x, y)) of our context the model inv(γ) of inv(a) is a path from y to x which
represents up to homotopy the inverse to γ. In the context (T ;x, y, z : T, a : eqT (x, y), b : eqT (y, z))
set

comp(a, b) = πs(inv(a), b) : eqT (x, z)

Again one verifies easily that on models this corresponds to the composition of paths. The following
lemma shows that identities are identities with respect to comp and inv is an inverse with respect
to comp.

Lemma 5.2 [invcomp]

1. There are term expression c, c′ such that

T : Type;x, y : T, a : eqT (x, y) ⊢ c : eqeqT (x,y)(a, comp(x, a))

T : Type;x, y : T, a : eqT (x, y) ⊢ c′ : eqeqT (x,y)(a, comp(a, y))

2. There are term expressions c, c′ such that

T : Type;x, y, z : T, a : eqT (x, y), b : eqT (y, z) ⊢ c : eqeqT (x,y)(a, comp(comp(a, b), inv(b)))

T : Type;x, y, z : T, a : eqT (x, y), b : eqT (y, z) ⊢ c′ : eqeqT (x,y)(b, comp(inv(a), comp(a, b)))

Proof: Later.

We have already seen that on the model level the space Lvn(X) is of level 0 for any X. The
following result proves this statement on the type system level.

33

Theorem 5.3 [main1] For any n ≥ −1 there exists a term expression c such that

T : Type ⊢ c : Lv0(Lvn(T)).

Proof: The proof will be considered later.

On the model level it is obvious that any Lvn space is Lvn+1 space. The following theorem asserts
the same fact on the type system level.

Theorem 5.4 [main2] For any n ≥ −1 there exists a term expression c such that

T : type; a : Lvn(T) ⊢ c : Lvn+1(T).

We shall say that a type expression R in a context Γ is of level n if there exists a term expression
in the same context of type Lvn(R).

Here is another useful construction. It asserts that a product of types of level n is itself of level n
and that the product of types is contractible if and only if each type is contractible.

Proposition 5.5 [lvprod] Let Γ, y : R ⊢ Q : Type. Then for any n ≥ −1 there exists is a term
expression c such that

Γ ⊢ c : (
∏

y : R.Lvn(Q)) → Lvn(
∏

y : R.Q)

and if n = −1 then there is a term expression d such that

Γ ⊢ d : Lv−1(
∏

y : R.Q) → (
∏

y : R.Lv−1(Q)).

Proof: Later.

It is clear from Lemma 5.1 that models of types of level 0 are truth values (i.e. either empty or
equivalent to a point). Form this point of view an addition to a context Γ of a constant c of type
R where R is a type expression of level zero means that we add an axiom to Γ while an addition
of a constant c of type whose level is greater than zero means that we add a structure.

Before describing the type expression Un = Un(f) (defined in the context (T1, T2; f : T1 → T2))
which corresponds to the univalence of f we need to do some preliminary work. We start with the
following expression defined in Γ = (T1, T2; f : T1 → T2, v : T2):

Fb(f, v) = {u : T1, ϕ : eqT2(f u, v)}

we will further abbreviate Fb(f, v) to f−1(v). Note that for am model (X1, X2; p : X1 → X2, y : X2)
of our context the model of f−1(v) is the homotopy fiber of p over y. In the context (Γ, v′ : T2, a :
eqT (v, v

′), z : f−1(v)) define

ha(f, a, z) = (unpack z as ⟨u, ϕ⟩ in ⟨u, comp(ϕ, a)⟩) : f−1(v′)

34

On the model level this construction gives us the usual action of the paths of the base on the fibers
of a fibration.

In the context (T1, T2; f : T1 → T2) set

Eq(f) =
∏

v : T2.Contr(f−1(v)).

One verifies easily that Eq(f) is a level 0 expression. Its model is non-empty if and only if the
model of f is a homotopy equivalence. The following lemma show that the paths of the base act
on the fibers by equivalences.

Lemma 5.6 [haeq] There is a term expression c such that

T1, T2 : Type; f : T1 → T2, v, v
′ : T2, a : eqT2(v, v

′) ⊢ c : Eq(λz : f−1(v).ha(f, a, z))

Proof: Later.

In the basic context T1, T2 set:

Eq(T1, T2) = {f : T1 → T2, e : Eq(f)}.

Since Eq(f) is a type expression of level 0, Eq(T1, T2) is in a sense a subtype of T1 → T2. For
a model (X1, X2) of the context the model Eq(X1, X2) of this type is the subspace of homotopy
equivalences in Hom(X1, X2). Note also that since Contr(T) projects to T and since f−1(v)
projects to T1 any member ⟨f, e⟩ of Eq(T1, T2) defines a member of

∏
v : T2.T1 = (T1 → T2) which

corresponds on the model level to the equivalence inverse to f .

In (T1, T2; f : T1 → T2, v, v
′ : T2) we have

haeq(f, v, v′) = λa : eqT2(v, v
′).⟨λz : f−1(v).ha(f, a, z), c⟩ : eqT2(v, v

′) → Eq(f−1(v), f−1(v′))

where c is the term expression of Lemma 5.6. This gives a mapping from paths to the equivalences
between the homotopy fibers.

We can now translate the definition of a univalent map given in Section ?? into the type system.
In the context (T1, T2; f : T1 → T2) set

[univdef]Un(f) =
∏

v, v′ : T2.Eq(haeq(f, v, v′)) (22)

Clearly, Un(f) is a level 0 type which is non-empty iff for each pair v, v′ : T2 the map haeq(f)
from the paths between v and v′ to the equivalences between the corresponding homotopy fibers
of f is an equivalence. Models of (T1, T2; f : T1 → T2, a : Un(f)) are exactly the univalent maps
p : X1 → X2 in the sense of Definition 0.2.

To complete the definition of a universe context we need to find a way to express in the system
the condition that the class of types defined by a univalent map is closed under enough operations
to serve as a universe where models of homotopy λ-calculus may be considered. Fix a context

35

Γ = (U , Ũ ; υ : Ũ → U) which we will eventually extend to create a universe context. We assume
that this context is included into all the contexts considered below unless the opposite is explicitly
mentioned. We also fix a model p : Ũ → U of Γ.

Let R be a valid type expression in Γ and S be a valid type expression in the context (Γ, y : R).
Set

Class(R,S, υ) = {f : R → U , coh :
∏

y : R.Eq(υ−1(f y),S)}

Theorem 5.7 [main2] For any R and S as above there is a term expression c such that

a : Un(υ) ⊢ c : Lv0(Class(R,S, υ))

In other words for any univalent υ and any R, S the type Class(R,S, υ) is of level 0.

Proof: Later.

Theorem 5.7 shows that for univalent υ we may treat Class(R,S, υ) as a condition on R and S.
Let us see what it means on the model level.

For a fixed model p : Ũ → U of Γ the sequent (Γ, y : R ⊢ S) defines a fibration pS : E(R,S) → E(R).
The model of Class(R,S, υ) is the space of all possible ways of inducing this fibration from p. The
first component gives a map E(R) → U and the second an equivalence of Ũ ×U E(R) with E(R,S)
over E(R). In particular it is non-empty if and only if pS can be obtained as a pull-back of p
i.e. if and only if it is classifiable by p. Due to the universal property of univalent maps this is
equivalent to the condition that the fibers of pS belong to the set A(p) of homotopy types occurring
as fibers of p. Theorem 5.7 asserts that in this case the space of all possible ways to achieve such
a classification it is contractible.

Set
Fam(υ) = {u : U , f : υ−1(u) → U}

If a model of p is a univalent map p : Ũ → U corresponding to a set of homotopy types A = A(p)
then a point in the model of Fam(p) is a homotopy type I from A together with a map to U i.e.
it is a family of homotopy types from A indexed by I. It is further the same as a fibration J → I
which is classifiable by p i.e. such that all its fibers are in A.

In (Γ, y : Fam(υ)) consider the type expressions:

Prod =
∏

z : υ−1(π y).υ−1(π′y z)

Sum =
∑

z : υ−1(π y).υ−1(π′y z)

where π and π′ are the term constructors of (11) which take ⟨u, f⟩ to u and f respectively.

Set in Γ:
Cl prod = Class(Fam(υ),Prod, υ)

36

Cl sum = Class(Fam(υ),Sum, υ)

According to Theorem 5.7 in the presence of a : Un(υ) these types are of level 0 and one verifies
immediately that for a univalent model p : Ũ → U of Γ the model of Cl Prod (resp. Cl Sum) is
non-empty if and only if A(p) is closed under products (resp. sums) of families. We also need to
ensure that A(p) is closed under the formation of the space of paths. On the level of models this
means that the diagonal Ũ → Ũ ×U Ũ is classifiable i.e. that there is a homotopy pull-back square

Ũ −−−→ Ũ

∆

y yp

Ũ ×U Ũ
Eq−−−→ U

In on the type system level this amounts to the inhabitation condition for a Class expression
defined as follows. Set in Γ:

Path = {u : U, x : υ−1(u), x′ : υ−1(u)}

Set in (Γ, y : Path):
Diag = eqυ−1(π y)(π

′y, π′′y)

where π⟨u, x, x′⟩ = u, π′⟨u, x, x′⟩ = x, π′′⟨u, x, x′⟩ = x′. Finally set in Γ:

Cl eq = Class(Path(υ),Diag, υ).

We can now define the standard universe context as follows.

Definition 5.8 [standuniv] The standard universe context Ω is given by:

Ω = (Ũ ,U : Type; υ : Ũ → U , aprod : Cl prod, asum : Cl sum, aeq : CL eq).

It is my current understanding that this indeed defines a universe context i.e. that we may construct
vertical models of any context Γ in Ω. In particular no further structures or axioms are needed in
order to deal with term constructors and conversions. Let me describe now what I mean by that
in detail.

Mention: not all (R,S) are classifiable e.g. (U ,U) whose model is U × U → U is not classifiable.
Similarly, the pair whose model is Fam(p) → U is not classifiable or ”large”. If we make U×U → U
classifiable then only the trivial and the empty models survive (Th. Girard).

Mention: Class(S). Show that Class(R,S) is equivalent to
∏
y : R.Class(S)?

???? Cl eq is actually provable? ????

6 Basic layer - generalized models

I do not have a good name at the moment for the full class of categories where models for contexts
in the homotopy λ-calculus can take values. What is clear is that this class includes the categories
of fibrant objects in Cartesian closed Quillen model categories. To illustrate the main ideas of
our constructions we will use the category Top of (nice enough) topological spaces as the standard
target category for our models.

37

7 Homotopy λ-calculus - logic layer

8 Homotopy λ-calculus - universe constructors

Going back to the homotopy λ-calculus we see that models of the context (T1, T2 : Type; f : T1 →
T2, a : Un) are in one to one correspondence with sets of isomorphism classes of homotopy types.
We will describe below (see Section ??) type expressions Lvn in the context (T : Type) such that
models of (T : Type; a : Lvn) are exactly spaces with πi = 0 for i ≥ n. In particular models of
(T : Type; a : Lv−1) are contractible spaces i.e. there is essentially only one model - the point,
models of models of (T : Type; a : Lv0) are truth values i.e. there are essentially two models the
empty space and the point, models of (T : Type; a : Lv1) are sets etc. Combining this with the
expression Un we see that models of the context (T1, T2 : Type; f : T1 → T2, a : Un, b : Lvn+1(T2))
are exactly subsets in the superset of the isomorphism classes of n-types. In particular, models of
(T1, T2 : Type; f : T1 → T2, a : Un, b : Lv2(T2)) are the subsets in the superset of isomorphism
classes of sets.

So far the empty context of our type system is exactly that - empty. One can follow two approaches
in the further development of the system. In one approach one would leave the empty context
empty and set up a context which is rich enough to be able to encode mathematics in it. In
another approach one introduces new type constructors which allow one to populate the empty
context. I will take the first approach. The context I want to consider is the universe context of
the preceding section together with a number of additional axioms. One can vary these additional
axioms obtaining for example boolean or intuitionist universes. The main reason for choosing this
approach over the other one is that there is no consensus over the exact properties a universe should
posses. Some may want to work with weaker universes which therefore will have a wider class of
external models and some with stronger ones. Because of this it seems to be a good idea to keep
the type system itself as simple as possible and introduce the additional bells and whistles on the
level of the universe context.

1. The basic universe structure i.e. υ : Ũ → U , a : Un(υ)

2. The basic closeness axioms aprod : Cl prod(υ), asum : Cl sum(υ), aeq : Cl eq(υ).

3. Define the empty type ∅ = ∅(υ) =
∏
y : U .υ−1(y). Require ∅ to be small i.e. a∅ : Class(∅, υ).

4. Define Un = {u : U , a : Lvn(υ
−1(u))} i.e. Un is the part of the universe span by n-types.

Require U0 to be small i.e. aprop : Class(U0, υ). This is an analog of ”impredicativity of
Prop”.

5. If desired add the boolean axiom abool :
∏
u : U0.(((υ

−1(u) → ∅) → ∅) → υ−1(u)).

6. Impose an analog of Proposition 0.6 combined with the fact that any set of types is contained
in a set of types closed under the sum, product and path operations. To do it add to our
universe context the following. For each pair u : U , f : υ−1(u) → U fix

univ(u, f) : U , ξ(u, f) : υ−1(univ(u, f)) → U .

Set
U(u, f) = υ−1(univ(u, f))

38

Ũ(u, f) = {z : U(u, f), v : Ũ , ϕ : eqU (ξ(u, f)(z), v)}

and υ(u, f) : Ũ(u, f) → U(u, f) let be the projection. Fix further:

a0 : Un(υ(u, f))

a1 : Cl prod(υ(u, f)), a2 : Cl sum(υ(u, f)), a3 : Cl eq(υ(u, f))

a4 : Class(υ−1(u), υ−1(f y), υ(u, f)).

In human language it means that any family with small fibers and small base can be induced
from a univalent family such that the corresponding class of fibers is closed under the standard
operations while both the base and the fibers are again small.

We will sometimes call models of the kind discussed above external models. They are extremely
useful at the stage of type system development. However, if one wants to use a type system to
build foundations of mathematics one has to be able to speak of models defined entirely inside
the type system. One may consider two types of such internal models - the horizontal models
or interpretations and the vertical models. Both types of ”models” exist in the first order logic.
Interpretations of one theory in another assign sorts to the second theory to sorts of the first,
formulas of the second theory to predicate symbols of the first and possibly complex function-like
expressions of the second theory to functional symbols of the first. Interpretations are ”horizontal”
in a sense that they provide a correspondence between entities of the same kinds in two theories.
Models on the other hand assign constants of the second theory to sorts of the first. For example Z/2
may be treated as a model of group theory in the set theory which assigns to the only generating
sort of group theory a constant corresponding to a set with two elements. In order to be able
to speak about models of one theory in another the target theory should have special properties
because otherwise it is unclear how to extend the correspondence from sorts to functional and
predicate symbols. Since the notion of a map between constants is essential for the construction
of such an extension and because there is no sensible way to say what properties or structures the
target theory should have to enable one to discuss maps between constants, models in the first
order logic are considered only with values in versions of the set theory.

The situation in the homotopy λ-calculus looks as follows. Horizontal models of one context in
another can again be defined for any pair of contexts and correspond naturally to interpretations
of one first order theory in another. As the adjective ”horizontal” suggests such models assign a
type expression in the target context to each generating type in the source context and similarly
map term constants to appropriately typed term expressions.

Vertical models of a context can only be considered with values in special contexts which I will
call universe contexts. Vertical models in a given universe context Ω are quantifiable i.e. for a
context Γ the vertical models of Γ in Ω can be identified (in an appropriate sense) with terms of
a type Γ(Ω) defined in Ω. For example, taking the context Gr which corresponds to the group
theory (formulated as a first order theory) one gets for any universe context Ω a type Gr(Ω) whose
members can be thought of as groups in the universe Ω.

In particular, any universe context has a type U(Ω) which corresponds to vertical models of the
basic context U = (T : Type) in Ω. The adjective ”vertical” comes from the fact that vertical
models assign to type expressions in Γ term expressions of type U(Ω) in Ω. Since a type expression

39

in Γ is the same as an interpretation of the basic context T : Type in Γ this is a particular case of
the fact that interpretations of Γ′ in Γ defines functions from Ω(Γ) to Ω(Γ′).

Let me explain the semantics of universe contexts with respect to models in Top. Any universe
context has among its generating types two distinguished ones - the type U mentioned above and the
type Ũ corresponding to the models of the context (T : Type; t : T). In addition there is a constant
υ : Ũ → U which corresponds to the obvious interpretation of (T : Type) in (T : Type; t : T). In the
most simple case there are no other generating types and all other generating constants are in an
appropriate sense axioms rather than structures. Therefore, a model of Ω is given by two spaces Ũ
and U and a continuous map p : Ũ → U satisfying certain conditions. By the invariance principle
Ũ , U and p can be replaced by any homotopy equivalent triple (Ũ ′, U ′, p′) and we may assume that
p is a fibration.

The definition of univalent maps given above can be directly translated into the homotopy λ-
calculus such that we get a type expression Un in the context (T1, T2 : Type; f : T1 → T2) with the
property that models of the context (T1, T2 : Type; f : T1 → T2, a : Un) are exactly the univalent
maps (see (22)).

9 Comparison with the Martin-Lof’s type system

Let me discuss briefly the equality issues in the (intensional) Martin-Lof’s type system which seems
to be the closest relative of the homotopy λ-calculus among the known type systems. In this system
equality shows up in two ways. There are so called equality judgments which are of the form

a = b : R.

This judgement translates into the human language as - ”R is a valid type expression, a and b are
valid term expressions of type R and these expressions are definitionally equal”. There are also
equality types (originally called identity types) which are introduced in the same way as our types
eq i.e. by the rule

Γ ⊢ T : Type

Γ, x, y : T ⊢ eqT(x, y) : Type
The validity of the equality judgement is known as definitional equality and the inhabitation of the
equality type as propositional equality.

In our type system we do have analogs of both. Our equivalence types are clearly analogs of Martin-
Lof’s equality types. The definitional equality of two terms in our system means that these two
terms are convertible into each other. While we do not have a special form of judgement reserved
for it, the rules of our system show that the judgement

a : eqR(a,b) (23)

will be valid if and only if R is a valid type expression, a and b are valid term expressions of
type R and these two term expressions can be converted to each other. A somewhat strange form
of (23) is a consequence of the fact that in the current syntax of homotopy λ-calculus we use the
same symbol for a term and the corresponding identity equivalence from it to itself. Convertibility
is expected to have two main properties (which are at the moment conjectural):

40

1. Convertibility should be decidable

2. Convertibility should be context independent i.e. if two term expressions a and b are well
defined in Γ then they are convertible to each other in Γ if and only if they are convertible
to each other in Γ,∆ where Γ,∆ is an extension of Γ.

The first of these two properties implies that convertibility does not require a proof - it can be
checked automatically. The second one implies that the convertibility can not be imposed by
adding something to the context. Due to these two properties we do not treat definitional equality
(= convertibility) as a part of the language but in a sense as a property of the language. As far
as I understand the same can be said about the definitional equality in the intensional version of
Martin-Lof’s type theory except that there it is made more explicit through the equality judgments.

The properties of the equality types however differ considerably between the Martin-Lof’s system
and our system. First of all in Martin-Lof’s system the equality (identity) types are actually
defined as special instances of the inductive types. Since at the moment I do not understand how
to introduce general inductive types into the homotopy λ-calculus I do not know whether or not
something like this is possible there.

There is another approach to the definition of equality based on the Leibniz idea that two things
are equal if they have the same properties. To make this into a formal definition one needs a
distinguished type Prop (discussed in []). Then one says that for x, y : T one has x =L y if for all
P : T → Prop one has P (x) = P (y). The equality in Prop is defined as equivalence of propositions.
This can be made precise in any context which has Prop and it seems it should be equivalent to
the inhabitation of our equality type eqT (x, y). However even if we fix a Leibniz equality between
x and y it does not give us enough information to replace x by y in constructions since it does not
tell us anything about which equivalence to choose.

10 The leftovers

Remark 10.1 Doing foundations for a mathematician is a little like doing mathematics for a
physicist. One has intuitive ideas of what should be right and what should be wrong but does not
know exactly how to formalize these ideas.

The standard example of a type system is the (pure) typed λ-calculus. It is a very general but not
a very rich type system. Consider for example the context (T : Type, f : T → T). A set-theoretic
model M of this context is given by a set X = M(T) together with an endomorphism ϕ = M(f).
Suppose now that we want to define a context whose model is a set with an involution i.e. with an
endomorphism ϕ such that ϕ2 = 1. In order to do so we need to be able to require that f2 = Id.
This ”axiom” should be a part of the context so it has to be expressed in the form e : Rexp(T, f)
where Rexp(T, f) is some type expression of T band f and e is a new variable. On the level of
models it means that we must express the condition that ϕ2 = Id in terms of non-emptiness of some
set constructed in the language of λ-calculus out of X and ϕ. One observes that there is not way
of doing this. In the classical λ-calculus one deals with this problem by adding the axiom f2 = Id
as a new conversion rule. This clearly contradicts the philosophy outlined above which considers

41

conversions to be a part of the type system and the type system to be fixed. In the human language
analogy one would say that one does not modify the grammar of the language each time one wants
to describe a new scene.

Another problem which one encounters in the λ-calculus is the following one. Let us again consider a
set-theoretic model M = (X,ϕ) of the context (T : Type, f : T → T). The pair (X,ϕ) ”generates”
many other sets, for example one may consider the set of fixed points of ϕ i.e. the set {x ∈
X|ϕ(x) = x}. There is however no way to produce a type R in our context such that M(R) = {x ∈
X|ϕ(x) = x} which shows that even with equations introduced on the conversion level the usual
typed λ-calculus lacks enough constructors to emulate the most basic set-theoretic operations.

In oder to use a type system to formalize pure mathematics we need it to have, for any type of
mathematical structure, a context whose models are exactly the structures of this type. Let us see
what this meta-condition means. In order to even start thinking about it we have to answer two
questions. What do we mean by a type of mathematical structure? Where our models take values?
Since these questions have no mathematical sense outside of an already chosen formalization of
mathematics we need to address them on the intuitive level.

We can deal with the first question by choosing a few basic types of structure and hoping that if
we can find contexts to represent these types then we will also manage to find contexts to represent
all other types. To get started let us consider for example finite sets. Thus we want to see what is
required from a type system so that we can find a context Γ whose models are finite sets. In this
case we probably should not reflect too much on where our models take values and consider models
in sets.

Suppose now that we want to construct a theory (in a given type system) where we can conveniently
express pure mathematics. Since the notion of a set is central to contemporary pure math there
has to be a type S in this theory whose members we want to think of as sets. One can achieve this
to some extend in classical type systems by creating a context which provides an encoding in terms
of this type system of the Zermelo theory or some version of it (see e.g. [?] where this is done in
the type system of Coq). Doing such a thing however recreates all the problems with the Zermelo
approach to set theory the major one of which from my point of view is the fact that in this theory
one can formulate and prove theorems about sets which are not invariant under isomorphisms of
sets.

The version I am looking into right now is based on the idea that along with the usual dependent
sum and dependent product there is a group of additional type constructors of the following form.
First, for any finite (labeled) simplicial set B and any type T there is a new type T (B). Second
for any B as above, any simplicial subset A of B and any term x : T (A) there is a type T (B,A, x).
One has term constructors and conversions to ensure among other things that T (pt) = T and
T (A

⨿
B) = T (A)× T (B). The basic example is that for < x, y >: T × T = T ({0}

⨿
{1}) the type

eq(x, y) = T (∆1, ∂∆1, < x, y >)

is the type of equivalences between x and y in T . There are also term constructors and conversions
which ensure that T (B,A, x) is contravariantly functorial with respect to maps of pairs (B,A) →
(B′, A′) and that T (A)(A′) = T (A×A′). Together with a sort of Kan axiom these structures allow
one to define things like compositions of equivalences and prove that these compositions have good

42

properties.

What is outlined is a language. As always in type theory a theory in this language is given by a
context i.e. a series of declarations of generating types and terms of the form T1, ...Tn : Type and
c1 : R1, ..., cn : Rn where Ri is a type expression of T1, .., Tn and c1, ...ci−1. Given a context Γ it
makes sense to speak of models of the theory which Γ defines. Standard models in my approach
take values not in the (a) category of sets but in the (a) homotopy category which one can think
of as the category of ∞-groupoids.

It can still be defined for members of types but is not reflexive unless the type is of level 1 i.e. is
mapped to a set (as opposed to a general infinity groupoid) by any model.

It is crucial to understand what we mean by a model. We will distinguish three kinds of models:
external models, horizontal (internal) models and vertical (internal) models.

If one wants to use a type system to build foundations of mathematics external models can only be
used for illustrative purposes. Indeed, one of the major problems in any approach to foundations
is to formalize the notion of a set and before speaking about sets in the definition of a model or
in any other context we need to say what a set is first. Therefore on the formal level we can only
consider models of one context in another. As it turns out there are two possible notions of such
models. I shall call them horizontal models and vertical models. Horizontal models correspond to
the logical notion of interpretation while vertical models correspond to models proper.

Suppose first that I have a set-theoretic model of a context Γ = (T : Type, t : R(T)) in the intuitive
sense outlined above. How to translate this model into some structure defined entirely in the
framework of our type system? First we should choose a formalization of set theory in our system.
It means that we have to define a context SetTheory whose set-theoretic models are set-theoretic
models of set theory. In particular there should be a type Sets in SetTheory whose members we
think of as sets and enough structures on this type to emulate the usual operations with sets. Our
intuitive model M assigned a set X to T and an element x in R(X) to t where R(X) refers to
the set obtained by applying the type constructor R(−) to the set X according to some procedure
for doing so. Hence, the formal version of M should assign a member X of Sets to T and ”an
element x of R(X)” to t. In order to make sense of the part of the sentence in the quotes we
should be able to do two things. First we should be able to define a new member r(X) of sets by
translating somehow the type constructor R into a term constructor r for terms of Sets. Second,
we should be able to assign a type τ(A) to each member A of Sets in a manner compatible with
our constructor translation. Then the quoted phrase above can be replaced by ”and a member x
of the type τ(r(X))”.

This will be called a (slanted) model of Γ in Sets. The name slanted comes from the fact that our
model assigns a term to a type. Horizontal models discussed above assign a type to a type. The
key advantage of slanted models is that they are classifiable i.e. for any context Γ and any universe
Ω the set of all models of Γ in Ω can be identified with the set of all terms of a type Γ(Ω) which
is defined in the context Ω. For example, if Gr is the context encoding the notion of a group then
Gr(Ω) will be the type of groups in Ω.

To describe the second problem suppose that we want to have a context (theory) useful for the

43

formalization of our intuitive dealings with finite sets. In particular this means that we want to
have a type S in this context whose members we want to think of as finite sets.

The next thing to understand is what happens given (Γ, v : Q ⊢ R(v) : Type) and (Γ, ϕ : eqQ(x, y)).
It is clear that ultimately one should have then R(ϕ) : EqType(R(x), R(y)). The question is can we
then provide all necessary conversions in a concise way. Eq(T1, T2) can be defined as:

[eqdef1]{f : T1 → T2, b : T2 → T1, ϕ : eqT1→T1(Id, bf), ψ : eqT2→T2(Id, fb), α : eqeqT1→T2
(f,fbf)(ψ∗f, f∗ϕ)}

(24)
Another approach is to define Eq(T1, T2) as having infinitely many components. One could also
define it through the use of ∃ but this looks like bad idea since ∃ normally should appear in the
theory much later (together with ∅). Let’s see if we can rewrite the definition (24) more explicitly
i.e. without so far undefined compositions. Instead of bf we have to write λx : T1.bfx, instead
of fb should write λy : T2.fby. Instead of fbf should write λx : T1.fbfx. So far so good. What
should we write instead of ψ ∗ f? Looks like λx : T1.ψfx. This works by our rule (15). According
to this rule the expression λx : T1.ψfx lies in

eqT1→T1(λx : T1.(λy : T2.y)fx, λx : T1.(λy : T2.fby)fx)

which through β-conversion will give us

eqT1→T1(λx : T1.fx, λx : T1.fbfx).

Good. Now f ∗ ϕ. This seems to be λx : T1.fϕx. It lies in

eqT1→T1(λx : T1.f(λx
′ : T1.x

′)x, λx : T1.f(λx
′ : T1.bfx

′)x)

It is fine provided we know that λx : T1.f(λx
′ : T1.x

′)x : T1 → T1. Do we? Looks OK. Summarizing:

ψ ∗ f = λx : T1.ψfx

f ∗ ϕ = λx : T1.fϕx.

Going back to what happens given (Γ, v : Q ⊢ R(v) : Type) and (Γ, ϕ : eqQ(x, y)). What if we
simply require that R(ϕ) : R(x) → R(y). Can we then construct R(y) → R(x) and the rest of the
equivalence structure?

We will most likely need to introduce the inverses for equivalences first. E.g. lets state the rule

[inv1]
Γ ⊢ ϕ : eqQ(x, y)

Γ ⊢ ϕ−1 : eqQ(y, x), ξ : eqeqQ(x,x)(ϕ−1ϕ, Id)
(25)

This should be enough for everything. First need to formulate the rule properly i.e. expand/explain
ϕ−1ϕ. In general given ϕ : eqQ(x, y), ψ : eqQ(y, z) what is ψϕ? First it seems that we can do even
better with (25) by requiring both left and right inverses with the corresponding homotopies and
providing no relation between the two. Of course one can be constructed from another but may
be more notationally convenient to have both? Back to the composition ψϕ. This composition is
obtained from our ”R(ϕ)” rule. Note first that we should be able to write

eq(ϕ, y) : eq(x, y) → eq(y, y)

eq(ϕ, x) : eq(x, x) → eq(y, x)

44

eq(x, ϕ) : eq(x, x) → eq(x, y)

eq(y, ϕ) : eq(y, x) → eq(y, y).

Clearly, our idea is that eq(ϕ, x)Idx = ϕ−1. Strange that we are getting only one inverse. For ϕ, ψ
we have:

eq(x, ψ) : eq(x, y) → eq(x, z)

and ψϕ := eq(x, ψ)ϕ.

Sum associated term expressions:

1. if Q is a valid type expression in Γ and S is a valid type expression in (Γ, y : Q) if further
l1 is a valid term expression of type Q in Γ and l2 is a valid term expression of type S in
(Γ, y : Q) then ⟨l1, l2⟩ is a valid type expression in Γ of type

∑
y:Q S.

45

